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Getting AT Right:
Introductory Notes on Al & Society

James Manyika

NATHAN: Do you know what the Turing Test is?

CALEB:... Yeah. I know what the Turing Test is. It’s when a human interacts
with a computer. And if the human doesn’t know they’re interacting with a
computer, the test is passed.

NATHAN: And what does a pass tell us ?
CALEB: That the computer has artificial intelligence. ...

NATHAN: You got it. Because if that test is passed, you are dead center of the
single greatest scientific event in the history of man.

CALEB: If you've created a conscious machine, it’s not the history of man.
It’s the history of gods.

his dialogue is from an early scene in the 2014 film Ex Machina, in which
Nathan has invited Caleb to determine whether Nathan has succeeded

in creating artificial intelligence. The achievement of powerful artificial

general intelligence has long held a grip on our imagination not only for its excit-
ing as well as worrisome possibilities, but also for its suggestion of a new, unchart-
ed era for humanity. In opening his 2021 BBC Reith Lectures, titled “Living with
Artificial Intelligence,” Stuart Russell states that “the eventual emergence of gen-
eral-purpose artificial intelligence [will be] the biggest event in human history.”>
Over the last decade, a rapid succession of impressive results has brought wid-

er public attention to the possibilities of powerful artificial intelligence. In ma-
chine vision, researchers demonstrated systems that could recognize objects as
well as, if not better than, humans in some situations. Then came the games.
Complex games of strategy have long been associated with superior intelligence,
and so when Al systems beat the best human players at chess, Atari games, Go,
shogi, StarCraft, and Dota, the world took notice. It was not just that Als beat hu-
mans (although that was astounding when it first happened), but the escalating
progression of how they did it: initially by learning from expert human play, then
from self-play, then by teaching themselves the principles of the games from the
ground up, eventually yielding single systems that could learn, play, and win at
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Getting AI Right : Introductory Notes on Al & Society

several structurally different games, hinting at the possibility of generally intelli-
gent systems.3

Speech recognition and natural language processing have also seen rapid and
headline-grabbing advances. Most impressive has been the emergence recently
of large language models capable of generating human-like outputs. Progress in
language is of particular significance given the role language has always played in
human notions of intelligence, reasoning, and understanding. While the advanc-
es mentioned thus far may seem abstract, those in driverless cars and robots have
been more tangible given their embodied and often biomorphic forms. Demon-
strations of such embodied systems exhibiting increasingly complex and autono-
mous behaviors in our physical world have captured public attention.

Also in the headlines have been results in various branches of science in which
Al and its related techniques have been used as tools to advance research from ma-
terials and environmental sciences to high energy physics and astronomy.4 A few
highlights, such as the spectacular results on the fifty-year-old protein-folding
problem by AlphaFold, suggest the possibility that AI could soon help tackle sci-
ence’s hardest problems, such as in health and the life sciences.>

While the headlines tend to feature results and demonstrations of a future to
come, Al and its associated technologies are already here and pervade our daily
lives more than many realize. Examples include recommendation systems, search,
language translators—now covering more than one hundred languages—facial rec-
ognition, speech to text (and back), digital assistants, chatbots for customer ser-
vice, fraud detection, decision support systems, energy management systems,
and tools for scientific research, to name a few. In all these examples and others,
Al-related techniques have become components of other software and hardware
systems as methods for learning from and incorporating messy real-world inputs
into inferences, predictions, and, in some cases, actions. As director of the Future
of Humanity Institute at the University of Oxford, Nick Bostrom noted back in
2006, “Alot of cutting-edge AI has filtered into general applications, often with-
out being called Al because once something becomes useful enough and common
enough it’s not labeled AT anymore.”%

As the scope, use, and usefulness of these systems have grown for individual us-
ers, researchers in various fields, companies and other types of organizations, and
governments, so too have concerns when the systems have not worked well (such
as bias in facial recognition systems), or have been misused (as in deepfakes), or
have resulted in harms to some (in predicting crime, for example), or have been
associated with accidents (such as fatalities from self-driving cars).”

Dcedalus last devoted a volume to the topic of artificial intelligence in 1988, with
contributions from several of the founders of the field, among others. Much of
that issue was concerned with questions of whether research in AI was making
progress, of whether Al was at a turning point, and of its foundations, mathemati-
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cal, technical, and philosophical — with much disagreement. However, in that vol-
ume there was also a recognition, or perhaps a rediscovery, of an alternative path
toward AI - the connectionist learning approach and the notion of neural nets —
and a burgeoning optimism for this approach’s potential. Since the 1960s, the
learning approach had been relegated to the fringes in favor of the symbolic for-
malism for representing the world, our knowledge of it, and how machines can
reason about it. Yet no essay captured some of the mood at the time better than
Hilary Putnam’s “Much Ado About Not Very Much.” Putnam questioned the
Dcedalus issue itself: “Why a whole issue of Deedalus? Why don’t we wait until AI
achieves something and then have an issue ?” He concluded:

Perhaps the optimistic view is right, but I do not see anyone on the scene, in either
artificial intelligence or inductive logic, who has any interesting ideas about how the
topic-neutral [general] learning strategy works. When someone does appear with
such an idea, that will be time for Deedalus to publish an issue on ALS

This volume of Deedalus is indeed the first since 1988 to be devoted to artificial
intelligence. This volume does not rehash the same debates; much else has hap-
pened since, mostly as a result of the success of the machine learning approach
that was being rediscovered and reimagined, as discussed in the 1988 volume. This
issue aims to capture where we are in AI's development and how its growing uses
impact society. The themes and concerns herein are colored by my own involve-
ment with AL Besides the television, films, and books that I grew up with, my in-
terestin Al began in earnest in 1989 when, as an undergraduate at the University of
Zimbabwe, I undertook a research project to model and train a neural network.?
I'went on to do research on Al and robotics at Oxford. Over the years, I have been
involved with researchers in academia and labs developing Al systems, studying
AI's impact on the economy, tracking AI's progress, and working with others in
business, policy, and labor grappling with its opportunities and challenges for
society.®

The authors of the twenty-five essays in this volume range from AI scientists
and technologists at the frontier of many of AI's developments to social scientists
at the forefront of analyzing AI's impacts on society. The volume is organized into
ten sections. Half of the sections are focused on AI's development, the other half
on its intersections with various aspects of society. In addition to the diversity in
their topics, expertise, and vantage points, the authors bring a range of views on
the possibilities, benefits, and concerns for society. I am grateful to the authors for
accepting my invitation to write these essays.

efore proceeding further, it may be useful to say what we mean by artifi-

cial intelligence. The headlines and increasing pervasiveness of Al and its
associated technologies have led to some conflation and confusion about
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what exactly counts as AI This has not been helped by the current trend — among
researchers in science and the humanities, startups, established companies, and
even governments — to associate anything involving not only machine learning,
but data science, algorithms, robots, and automation of all sorts with AL This
could simply reflect the hype now associated with AI, but it could also be an ac-
knowledgment of the success of the current wave of Al and its related techniques
and their wide-ranging use and usefulness. I think both are true; but it has not al-
ways been like this. In the period now referred to as the AI winter, during which
progress in Al did not live up to expectations, there was a reticence to associate
most of what we now call AT with Al

Two types of definitions are typically given for AL The first are those that sug-
gest that it is the ability to artificially do what intelligent beings, usually human,
can do. For example, artificial intelligence is:

the ability of a digital computer or computer-controlled robot to perform tasks com-
monly associated with intelligent beings.**

The human abilities invoked in such definitions include visual perception,
speech recognition, the capacity to reason, solve problems, discover meaning,
generalize, and learn from experience. Definitions of this type are considered by
some to be limiting in their human-centricity as to what counts as intelligence
and in the benchmarks for success they set for the development of AI (more on
this later). The second type of definitions try to be free of human-centricity and
define an intelligent agent or system, whatever its origin, makeup, or method, as:

Any system that perceives its environment and takes actions that maximize its chance
of achieving its goals.'

This type of definition also suggests the pursuit of goals, which could be given
to the system, self-generated, or learned.'3 That both types of definitions are em-
ployed throughout this volume yields insights of its own.

These definitional distinctions notwithstanding, the term AI, much to the cha-
grin of some in the field, has come to be what cognitive and computer scientist
Marvin Minsky called a “suitcase word.”*#4 It is packed variously, depending on
who you ask, with approaches for achieving intelligence, including those based on
logic, probability, information and control theory, neural networks, and various
other learning, inference, and planning methods, as well as their instantiations in
software, hardware, and, in the case of embodied intelligence, systems that can
perceive, move, and manipulate objects.

hree questions cut through the discussions in this volume: 1) Where are

we in AI's development? 2) What opportunities and challenges does Al
pose for society ? 3) How much about Al is really about us?
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Where are we in AI's development?

