DOE Quadrennial Technology Review

Steven E. Koonin

Under Secretary for Science US Department of Energy May 2011

http://www.energy.gov/QTR

Estimated U.S. Energy Use in 2009: ~94.6 Quads

https://flowcharts.llnl.gov/

Energy Essentials

As a whole, energy is

- A big and expensive system
- In private hands
- Governed by economics, modulated by government policies

Demand

- Many distributed players, shorter-lived assets
- User benefit (economics, convenience, personal preference)
- Determined by price, standards, behavior
- Little attention to system optimization for stationary use

Supply

- Fewer, long-lived centralized facilities with distribution networks
- Change has required decades
- Power and fuels are commodities with thin margins
- Markets with government regulation and distortion
- Technology alone does not a transformation make
- Transport and Stationary are disjoint
- Transport is powered by oil
- Power
 - Requires boiling large amounts of water
 - Sized for extremes (storage is difficult)
 - Numerous sources with differing...
 - CapEx and OpEx
 - Emissions
 - Base/Peak/Intermittency

Energy supply has changed on decadal scales

US energy supply since 1850

U.S. Energy Challenges

Energy Security

Competitiveness

Environment

Share of Reserves Held by NOC/IOC

Jan-01

Jan-06

Jan-11

Jan-96

Jan-86

Jan-91

Reserves to which Reserves Held by International Oil New Russian Companies have Companies Full Access 6% 6% Reserves Held by National Oil Companies (equity access) 10% **Reserves Held** by National Oil Companies (limited equity access) 78%

Administration Goals

Transport

- Reduce oil imports by 1/3 by 2025 (~3.7 M bbl/day)
- Put 1 million electric vehicles on the road by 2015

Stationary

- By 2035, generate 80% of electricity from a diverse set of clean energy sources
- Make non-residential buildings 20% more energy efficient by 2020

Environmental

 Cut greenhouse gas emissions in the range of 17% below 2005 levels by 2020, and 83% by 2050

Six Strategies

	Supply		Demand
Stationary	Deploy Clean Electricity	Modernize the Grid	Increase Building and Industrial Efficiency
Transport	Deploy Alternative Fuels	Progressively Electrify the Fleet	Increase Vehicle Efficiency

DOE-QTR Scope

The DOE-QTR will provide a **context and robust framework** for the Department's energy programs, as well as principles by which to establish multiyear programs plans and budgets. It will also offer **high-level views of the technical status and potential** of various energy technologies.

The primary focus of the DOE-QTR process and document will be on the following:

- Framing the energy challenges
- A discussion of the roles of government, industry, national laboratories, and universities in energy system transformation
- Summary roadmaps for advancing key energy technologies, systems, and sectors
- Principles by which the Department can judge the priority of various technology efforts
- A discussion of support for demonstration projects
- □ The connections of energy technology innovation to energy policy

DOE-QTR Timeline

<u>Nov 2010</u>

PCAST made recommendations for DOE to do QER

<u>3/14 – 4/15</u>

Public comment period for DOE-QTR Framing Document

<u>4/20</u>

First batch of public comments released on project website

Through mid-June

Hold workshops and discussions of each of the Six Strategies

End July/Aug

Submit DOE-QTR to White House for approval Before Dec 2011

Release DOE-QTR

DOE-QTR Logic Flow

THE TECHNOLOGY STRATEGIES

Y 11

Six Strategies

	Supply		Demand
Stationary	Deploy Clean Electricity	Modernize the Grid	Increase Building and Industrial Efficiency
Transport	Deploy Alternative Fuels	Progressively Electrify the Fleet	Increase Vehicle Efficiency

Trends in Car and Light-Duty Truck Average Attributes showing changes in customer preferences, data from (EPA2010)

Reduction in fuel consumption relative to 2007

Cumulative retail price equivalent and fuel consumption reduction relative to 2007 for spark ignition powertrain without hybridization (NRC2010)

Six Strategies

	Supply		Demand
Stationary	Deploy Clean Electricity	Modernize the Grid	Increase Building and Industrial Efficiency
Transport	Deploy Alternative Fuels	Progressively Electrify the Fleet	Increase Vehicle Efficiency

Progressively Electrify the Fleet

Internal Combustion Engine (ICE)

Plug-in Electric Hybrid Vehicle (PHEV)

Battery Electric Vehicle (BEV)

Challenges with Batteries and Motors

Batteries

- Cost
- Performance
- Physical Characteristics

Adequate supply chain

- Rare-earth elements in permanent magnet motors
- Lithium in batteries
- OEM & component manufacturing capacity

Charging

- Infrastructure
- Standardization of chargers and grid interface
- Charging times
- Consumer behavior

Battery Evolution: R&D to Commercialization

The energy storage effort is engaged in a wide range of topics, from fundamental materials work through battery development and testing

- High energy cathodes
- Alloy, Lithium anodes
- High voltage
 electrolytes
- Lithium air couples

- High rate electrodes
- High energy couples
- Fabrication of high E cells
- Ultracapacitor carbons

Lab and University Focus

Industry Focus

- Hybrid Electric Vehicle (HEV) systems
- 10 and 40 mile Plug-in HEV systems
- Advanced lead acid
- Ultracapacitors