Notions of intelligent machines date all the way back to antiquity.'> Philosophers,
too, among them Hobbes, Leibnitz, and Descartes, have been dreaming about Al
for along time; Daniel Dennett suggests that Descartes may have even anticipat-
ed the Turing Test.'¢ The idea of computation-based machine intelligence traces
to Alan Turing’s invention of the universal Turing machine in the 1930s, and to
the ideas of several of his contemporaries in the mid-twentieth century. But the
birth of artificial intelligence as we know it and the use of the term is generally
attributed to the now famed Dartmouth summer workshop of 1956. The work-
shop was the result of a proposal for a two-month summer project by John Mc-
Carthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon whereby “An
attempt will be made to find how to make machines use language, form abstrac-
tions and concepts, solve kinds of problems now reserved for humans, and im-
prove themselves.””

In their respective contributions to this volume, “From So Simple a Beginning:
Species of Artificial Intelligence” and “If We Succeed,” and in different but com-
plementary ways, Nigel Shadbolt and Stuart Russell chart the key ideas and devel-
opments in Al its periods of excitement as well as the aforementioned AI winters.
The current Al spring has been underway since the 1990s, with headline-grabbing
breakthroughs appearing in rapid succession over the last ten years or so: a period
that Jeffrey Dean describes in the title of his essay as a “golden decade,” not only
for the pace of Al development but also its use in a wide range of sectors of society,
as well as areas of scientific research.'® This period is best characterized by the ap-
proach to achieve artificial intelligence through learning from experience, and by
the success of neural networks, deep learning, and reinforcement learning, together
with methods from probability theory, as ways for machines to learn.™

A brief history may be useful here: In the 1950s, there were two dominant vi-
sions of how to achieve machine intelligence. One vision was to use computers to
create a logic and symbolic representation of the world and our knowledge of it
and, from there, create systems that could reason about the world, thus exhibit-
ing intelligence akin to the mind. This vision was most espoused by Allen Newell
and Hebert Simon, along with Marvin Minsky and others. Closely associated with
it was the “heuristic search” approach that supposed intelligence was essential-
ly a problem of exploring a space of possibilities for answers. The second vision
was inspired by the brain, rather than the mind, and sought to achieve intelligence
by learning. In what became known as the connectionist approach, units called
perceptrons were connected in ways inspired by the connection of neurons in
the brain. At the time, this approach was most associated with Frank Rosenblatt.
While there was initial excitement about both visions, the first came to dominate,
and did so for decades, with some successes, including so-called expert systems.
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Not only did this approach benefit from championing by its advocates and plen-
tiful funding, it came with the suggested weight of a long intellectual tradition —
exemplified by Descartes, Boole, Frege, Russell, and Church, among others — that
sought to manipulate symbols and to formalize and axiomatize knowledge and
reasoning. It was only in the late 1980s that interest began to grow again in the sec-
ond vision, largely through the work of David Rumelhart, Geoffrey Hinton, James
McClelland, and others. The history of these two visions and the associated philo-
sophical ideas are discussed in Hubert Dreyfus and Stuart Dreyfus’s 1988 Deedalus
essay “Making a Mind Versus Modeling the Brain: Artificial Intelligence Back at
a Branchpoint.”2° Since then, the approach to intelligence based on learning, the
use of statistical methods, back-propagation, and training (supervised and unsu-
pervised) has come to characterize the current dominant approach.

Kevin Scott, in his essay “I Do Not Think It Means What You Think It Means:
Artificial Intelligence, Cognitive Work & Scale,” reminds us of the work of Ray
Solomonoff and others linking information and probability theory with the idea
of machines that can not only learn, but compress and potentially generalize what
they learn, and the emerging realization of this in the systems now being built and
those to come. The success of the machine learning approach has benefited from
the boon in the availability of data to train the algorithms thanks to the growth in
the use of the Internet and other applications and services. In research, the data
explosion has been the result of new scientific instruments and observation plat-
forms and data-generating breakthroughs, for example, in astronomy and in ge-
nomics. Equally important has been the co-evolution of the software and hard-
ware used, especially chip architectures better suited to the parallel computations
involved in data- and compute-intensive neural networks and other machine
learning approaches, as Dean discusses.

Several authors delve into progressin key subfields of AI.>' In their essay, “Search-
ing for Computer Vision North Stars,” Fei-Fei Li and Ranjay Krishna chart devel-
opments in machine vision and the creation of standard data sets such as ImageNet
that could be used for benchmarking performance. In their respective essays “Hu-
man Language Understanding & Reasoning” and “The Curious Case of Common-
sense Intelligence,” Chris Manning and Yejin Choi discuss different eras and ideas
in natural language processing, including the recent emergence of large language
models comprising hundreds of billions of parameters and that use transformer
architectures and self-supervised learning on vast amounts of data.>> The result-
ing pretrained models are impressive in their capacity to take natural language
prompts for which they have not been trained specifically and generate human-like
outputs, not only in natural language, but also images, software code, and more,
as Mira Murati discusses and illustrates in “Language & Coding Creativity.” Some
have started to refer to these large language models as foundational models in that
once they are trained, they are adaptable to a wide range of tasks and outputs.?3 But
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despite their unexpected performance, these large language models are still early
in their development and have many shortcomings and limitations that are high-
lighted in this volume and elsewhere, including by some of their developers.>4

In “The Machines from Our Future,” Daniela Rus discusses the progress in
robotic systems, including advances in the underlying technologies, as well as in
their integrated design that enables them to operate in the physical world. She
highlights the limitations in the “industrial” approaches used thus far and sug-
gests new ways of conceptualizing robots that draw on insights from biological
systems. In robotics, as in Al more generally, there has always been a tension as to
whether to copy or simply draw inspiration from how humans and other biologi-
cal organisms achieve intelligent behavior. Elsewhere, Al researcher Demis Hassa-
bis and colleagues have explored how neuroscience and Al learn from and inspire
each other, although so far more in one direction than the other, as Alexis Baria
and Keith Cross have suggested.>

Despite the success of the current approaches to Al there are still many short-
comings and limitations, as well as conceptually hard problems in AL It is useful
to distinguish on one hand problematic shortcomings, such as when AI does not
perform as intended or safely, or produces biased or toxic outputs that can lead to
harm, or when it impinges on privacy, or generates false information about the
world, or when it has characteristics such as lack of explainability, all of which
can lead to aloss of public trust. These shortcomings have rightly captured the at-
tention of the wider public and regulatory bodies, as well as researchers, among
whom there is an increased focus on technical AI and ethics issues.?” In recent
years, there has been a flurry of efforts to develop principles and approaches to re-
sponsible Al as well as bodies involving industry and academia, such as the Part-
nership on Al, that aim to share best practices.?® Another important shortcoming
has been the significant lack of diversity—especially with respect to gender and
race—in the people researching and developing Al in both industry and academia,
as hasbeen well documented in recent years.*® This is an important gap in its own
right, but also with respect to the characteristics of the resulting Al and, conse-
quently, in its intersections with society more broadly.

On the other hand, there are limitations and hard problems associated with
the things that Al is not yet capable of that, if solved, could lead to more power-
ful, more capable, or more general Al In their Turing Lecture, deep learning pio-
neers Yoshua Bengio, Yann LeCun, and Geoffrey Hinton took stock of where deep
learning stands and highlighted its current limitations, such as the difficulties
with out-of-distribution generalization.3° In the case of natural language process-
ing, Manning and Choi highlight the hard challenges in reasoning and common-
sense understanding, despite the surprising performance of large language mod-
els. Elsewhere, computational linguists Emily Bender and Alexander Koller have
challenged the notion that large language models do anything resembling under-
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standing, learning, or meaning.3! In “Multi-Agent Systems: Technical & Ethical
Challenges of Functioning in a Mixed Group,” Kobi Gal and Barbara Grosz dis-
cuss the hard problems in multi-agent systems, highlighting the conceptual diffi-
culties — such as how to reason about other agents, their belief systems, and inten-
tionality — as well as ethical challenges in both cooperative and competitive set-
tings, especially when the agents include both humans and machines. Elsewhere,
Allan Dafoe and others provide a useful overview of the open problems in cooper-
ative AI.3* Indeed, there is a growing sense among many that we do not have ade-
quate theories for the sociotechnical embedding of AI systems, especially as they
become more capable and the scope of societal use expands.

And although AT and its related techniques are proving to be powerful tools for
research in science, as examples in this volume and elsewhere illustrate — including
recent examples in which embedded AI capabilities not only help evaluate results
but also steer experiments by going beyond heuristics-based experimental design
and become what some have termed “self-driving laboratories”33 — getting AI to
understand science and mathematics and to theorize and develop novel concepts
remain grand challenges for AI34 Indeed the possibility that more powerful Al
could lead to new discoveries in science, as well as enable game-changing progress
in some of humanities greatest challenges and opportunities, has long been a key
motivation for many at the frontier of Al research to build more capable systems.

Beyond the particulars of each subfield of AL the list of more general hard prob-
lems that continue to limit the possibility of more capable AI includes one-shot
learning, cross-domain generalizations, causal reasoning, grounding, complexities
of timescales and memory, and meta-cognition.3> Consideration of these and other
hard problems that could lead to more capable systems raises the question of wheth-
er current approaches — mostly characterized by deep learning, the building of larger
and larger and more foundational and multimodal models, and reinforcement learn-
ing — are sufficient, or whether entirely different conceptual approaches are needed
in addition, such as neuroscience-inspired cognitive agent approaches or semantic
representations or reasoning based on logic and probability theory, to name a few.
On whether and what kind of additional approaches might be needed, the AI com-
munity is divided, but many believe the current approaches3® along with further
evolution of compute and learning architectures have yet to reach their limits.3”

The debate about the sufficiency of the current approaches is closely associ-
ated with the question of whether artificial general intelligence can be achieved,
and if so, how and when. Artificial general intelligence (AGI) is defined in distinction
to what is sometimes called narrow AI: that is, Al developed and fine-tuned for spe-
cific tasks and goals, such as playing chess. The development of AGI, on the other
hand, aims for more powerful AI - at least as powerful as humans — that is gener-
ally applicable to any problem or situation and, in some conceptions, includes the
capacity to evolve and improve itself, as well as set and evolve its own goals and
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preferences. Though the question of whether, how, and when AGI will be achieved
is a matter for debate, most agree that its achievement would have profound im-
plications — beneficial and worrisome — for humanity, as is often depicted in pop-
ular books3® and films such as 2001: A Space Odyssey through Terminator and The
Matrix to Ex Machina and Her. Whether it is imminent or not, there is growing
agreement among many at the frontier of Al research that we should prepare for
the possibility of powerful AGI with respect to safety and control, alignment and
compatibility with humans, its governance and use, and the possibility that mul-
tiple varieties of AGI could emerge, and that we should factor these considerations
into how we approach the development of AGI.

Most of the investment, research and development, and commercial activi-
ty in Al today is of the narrow Al variety and in its numerous forms: what Nigel
Shadbolt terms the speciation of Al. This is hardly surprising given the scope for
useful and commercial applications and the potential for economic gains in mul-
tiple sectors of the economy.3? However, a few organizations have made the de-
velopment of AGI their primary goal. Among the most well-known of these are
DeepMind and OpenAl, each of which has demonstrated results of increasing
generality, though still along way from AGI.

W hat opportunities and challenges does Al pose for society?

Perhaps the most widely discussed societal impact of Al and automation is on jobs
and the future of work. This is not new. In 1964, in the wake of the era’s excitement
about Aland automation, and concerns about their impact on jobs, President Lyn-
don Johnson empaneled a National Commission on Technology, Automation,
and Economic Progress.4° Among the commission’s conclusions was that such
technologies were important for economic growth and prosperity and “the ba-
sic fact that technology destroys jobs, but not work.” Most recent studies of this
effect, including those I have been involved in, have reached similar conclusions
and that over time, more jobs are gained than are lost. These studies highlight that
it is the sectoral and occupational transitions, the skill and wage effects — not the
existence of jobs broadly — that will present the greatest challenges.#! In their es-
say “Automation, AI & Work,” Laura Tyson and John Zysman discuss these im-
plications for work and workers. Michael Spence goes further, in “Automation,
Augmentation, Value Creation & the Distribution of Income & Wealth,” to dis-
cuss the distributional issues with respect to income and wealth within and be-
tween countries, as well as the societal opportunities that are created, especially in
developing countries. In “The Turing Trap: The Promise & Peril of Human-Like
Artificial Intelligence,” Erik Brynjolfsson discusses how the use of human bench-
marks in the development of Al runs the risk of Al that substitutes for, rather than
complements, human labor. He concludes that the direction AI's development
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will take in this regard, and resulting outcomes for work, will depend on the in-
centives for researchers, companies, and governments.4*

Still, a concern remains that the conclusion that more jobs will be created
than lost draws too much from patterns of the past and does not look far enough
into the future and at what Al will be capable of. The arguments for why AI could
break from past patterns of technology-driven change include: first, that unlike
in the past, technological change is happening faster and labor markets (includ-
ing workers) and societal systems’ ability to adapt are slow and mismatched; and
second, that, until now, automation has mostly mechanized physical and routine
tasks, but that going forward, AI will be taking on more cognitive and nonroutine
tasks, creative tasks, tasks based on tacit knowledge, and, if early examples are
any indication, even socioempathic tasks are not out of the question.®3 In other
words, “There are now in the world machines that think, that learn and that cre-
ate. Moreover, their ability to do these things is going to increase rapidly until — in
a visible future — the range of problems they can handle will be coextensive with
the range to which the human mind has been applied.” This was Herbert Simon
and Allen Newell in 1957.44

Acknowledging that this time could be different usually elicits two responses:
First, that new labor markets will emerge in which people will value things done
by other humans for their own sake, even when machines may be capable of doing
these things as well as or even better than humans. The other response is that Al
will create so much wealth and material abundance, all without the need for hu-
man labor, and the scale of abundance will be sufficient to provide for everyone’s
needs. And when that happens, humanity will face the challenge that Keynes once
framed: “For the first time since his creation man will be faced with his real, his
permanent problem — how to use his freedom from pressing economic cares, how
to occupy theleisure, which science and compound interest will have won for him,
to live wisely and agreeably and well.”4> However, most researchers believe that
we are not close to a future in which the majority of humanity will face Keynes’s
challenge, and that until then, there are other AI- and automation-related effects
that must be addressed in the labor markets now and in the near future, such as in-
equality and other wage effects, education, skilling, and how humans work along-
side increasingly capable machines —issues that Laura Tyson and John Zysman,
Michael Spence, and Erik Brynjolfsson discuss in this volume.

Jobs are not the only aspect of the economy impacted by Al Russell provides a
directional estimate of the potentially huge economic bounty from artificial gen-
eral intelligence, once fully realized: a global GDP of $750 trillion, or ten times
today’s global GDP. But even before we get to fully realized general-purpose Al,
the commercial opportunities for companies and, for countries, the potential pro-
ductivity gains and economic growth as well as economic competitiveness from
narrow Al and its related technologies are more than sufficient to ensure intense
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pursuit and competition by companies and countries in the development, deploy-
ment, and use of Al At the national level, while many believe the United States is
ahead, it is generally acknowledged that China is fast becoming a major player in
Al as evidenced by its growth in Al research, infrastructure, and ecosystems, as
highlighted in several reports.4% Such competition will likely have market struc-
ture effects for companies and countries, given the characteristics of such tech-
nologies as discussed by Eric Schmidt, Spence, and others elsewhere.4” Moreover,
the competitive dynamics may get in the way of responsible approaches to Al and
issues requiring collective action (such as safety) between competitors, whether
they are companies or countries, as Amanda Askell, Miles Brundage, and Gillian
Hadfield have highlighted.43

Nations have reasons beyond the economic to want to lead in AI The role of
Alin national security — in surveillance, signals intelligence, cyber operations, de-
fense systems, battle-space superiority, autonomous weapons, even disinforma-
tion and other forms of sociopolitical warfare - is increasingly clear. In “Al, Great
Power Competition & National Security,” Eric Schmidt, who cochaired the U.S.
National Security Commission on Artificial Intelligence, paints a stark picture of
current and future risks that AI technologies pose to international security and
stability. Schmidt calls for the exploration of shared limits and treaties on Al, even
among rivals. Short of that, he points to confidence-building measures to limit
risks and increase trust.4? At the same time, Russell and Shadbolt, respectively,
spotlight concerns regarding autonomous weapons and weaponized Al