Hybrid Electric Systems

Petroleum Displacement via Fuel Substitution and Improved Efficiency

Administration Goal:1 Million EVs by 2015

Six Strategies

	Supply		Demand
Stationary	Deploy Clean Electricity	Modernize the Grid	Increase Building and Industrial Efficiency
Transport	Deploy Alternative Fuels	Progressively Electrify the Fleet	Increase Vehicle Efficiency

Deploy Advanced/Alternative Fuels

Feedstocks

Feedstock Production & Logistics

- Energy crops
- Agricultural byproducts
- Waste
 Streams
- Algae
- Coal
- Natural Gas

Platforms / Pathways	Products
$\begin{array}{cc} Cellulosic \ Sugar \ Platform \\ Enzymatic \\ Hydrolysis \end{array} \rightarrow Sugars \rightarrow Fermentation \end{array}$	Co or By Products
Pyrolysis Oil Platform	Power
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•Ethanol •Methanol •Butanol Z •Olefins •Aromatics
Lipid (Oil) Platform Algal and other Bio-Oils Transesterification Catalytic Upgrading	•Diesel •Jet •Dimethyl Ether
Other enzymatic/biochemical methods	•Heat and Power

Biomass can provide significant carbon

Six Strategies

	Supply		Demand
Stationary	Deploy Clean Electricity	Modernize the Grid	Increase Building and Industrial Efficiency
Transport	Deploy Alternative Fuels	Progressively Electrify the Fleet	Increase Vehicle Efficiency

Categories of US Energy Consumption

Buildings use about 40% of total US energy

U.S. Refrigerator Properties

Six Strategies

	Supply		Demand
Stationary	Deploy Clean Electricity	Modernize the Grid	Increase Building and Industrial Efficiency
Transport	Deploy Alternative Fuels	Progressively Electrify the Fleet	Increase Vehicle Efficiency

The U.S. Grid

The numbers

- > > 200,000 miles of transmission lines distribute approx. 1 TW of power
- Over 3,500 utility organizations

Desiderata

- Reliability
- Efficiency
- Security
- **Flexibility to integrate intermittent renewables**
- Two-way flow of information and power
- Growth to handle growing demand

Challenges

- Active management is required to balance generation, transmission, and demand at all times
- Excursion from ideal operation can be catastrophic

EXISTING LINES

 →
 345-499 kV
 ?

 →
 500-699 kV
 ?

 →
 700-799 kV
 ?

 →
 1,000 kV (DC)
 ?

PROPOSED LINES

New 765 kV (?) AC-DC-AC Links (?)

INTERCONNECTIONS

Major sectors of the U.S. electrical grid

Eastern

Western

Texas (ERCOT)

EXISTING LINES

- → 345-499 kV ? → 500-699 kV ? → 700-799 kV ?
- 1,000 kV (DC) 💿

PROPOSED LINES

✓ New 765 kV ⑦
✓ AC-DC-AC Links ⑦

INTERCONNECTIONS

Major sectors of the U.S. electrical grid

Eastern

- Western
- Texas (ERCOT)

- -√r 345-499 kV 🕐
- -√- 500-699 kV

?

?

- -∿ 700-799 kV
- 1,000 kV (DC) 🕐

PROPOSED LINES

- 🛧 New 765 kV 🕐
- MAC-DC-AC Links ?

INTERCONNECTIONS

Major sectors of the U.S. electrical grid

- Eastern
- Western
- Texas (ERCOT)

POWER PLANTS

All plants

Dots are sized with respect to each plant's annual net generation of power.

EXISTING LINES

Existing electric power grid

NOTE: Data for this map comes from the U.S. EPA's eGRID database. Not all power-generating facilities in the U.S. are plotted on this map.

EXISTING LINES

Existing electric power grid

PROPOSED LINES

- ✤ Wind power transmission lines in 2030
- New wind power transmission lines projected after 2030

EXISTING CAPACITY

Wind speed

At 50m (164 ft), in mph

- Superb: 19.7-24.8
- Outstanding: 17.9-19.7
- Excellent: 16.8-17.9
- Good: 15.7-16.8
- Fair: 14.3-15.7

Six Strategies

Deploy Clean Electricity

Solar Photovoltaic (PV)

Wind

Concentrating Solar Power

Nuclear Energy

Other technologies

- Natural gas
- Hydro
- Solar thermal (parabolic troughs)
- Geothermal

Carbon Capture and Storage

US Gas Supply by Source

Source: EIA, Annual Energy Outlook 2011 Early Release

US Renewable Generation (GWh)

non-hydropower renewable generation billion kilowatthours per year

Source: EIA, Annual Energy Outlook 2011 Early Release

Renewable Electricity Costs (2009)

Source: 2009 Renewable Energy Data Book (EERE)

Framing Energy in the Social Science/Behavioral Context

- Incentives
- Rebound effect
- Discount rates
- Energy awareness
- Leveraging social norms and networks
- Technology perception, acceptance and adoption
- Energy economic modeling to incorporate behavior patterns
- Value on intangibles (ex: human life)
- Must include business in these discussions!

QUESTIONS?/COMMENTS?

http://science.energy.gov/s-4 http://www.energy.gov/QTR

40