In “The Moral Dimension of Al-Assisted Decision-Making: Some Practical
Perspectives from the Front Lines,” former Secretary of Defense Ash Carter iden-
tifies lessons for AI drawn from other national security-related technologies, such
as nuclear weapons, while focusing on the ethics of automated decision-making.
However, there are important differences between Al and nuclear technologies:
for example, AI's development has been led by a private sector in pursuit of global
opportunities. And, as Schmidt points out, AI technologies in their development
and use have network effects and tend to consolidate around those who lead in
their development, whether they are companies or countries. This pits commer-
cial and economic interests for companies and countries on one hand, and the na-
tional security interests of countries on the other.>° Not fully explored in this vol-
ume are the implications for companies (as well as other types of organizations)
and countries not at the forefront of AI's development but that could benefit from
its use. This is of particular significance given that many have highlighted the po-
tential for AI and its related technologies to contribute, along with other social
and developmental efforts, to tackling many current and future global and socie-
tal challenges.5' The COVID-19 pandemic has given us alive example of the human
cost when countries at the forefront of a globally valuable discovery, such as a vac-
cine, do not or are slow to share it with poorer parts of the world.
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As the use of AI has grown to encompass not only consumer applications and
services, but also those in health care, financial services, public services, and com-
merce generally, it has in many instances improved effectiveness and decision
quality and enabled much-needed cost and performance optimization. At the same
time, in some cases, the use of algorithms has led to issues of bias and fairness, of-
ten the result of bias in the training data and the societal systems through which
such data are collected.>* Sonia Katyal uses examples from facial recognition, po-
licing, and sentencing to argue in “Democracy & Distrust in an Era of Artificial
Intelligence” that, when there is an absence of representation and participation,
Al-powered systems carry the same risks and potential for distrust as political sys-
tems. In “Distrust of Artificial Intelligence: Sources & Responses from Comput-
er Science & Law,” Cynthia Dwork and Martha Minow highlight the absence of
ground truth and what happens when utility for users and commercial interests
are at odds with considerations of privacy and the risks of societal harms.>3 In light
of these concerns, as well as the beneficial possibilities of Al, Mariano-Florentino
Cuéllar, a former California Supreme Court Justice, and Aziz Huq frame how we
might achieve the title of their essay: artificially intelligent regulation.

It is easy to see how governments and organizations in their desire to observe,
analyze, and optimize everything would be tempted to use Al to create increas-
ingly powerful “seeing rooms.” In “Socializing Data,” Diane Coyle discusses the
history and perils of seeing rooms, even when well intentioned, and the problems
that arise when markets are the primary mechanism for how Al uses social data.
For governments, the opportunity to use Al to improve the delivery and effective-
ness of public services is also hard to ignore. In her essay “Rethinking AI for Good
Governance,” Helen Margetts asks what a public sector AI would look like. She
draws on public sector examples from different countries to highlight key chal-
lenges, notably those related to issues like resource allocation, that are more “nor-
matively loaded” in the public sector than they are for firms. She concludes by
exploring how and in which areas governments can make the most ambitious and
societally beneficial use of AL

How much about Al is really about us?

At the end of her essay, Katyal quotes J. David Bolter from his 1984 Deedalus essay:
“I think artificial intelligence will grow in importance as a way of looking at the
human mind, regardless of the success of the programs themselves in imitating
various aspects of human thought.” Taking this suggestion, one can ask various
kinds of questions about us using the mirror AI provides, especially as it becomes
more capable: What does it mean to be intelligent, creative, or, more generally,
cognitively human when many of the ways we have defined these characteristics
of ourselves increasingly can be imitated or even, in the future, done better or
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better done by machines? How much of being human needs the mystery of not
knowing how it works, or relies on our inability to mimic it or replicate it artifi-
cially? What happens when this changes ? To what extent do our human ability—
bounded conceptions of X (where X could be intelligence, creativity, empathy, re-
lations, and so on) limit the possibility of other forms of X that may complement
or serve humanity better ? To what extent must we reexamine our socioeconomic
systems and institutions, our social infrastructure, what lies at the heart of our so-
cial policies, at our notions of justice, representation, and inclusion, and face up to
what they really are (and have been) and what they will need to be in the age of A1?

Their shortcomings notwithstanding, the emergence of large language models
and their ability to generate human-like outputs provides a “laboratory” of sorts,
as Tobias Rees calls it, to explore questions about us in an era of increasingly ca-
pable machines. We may have finally arrived at what Dennett suggests at the end
of his 1988 essay, that “Al has not yet solved any of our ancient riddles . ..but it
has provided us with new ways of disciplining and extending philosophical imag-
ination that we have only just begun to exploit.”>* Murati explores how humans
could relate to and work alongside machines when machines can generate out-
puts approaching human-like creativity. She illustrates this with examples gen-
erated by GPT-3, OpenAI’s large language model. The possibilities she describes
echo what Scott suggests: that we humans may have to rethink our relation to
work and other creative activities.

Blaise Agiiera y Arcas explores the titular question of his essay “Do Large Lan-
guage Models Understand Us?” through a series of provocations interspersed
with outputs from LaMDA, Google’s large language model. He asks whether we
are gatekeeping or constantly moving the goalposts when it comes to notions
such as intelligence or understanding, even consciousness, in order to retain these
for ourselves. Pamela McCorduck, in her still-relevant history of the field, Ma-
chines Who Think, first published in 1979, put it thus: “It’s part of the history of the
field of artificial intelligence that every time somebody figured out how to make
a computer do something - play good checkers, solve simple but relatively infor-
mal problems — there was a chorus of critics to say, ‘that’s not thinking.””55 As to
what machines are actually doing or not actually doing when they appear to be
thinking, one could ask whether whatever they are doing is different from what
humans do in any way other than how it is being done. In “Non-Human Words:
On GPT-3 as a Philosophical Laboratory,” while engaging in current debates about
the nature of these models, Rees also discusses how conceptions of the human
have been intertwined with language in different historical eras and considers the
possibility of a new era in which language is separated from humans.

In “Signs Taken for Wonders: AI, Art & the Matter of Race,” Michele Elam
illustrates how, throughout history, socially transformative technologies have
played a formalizing and codifying role in our conceptions of what constitutes
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humanity and who the “us” is. In how they are developed, used, and monetized,
and by whom, she argues that technologies like AI have the effect of universaliz-
ing particular conceptions of what it is to be human and to progress, often at the
exclusion of other ways of being human and of progressing and knowing, espe-
cially those associated with Black, Latinx, and Indigenous communities and with
feminist, queer, disability, and decolonial perspectives; further highlighting the
need for diversity among those involved in AI's development. Elsewhere, Tim-
nit Gebru has clearly illustrated how, like other technologies with the potential to
benefit society, Al can also worsen systematic discrimination of already margin-
alized groups.5¢ In another example of Al as formalizer to ill-effect, Blaise Agiiera
y Arcas, Margaret Mitchell, and Alexander Todorov examine the use of machine
learning to correlate physical characteristics with nonphysical traits, not unlike
nineteenth- and twentieth-century physiognomy, and point out the harmful cir-
cular logic of essentialism that can result when Al is used as a detector of traits.>”

Progress in AI not only raises the stakes on ethical issues associated with its
application, it also helps bring to light issues already extant in society. Many have
shown how algorithms and automated decision-making can not only perpetuate
but also formalize and amplify existing societal inequalities, as well as create new
inequalities.5® In addition, the challenge to remove bias or code for fairness may
also create the opportunity for society to examine in a new light what it means by
“fair.”59 Here it is worth recalling Dennett being unimpressed by Putnam’s indict-
ment of Al that “Al has utterly failed, over a quarter century, to solve problems
that philosophy has utterly failed to solve over two millennia.”%° Furthermore,
examining the role of algorithms and automated decision-making and the data
needed to inform algorithms may shed light on what actually underlies society’s
goals and policies in the first place, issues that have begun to receive attention in
the literature of algorithms, fairness, and social welfare.®! In “Toward a Theory
of Justice for Artificial Intelligence,” Iason Gabriel, drawing on Rawls’s theory of
justice, explores the intersection of Al and distributive justice by considering the
role that sociotechnical systems play. He examines issues including basic liberties
and equality of opportunity to suggest that considerations of distributive justice
may now need to grapple with the particularities of AI as a technological system
and that could lead to some novel consequences.

And as Al becomes more powerful, alooming question becomes how to align Al
with humans with respect to safety and control, goals and preferences, even values.
The question of Al and control is as old as the field itself; Turing himself raised it,
as Russell reminds us. Some researchers believe that concerns about these sorts of
risks are overblown given the nature of Al, while others believe we are a long way
away from existential control risks but that research must begin to consider ap-
proaches to the control issue and factor it into how we develop more powerful Al
systems.%? Russell proposes an approach to alignment and human compatibility
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that capitalizes on uncertainty in goals and human preferences, and makes use of
inverse reinforcement learning as a way for machines to learn human preferences.
Elsewhere, Gabriel has discussed the range of possibilities as to what we mean by
alignment with AI, with each possibility presenting its own complexities.53 But in
Gabriel, as in Russell, there are considerable normative challenges involved, along
with complications due to the plasticity of human preferences.

In “Artificial Intelligence, Humanistic Ethics,” John Tasioulas argues that de-
signing AI that aligns with human preferences is one thing, but it does not obviate
the need to determine what those human preferences should be in the first place.
He challenges the tendency to default to preference utilitarianism and its maximi-
zation by Al developers, as well as by economic and governmental actors (who of-
ten use wealth maximization and GDP as proxies), which leads to market mecha-
nisms dominating solutions at the expense of nonmarket values and mechanisms,
echoing some of Coyle’s concerns. Here again it seems that the mirror provided by
more capable Al highlights, and with higher stakes, the unfinished (perhaps never
to be finished) business of humanistic ethics, not unlike how AI may be pushing
us to clarify fairness and serving notice that trolley problems are no longer just the
stuff of thought experiments, since we are building autonomous systems that may
have to make such choices.

Throughout the history of AI, we have asked: how good is it now ? This ques-
tion has been asked about every application from playing chess or Go, to know-
ing things, performing surgery, driving a car, writing a novel, creating art, inde-
pendently making mathematical conjectures or scientific discoveries, or simply
having a good bedside manner. In asking the question, it may be useful also to ask:
compared to what? With an eye toward implications for society, one might com-
pare Al with the humans best at the respective activity. There remain plenty of
activities in which the “best” humans perform better than AI - as they likely will
for the foreseeable future — and society is well served by these humans perform-
ing these activities. One might also compare with other samplings of humanity,
such as the average person employed in or permitted to conduct that activity, or
arandomly selected human. And here, as Al becomes more capable, is where the
societal implications get more complicated. For example, do we raise permission
standards for humans performing safety-critical activities to keep up with ma-
chine capabilities? Similarly, what determines when Al is good enough? A third
comparison might be with respect to how co-extensive the range of Al capabili-
ties become with those of humans — what Simon and Newell, as mentioned earli-
er, thought would eventually come to pass. How good Al systems become in this
respect would likely herald the beginning of a new era for us and for society of the
sort discussed previously. But perhaps the most important comparison is with re-
spect to what we choose to use Al for and what we need Al to be capable of in order
to benefit society. It would seem that in any such comparisons, along with how we
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design, develop, and deploy Al, the societal implications are not foregone conclu-
sions, but choices that are up to us.

s all this worth it? If not, a logical response might be to stop everything, stop
further development and deployment of Al put the curses back in Pandora’s
box. This hardly seems realistic, given the huge economic and strategic stakes
and the intense competition that has been unleashed between countries and be-
tween companies, not to mention the usefulness of Al to its users and the tanta-
lizing beneficial possibilities, some already here, for society. My response to the
question is a conditional yes.
Atan Al conference a few years ago, [ participated on a panel to which the host,
Stuart Russell, posed a thought experiment. I forget the exact formulation, or even
how I responded, but I have come to express it as follows:

It’s the year 2050, Al has turned out to be hugely beneficial to society and generally
acknowledged as such. What happened ?

This thought experiment aims to elicit the most worthwhile possibilities we
achieved, the most beneficial opportunities we realized, the hard problems we
solved, the risks we averted, the unintended consequences, misuses, and abuses
we avoided, and the downsides we mitigated all in order to achieve the positive
outcome in a not-too-distant future. In other words, it is a way of asking what we
need to get right if Al is to be a net benefit to society.

The essays in this volume of Deedalus highlight many of the things we must get
right. Drawing from these and other discussions, and a growing literature,®4 one
can compile a long working list®s whose items can be grouped as follows: The first
group is related to the challenges of building AI powerful and capable enough to
achieve the exciting beneficial possibilities for humanity, but also safe and with-
out causing or worsening individual or group harms, and able to earn public trust,
especially where societal stakes are high. A second set of challenges concerns fo-
cusing AI's development and use where it can make the greatest contributions to
humanity - such as in health and the life sciences, climate change, overall well-
being, and in the foundational sciences and in scientific discoveries — and to de-
liver net positive socioeconomic outcomes for all people. The all is all-important,
given the likelihood that without purposeful attention to it, the characteristics of
the resulting AT and its benefits could accrue to a few individuals, organizations,
and countries, likely those leading in its development and use. The third group of
challenges centers on the responsible development, deployment, use, and gover-
nance of AL This is especially critical given the huge economic and geopolitical
stakes and the intense competition for leadership in AI that has been unleashed
between companies and between countries as a result. Not prioritizing responsi-
ble approaches to Al could lead to harmful and unsafe deployment and uses, out-
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right misuses, many more unintended consequences, and destabilizing race con-
ditions among the various competitors. A fourth set of challenges concerns us:
how we co-evolve our societal systems and institutions and negotiate the com-
plexities of how to be human in an age of increasingly powerful AL

Readers of this volume will undoubtedly develop their own perspectives on
what we collectively must get right if Al is to be a net positive for humanity. While
such lists will necessarily evolve as our uses and societal experience with AI grow
and as Al itself becomes more powerful, the work on them must not wait.

Returning to the question, is this worth it? My affirmative answer is condi-
tioned on confronting and getting right these hard issues. At present, it seems that
the majority of human ingenuity, effort, and financial and other resources are dis-
proportionately focused on commercial applications and the economic potential
of AI, and not enough on the other issues that are also critical for Al to be a net ben-
efit to humanity given the stakes. We can change that.

AUTHOR’S NOTE

I am grateful to the American Academy for the opportunity to conceive this Deda-
Ius volume on AI & Society and to bring together diverse perspectives on AI across
a range of topics. On a theme as broad as this, there are without doubt many more
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“From So Simple a Beginning™:
Species of Artificial Intelligence

Nigel Shadbolt

Artificial intelligence has a decades-long history that exhibits alternating enthu-
siasm and disillusionment for the field’s scientific insights, technical accomplish-
ments, and socioeconomic impact. Recent achievements have seen renewed claims
for the transformative and disruptive effects of Al Reviewing the history and cur-
rent state of the art reveals a broad repertoire of methods and techniques devel-
oped by Al researchers. In particular, modern machine learning methods have en-
abled a series of Alsystems to achieve superhuman performance. The exponential
increases in computing power, open-source software, available data, and embed-
ded services have been crucial to this success. At the same time, there is growing
unease around whether the behavior of these systems can be rendered transparent,
explainable, unbiased, and accountable. One consequence of recent AI accom-
plishments is a renaissance of interest around the ethics of such systems. More gen-
erally, our Al systems remain singular task-achieving architectures, often termed
narrow AL I will argue that artificial general intelligence — able to range across
widely differing tasks and contexts — is unlikely to be developed, or emerge, any
time soon.

rtificial intelligence surrounds us, both as a topic of debate and a de-
ployed technology. Al technologists, engineers, and scientists add to an
ever-growing list of accomplishments; the fruits of their research are ev-
erywhere. Voice recognition software now goes unremarked upon on our smart-
phones and laptops and is ever present in digital assistants like Alexa and Siri. Our
faces, fingerprints, gait, voices, and the flight of our fingers across a keypad can all
be used to identify each and every one of us following the application of AI ma-
chine learning methods. Al increasingly plays a role in every sector of our econ-
omy and every aspect of our daily lives. From driving our cars to controlling our
critical infrastructure, from diagnosing our illnesses to recommending content
for our entertainment, Al is ubiquitous.
While pundits, politicians, and public intellectuals all weigh in on the benefits
and potential harms of Al, its popular image is informed as much by Hollywood
as Silicon Valley. Our cinematic representations often portray a dystopian future
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in which sentient machines have risen to oppress human beings. It is an old trope,
one in which our technology threatens our humanity.

But it is important to look at the history and current actuality to understand
what our AI future is likely to be. There are reasons to be optimistic: AI under-
stood from a human-centered perspective augments our intelligence. It will even
allow us to understand more about our own intelligence. Though, if we do not at-
tend to Al ethics and proper regulation, it certainly has the potential to diminish
us.

The title of this essay draws on the closing sentence of Charles Darwin’s mag-
isterial On the Origin of Species. Darwin gave us the means to understand how all
of life, including self-aware, natural intelligence, has evolved. Evolution works
over deep time, producing diverse species within rich and varied ecosystems. It
produces complex systems whose operating and organizational principles we
struggle to decipher and decode. AT has begun to populate specialist niches of the
cyber-physical ecosystem, and species of narrow Al are able to master specific
tasks. However, we face challenges on the same scale as cognitive neuroscientists
in our quest to realize artificial general intelligence (AGI): systems able to reflectively
range across widely differing tasks and contexts. Such systems remain the stuff of
Hollywood films.

lan Turing’s famous 1950 Mind essay imagined a task in which a human

evaluator had to determine, via a series of questions and answers be-

tween interlocutors, whether one or the other was in fact a machine.!
He argued that the point at which this discrimination could not be reliably made
would represent a watershed. The Turing Test (Turing himself called it the “imi-
tation game”) has assumed mythic status. Arguments rage as to whether it is any-
thinglike a sufficient test to determine intelligence. Years earlier, Turing had writ-
ten another seminal paper in which he introduced the idea of a universal Turing
machine, a formulation that showed that “it is possible to invent a single machine
which can be used to compute any computable sequence.”> The promise of this
proof is the foundation upon which all modern computing devices rest.

The promise of computability also lay at the heart of the field baptized as
artificial intelligence at the 1956 Dartmouth workshop. Computer scientist John Mc-
Carthy and his coauthors wrote in the original funding proposal: “The study is to
proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it.”3

Much of the confidence embodied in the quote from this first era of Allay in the
formal and expressive power of logic and mathematics. Computers are grounded
in Boolean logic, via transistors that implement simple logical functions: AND,
NAND, OR, and NOR gates. These simple transistors give effect to functions that
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allow us to build layer upon layer of more complex reasoning. Just two years af-
ter the Dartmouth conference, McCarthy produced LISP, a computer language for
symbol processing that powered many early Al projects. These projects sought to
decompose intelligent behavior into sets of functions that manipulated symbols.
The physical symbol system hypothesis was the confident assertion that “a physical
symbol system has the necessary and sufficient means for general intelligent ac-
tion.”4 The symbols manipulated were representations of the rules and objects in
tasks ranging from vision to natural language understanding, planning to game
playing, theorem-proving to diagnostic reasoning.

By the 1970s, however, Al research ran into some strong headwinds. In the
United States, Defense Advanced Research Projects Agency (DARPA) funding had
been substantially reduced from its 1960s levels.> And in 1973, the United King-
dom saw the publication of the Lighthill report, in which Sir James Lighthill,
Lucasian Professor of Mathematics at Cambridge University, argued that AI's
“grandiose objectives” remained largely unmet, and called for a virtual halt to all
Alresearch in Britain.%

It took a decade for funding levels to recover. However, by the 1980s and ear-
ly 1990s, a new domain-oriented strand of AI - that is, knowledge-based or expert
systems —was commercially successful. These systems once again demonstrated
the considerable power of rule-based reasoning: systems that build proofs that es-
tablish the facts about a domain, or else attempt to establish whether a statement
is true given the facts that are known or can be derived. Computers running rule-
based or logic-based languages engage in cycles of forward or backward chaining
to discover new facts or establish how new goals can be proved. Combined with
methods of attaching certainty estimates to facts and rules, these systems found
widespread deployment in sectors from medicine to aerospace, manufacturing to
logistics.”

A new economy founded on knowledge-based systems was promised; Japa-
nese, European, and U.S. funding agencies all invested heavily. Companies whose
focus was on the software environments and hardware to support this knowledge-
engineering approach flourished. Developments saw new programming ideas
from AI percolate widely; the inclusion of structured representations —not just
rules and logical formulas - to represent objects in a domain saw the widespread
adoption of object-oriented programming methods that are pervasive today.

Unfortunately, inflated expectations and the challenges of maintaining large-
scale knowledge-based systems led to another cycle of disenchantment. Funders
and the market as well as some researchers in Al felt that “good old-fashioned Al
(GOFAI)” approaches focused too much on a logicist interpretation of AI; what
was needed was “nouvelle A8 Increasing numbers of researchers argued that
we needed to adopt a very different approach if we were really to understand the
foundations of adaptive intelligent systems. They claimed that the best place to

30 Deedalus, the Journal of the American Academy of Arts & Sciences



Nigel Shadbolt

look for these foundations were complex biological systems, in which animals
possessed nervous systems with sensorimotor capabilities.

This was not a new claim. From the outset, many Al researchers were inspired
by biological systems. The work of Norbert Wiener in cybernetics, and later Grey
Walters, Walter Pitts, Warren McCulloch, and Frank Rosenblatt, used the nervous
system as the base model. In 1958, Rosenblatt developed the perceptron, which
was intended to model a neuron’s behavior. Neurons receive multiple inputs from
other connected neurons. The perceptron modeled this by receiving several input
values. The connection for each input has a weight in the range of zero to one, and
these values are randomly picked. The perceptron unit then sums the inputs, and
if the sum exceeds a threshold value, a signal is sent to the output node; otherwise,
no signal is sent. The perceptron can “learn” by adjusting the weights to approach
the desired output. It implements an algorithm that classifies input into two pos-
sible categories. Inspired by the way neurons work together in the brain, the per-
ceptron is a single-layer neural network.

In 1969, computer scientists Marvin Minsky and Seymour Papert showed that
the perceptron was fundamentally limited in the functions it could compute.
However, it turned out that more complex networks with connected neurons
over multiple layers overcame these limitations. The mid-1980s saw the emer-
gence of parallel distributed processing (PDP): an influential connectionist ap-
proach that was particularly good for pattern detection.? The PDP approach re-
lied on the backpropagation algorithm, which determined how a machine should
change its internal parameters and connection weights between each layer as the
system was trained.

At the same time, biologically inspired robotics was taking nature as a tem-
plate for design.’® The goal was to construct complete systems with discrete be-
haviors and with the sensors and effectors that offloaded computational work to
morphology. Simple animals, insects in particular, were favorite subjects of study.
These highly successful biological systems would illustrate the methods and tech-
niques that had worked well in real complex environments. Animats were all the
rage: whether it was artificial crickets, modeled on their biological counterparts
and who orient based on resonators, tubes through their hind legs that evolved to
be a particular fraction of a wavelength of the call of a mate, or replicas of Sahara
Desert ants that have an adaptation to part of their compound eyes, which are sen-
sitive to polarized sky light, giving them directional orientation. The wisdom of
bodies evolved over deep time continues to inform robotics design.

As Al approached the millennium, it comprised a broad set of methods to rep-
resent and reason about the world, from symbolic rules to knowledge represented
subsymbolically in network connections. Some of these methods called for build-
ing adaptivity directly into the hardware of systems. The history of AI has con-
stantly intertwined the discovery of new ways to reason and represent the world
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with new programming languages and engineering paradigms. Computer sci-
ence, in turn, has been enriched by these cycles of development.

Throughout, a fundamental contributor to AI's progress has been the increas-
ing power of our computing substrate. Moore’s law (processor capacity), Kry-
ders’s law (memory density), and Cooper’s law (communication speed) all tell a
story of exponential change. The accomplishments of Al and the digital revolution
owe much to electrical and material engineers. The doubling of computing power,
storage, and communication speeds every fifteen months has changed everything.
Methods, techniques, and approaches previously intractable become possible.

As the millennium approached, increasing computing power that drove a
range of Al methods and techniques allowed for impressive AI methods capable
of searching huge problem spaces.

In a game in 1996, and then again in a tournament of six games in 1997, IBM’s
Deep Blue computer program beat Gary Kasparov, one of the very best chess play-
ers in history. How had this happened ? And were the machines going to take over
from us at the dawn of the new millennium ? Twenty-five years ago, the ascen-
dency of Al was announced along with the destruction of jobs and the imminent
emergence of AGI.

Deep Blue was capable of evaluating one hundred million to two hundred mil-
lion positions per second. Brute computing force, combined with heuristics, or
rules of thumb, that suggest which part of the search tree is more interesting than
another, led to uncannily capable behavior. Writing for Time magazine in 1996,
Kasparov observed: “I had played a lot of computers but had never experienced
anything like this. I could feel - I could smell - a new kind of intelligence across
the table.”" Our attribution of intelligence to the machine is a recurrent feature
in our relationship with AI technology. The technology can literally unnerve us
when superhuman performance is achieved. But the fundamental challenge in AI
was, and remains, transferring ability in one task to another. Could all the insight
generated and effort expended on Deep Blue be transferred to another task ? This
proved much harder.

The turn of the millennium saw another digital disruption that worked in AI's
favor. The largest information asset in the history of humanity, the World Wide
Web, provided a repository for vast amounts of machine-readable, open data and
information. A limiting factor throughout the first half of AI's history had been a
relative paucity of data. Whether for visual recognition, natural language under-
standing, or medical diagnosis, the data to drive learning in these domains were
limited and expensive to acquire. The Web and Internet of Things (IoT) complete-
ly changed the situation. Billions of pages of text, billions of images, many of them
labeled and annotated, and a flood of scientific and social data about every aspect
of our lives became available as digital resources. Without these data resources, at
scale, the last two decades of Al progress would have been inconceivable.

32 Deedalus, the Journal of the American Academy of Arts & Sciences



Nigel Shadbolt

These data combined with increasingly powerful computers, search, rule-
based systems, methods to learn from structured inputs, natural language under-
standing, and methods to compute confidence values from uncertain inputs to en-
able a new kind of composite Al system. In 2011, IBM announced a new age of cog-
nitive computing with Watson: a system capable of beating the world’s best human
players not at a circumscribed board game, but at a general knowledge task.

YouTube videos of a computer competing against the best human players of
the popular U.S. quiz game Jeopardy make for compelling viewing. In Jeopardy, con-
testants are presented with general knowledge clues in the form of answers, and
they must phrase their responses in the form of questions. So, for the clue, “Wanted
for general evil-ness; last seen at the tower of Barad-dur; it’s a giant eye, folks.
Kinda hard to miss,” the correct response is “Who is Sauron?” The IBM Watson
system appeared extraordinarily capable, reeling off question after question rang-
ing over broad areas of knowledge across numerous categories.

This general intelligence could surely be transposed to other domains. Why
not turn Watson into a physician? Once again, task transfer and generalization
have turned out to be very difficult. While perhaps more adept at screening and
triage, a physician’s general problem-solving is full of task and context chang-
es. Rather than replicating accomplished physicians, IBM’s Watson Health has
turned out Al assistants that can perform in routine tasks.*

Around the same time that Watson caught the world’s attention, another Al
capability was emerging, one that has delivered remarkable results. It is a con-
tinuation of the neural networks and connectionist tradition, using systems with
many more hidden layers: deep neural networks (DNNs) implement highly op-
timized backpropagation algorithms and the principles of supervised, unsuper-
vised, and reinforcement machine learning.

ounded in the United Kingdom in 2010 and acquired by Google in 2014,
DeepMind has been a major contributor to the success of DNNs. Build-
ing on the work of researchers such as computer scientist Yann LeCun and
colleagues, the company has realized a succession of brilliant task-achieving sys-
tems."3 The promise of the DeepMind approach began to emerge with an essay
showing mastery of a range of arcade games using reinforcement learning.4
In 2014, the AlphaGo project team was formed to test how well DNNs could
compete at Go. By October 2015, a distributed version of AlphaGo beat European
Go champion Fan Hui five to zero. The announcement was delayed until January
27, 2016, to coincide with the publication of the approach in Nature.'> A feature of
DeepMind’s impact has been the follow-up of each significant achievement with
peer-reviewed publications in the world’s leading science journals.
A trio of DeepMind successes was released in rapid succession: AlphaGo, in-
cluding AlphaGo Zero and AlphaZero; AlphaStar, DeepMind’s AI program that
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became ferociously good at the multiplayer strategy game StarCraft; and Alpha-
Fold, a program that made dramatic inroads into a significant challenge for sci-
ence - protein folding - helping scientists design the drugs of tomorrow.

As ever, the exponents of hardware were in play. The Deep Blue machine that
defeated Kasparov was one of the most powerful computers in the world, process-
ing at 11 GigaFLOPS (eleven billion floating-point operations per second). The
forty-eight tensor processing units that beat Lee Sedol, one of the world’s stron-
gest Go players, in 2016 ran at 11.5 PetaFLOPS, that is, eleven and a half thousand
million million floating-point operations per second, one million times more
powerful than Deep Blue.

With these types of DNN architecture, we are beginning to see Al systems aug-
ment, match, and, in some cases, outperform human experts in a whole host of
tasks. Whether it is picking up underlying health conditions from retinal scans
or classifying skin lesions as benign or malignant, having been trained on hun-
dreds of thousands of images, DNNs are performing as well as the best human
experts.”” The methods behind these systems have rapidly become commercial-
ized and commoditized. The major platforms offer cloud-based, machine learn-
ing services. They provide access to arrays of processors for training and running
machine learning models. Companies invest huge amounts of capital in the de-
velopment and acquisition of special hardware optimized for training and run-
ning machine learning models. Using very large data sets, they use prodigious
amounts of compute power and energy to train very large neural network mod-
els. Generative Pre-trained Transformer 3 (GPT-3), a current state-of-the-art lan-
guage model, trained on forty-five terabytes of data with 175 billion parameters,
can be adapted to work on a wide range of tasks.'® The model took huge amounts
of cloud compute time and millions of dollars to produce. The result is a so-called
foundations model, trained on broad data at scale and adaptable to a wide range
of downstream tasks.'¥ Such models like GPT-3 and BERT will increasingly power
Al on-demand services.

Al-powered, on-demand services, such as voice, vision, and language recog-
nition, are part of the service landscape from health to retail, finance to farming.
The unreasonable effectiveness of narrow or task-specific Al has elicited familiar
concerns, anxious questions about jobs and ethics, sovereign capabilities, market
concentration, and our own potential redundancy as a species.

Al systems powered by machine learning methods have been used for pre-
dictive policing, suspect facial recognition, bail setting, and sentencing. But are
we sure these are fair, nondiscriminatory, and proportionate? In China, AI sys-
tems are being used at scale to assign social credit. Is this supporting good citizens
in a safe space or is it state surveillance? We can see the ethical issues piling up
with the application of specific Al capabilities within important societal contexts
(some of which are explored further in this issue of Deedalus).
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Governments and large-tech companies, NGOs, multilateral organizations,
think tanks, and universities have been busy writing their various Al ethical codes
of conduct and practice. An article published in Nature Machine Intelligence in Sep-
tember 2019 presented a meta-analysis of eighty-four codes and ethical guidelines,
revealing their top concerns.>® The most prevalent of which was transparency,
understood as efforts to increase explainability, interpretability, or other acts of
communication and disclosure around Al algorithms. This undoubtedly has a
great deal to do with the preponderance of DNNs. Layer upon layer of connected
nodes, huge matrices of weights that somehow encode the decision-making of the
trained system appear as complex black boxes.

When we are dealing with GOFAI expert systems or theorem-provers, we can
see the explicit lines of reasoning; rules that can be recapitulated in natural lan-
guage. If the patient has a white blood cell count of less than 2,500, then they have
alow white blood cell count — such rules are applied in chains of reasoning — and if
we want to know the reason for the determination of leukopenia (low white blood
cell count) there it is, explicit and contestable.

The internals of a DNN present a challenge. There has been considerable tech-
nical work to explicate the black box. A whole subfield of AI comprises methods
and techniques to understand what is going on, including efforts at feature visual-
ization. There are striking examples in which the intermediate layers from input
to output do appear to extract features that resemble the stages of processing in-
volved, for example, in visual processing. But explainable Al remains a significant
challenge.

Another top theme in the various ethical codes was that of nonmaleficence — a
kind of do-no-ill - related to safety and security. Consider generalized adversari-
al networks (GANs). They comprise multiple neural networks: one, for example,
classifying images and the second, its adversary, doing its best to find patterns that
will have a high probability of being misclassified by the first. How can you be
sure that the models you have trained are robust and cannot be subverted or in-
deed that the data you have trained them on have themselves not been subverted ?
There are methods in development to counter these attacks. But this is a race be-
tween competing methods. A product of the largely beneficial adoption of open-
source principles within much of Al allows algorithms to be shared and improved
as well as critiqued and compromised.

Current Al is not all about deep neural networks. AI progress has continued
apace across a broad swath of approaches. Agent-based computing, which builds
explicit models of competing and collaborating agents, has developed new game
theoretic approaches to enable efficient and effective behavior in auctions, re-
source allocation, and many other applications. Agent-based computing has been
used to model the pandemic and predict the impact of nonpharmacological inter-
ventions. Natural language processing methods have summarized large swaths of
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scientific work that might be relevant to dealing with the pandemic. Knowledge
graphs — explicit representations of biochemical and drug pathways — have been
interrogated to find which drugs might be repurposed in dealing with the virus.
Our current Al ecosystem has never been more varied and vibrant.

hat of the future ? We can be assured of continued progress in the un-

derpinning computational fabric. The road maps available now al-

ready anticipate exponential increases in computer power, storage,
and connectivity. In the United States, companies like Facebook, Amazon, and
Google are increasing their investments in Al-enabled chips, as are their equiva-
lents in China.

Data availability has been growing exponentially and, with ever more ubiq-
uitous IoT devices, is expected to continue to do so. We may see more storage of
data at the edge: that is, data that are stored locally on a plethora of distributed
devices and not consolidated into the cloud. This trend will act as a forcing func-
tion on new kinds of distributed machine learning and federated problem-solving
techniques. The pandemic has spawned increased amounts of data creation and
replication, though estimates suggest that only 2 percent of what is created is per-
sistently stored. The global installed storage capacity (estimated at 6.7 zettabytes
in 2020) is many times smaller than the data ephemerally generated. Is this a lost
opportunity ? Could Al engines be uncovering more patterns and structures ? And
how are we to determine what data to keep ?

We can be sure that the success of task-achieving architectures will continue.
There are any number of image-based classification tasks to which AI methods
can be applied, any number of text summarization and generation tasks to which
natural language processing techniques are suited. As data become more densely
connected across sectors and between individuals and organizations, there will be
any number of roles for planning, recommendation, and optimization systems —
lots of niches - to fill. In this sense, the future of AI will be about the continued
digitization of services, products, and processes.

The current paradigm of DNNs faces significant challenges in addition to
those of explainability, safety, and security already mentioned. One is the on-
going challenge of distribution shift. Problems arise because the data on which a
network is trained come from a different distribution than the data used when
tested or deployed: for example, facial recognition systems trained on a par-
ticular population and deployed in contexts with very different distributions.
Distribution shift can arise because labels shift, or else the concepts involved
in classification and prediction can change; whether it is the diagnostic criteria
for mental illness or job titles, all are subject to considerable amounts of con-
cept shift. Although much studied, distribution shift remains a real and ongoing
challenge.
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Another recurrent and recognized challenge is transfer learning. How can suc-
cess in one task be generalized: that is, reusing or transferring information from
previously learned tasks for the learning of new tasks. We already have various ex-
amples of transfer learning within AI: image-recognition systems trained on one
domain transferred to another, language understanding models trained on huge
data sets repurposed for other language processing tasks. But the challenge comes
when the source task is not sufficiently related to the target task, or the transfer
method is unable to leverage the relationship between the source and target tasks.

Notwithstanding these challenges, we will see spectacular convergences where
data at scale, at new levels of precision and resolution, allow diagnosis, forecast-
ing, and modeling across a swath of sectors. Where engineering continues its own
exponential path of smaller, cheaper, more powerful, and more energy-efficient
devices, we will see Al embedded into the fabric of our built environment, offer-
ing up the vision of intelligent infrastructure (II). Swarm-scale collaborations be-
tween many devices adapt to and directly modity their environments.

An approach dubbed physical AI (PAI), carrying on a tradition of biologi-
cally inspired AI, urges us to look at the underlying principles that have evolved
through deep time to be intrinsic parts of biological adaption.*! Processes resem-
bling homeostasis, the regulation of body states aimed at maintaining conditions
compatible with life, could be integrated with intelligent machines. Advocates of
this approach suggest that such internal regulatory mechanisms and control will
lead to a new class of machines that have intrinsic goals.>* Mechanical engineer-
ing, computer science, biology, chemistry, and materials science will be founda-
tional elements in this type of approach.

This gap in embodiment - in AI systems that are in themselves purposeless —
remains a grand challenge for AL Those who claim the imminent emergence of
AGI should note that we remain far from understanding what constitutes our own
general intelligence and associated self-awareness or consciousness. Intelligence
is a polythetic concept that we use all the time and yet resists easy definitions. It
is a graduated concept, we say that X is more intelligent than Y, and yet ordering
ourselves on a linear scale misses the fact that we might excel in one sphere and
have little or no capacity elsewhere. For most, general intelligence would seem to
require language, learning, memory, and problem-solving. The importance of in-
tuition, creativity, and reflective consciousness are seen as important attributes by
many. The ability to survive in a complex world, to be embodied and possessed of
perceptual and motor skills, is highlighted by others.

Patrick Winston, an AI pioneer and sometime director of MIT’s Computer
Science and AI Lab (CSAIL), once remarked that “there are lots of ways of being
smart that aren’t smart like us.” On this view, the space of intelligent systems is
likely large and multidimensional. Recent work on other minds invites us to con-
sider biological entities that have a claim to many attributes of general adaptive
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and intelligent behavior.?3 They are not writing literature or building cyclotrons,
but the octopus displays a range of behaviors we could consider intelligent. This
chimes with the nouvelle AT and Cambrian intelligence approach advocated by
roboticist Rodney Brooks, an approach that builds situated robots in complex en-
vironments often exhibiting emergent behaviors.>4

For others, consciousness is an essential feature of general intelligence. Con-
sciousness, the hard problem in neuroscience, is itself a term that elicits very dif-
ferent responses. For some, it is an illusion, a kind of hallucination, a fiction we
have built for ourselves. For others, it is a supervenient reality whose emergence
we are far from understanding.

Whatever its basis, a key property of human consciousness is that we have
conceptual self-awareness: we have abstract concepts for our physical and mental
selves; my body, my mind, and my thought processes as well as an integrated sense
of myself — me. A construct replete with emotions, experience, history, goals, and
relationships. We are possessed of theories of mind to understand other entities
and motivations in context, to be able to make sense of their actions and to inter-
act with them appropriately. None of this is in our Al systems at present. This is
not to say such awareness will never be present in future species of AI. Our own
cognitive and neural architectures, the rich layering of systems, present an exis-
tence proof. But our Al systems are not yet in the world in any interesting sense.

When discussing the prospect of artificial general intelligence, we tend to re-
serve a special place for our own variety — possessed of experiential self-awareness —
and we seem particularly drawn to the symbolic expression of that experience in
our language, teleological understanding of the world, and imagined future pos-
sibilities. We need to continue to interrogate our understanding of the concept
of intelligence. For the foreseeable future, no variety of AI will have a reasonable
claim to a sufficient range of attributes for us to ascribe them general intelligence.
But this cannot be an in-principle embargo.

For some, this is a distraction from medium-term future concerns. Writing in
the Harvard Data Science Review, Michael Jordan notes the need for artificial intel-
ligence, intelligence augmentation, and intelligent infrastructure, a need that “is
less about the realization of science-fiction dreams or superhuman nightmares,
and more about the need for humans to understand and shape technology as it be-
comes ever more present and influential in their daily lives.”2%

he field of AI contains lively and intense debates about the relative con-

tribution of particular approaches, methods, and techniques. From logic

to statistical mechanics, rule-based systems to neural networks, an ever-
increasing number of powerful, adaptive, and useful computational systems have
been conceived, built, and deployed. We are building intelligent infrastructures
suffused with adaptability, error correction, and “learning.”
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A range of remarkable Al-powered products and services have literally been
placed in our hands through the agency of the supercomputers that are today’s
smartphones. These hand axes of the twenty-first century are general purpose,
ubiquitous tools capable of transforming our physical and cyber worlds. The data
and Al that power these systems and their successors will provide new services the
early harbingers of which already exist.

Consider real-time machine translation (MT), in effect a digital realization of
the Babel fish wonderfully imagined by Douglas Adams in his Hitchhiker’s Guide
to the Galaxy. This will be a world in which we speak and listen to one another, all
the while remaining in our native languages. This exciting prospect comes with
questions; for example, will it promote or diminish linguistic diversity ? Modern
statistical MT requires a lot of machine-readable text — the languages of the world
are not equally represented in this regard. Is this fair or equitable ?

The data and algorithms compiled into future generations of ultra-smart-
phones and embedded sensors will include an enormous range of diagnostic capa-
bilities. The Babel fish will certainly be joined by a version of Star Trek’s tricorder.
Miniaturization will lead to device embedding and integration with our neurol-
ogy and physiology. Nano probes and sensors will be on the alert for everything
from cancer to dementia. Our own individual and collective biology will be avail-
able for real-time analysis and predictive maintenance. Neural links will interface
with the brain to augment our senses, attention, and memory, even rendering our
internal visualizations visible and inner speech audible. The associated privacy
implications and challenges will be self-evident.

The real-time instrumentation of our environment will yield effective now-
casting; scientific and engineering advances via Al-augmented discovery and de-
sign will offer increased rates of innovation. Huge search spaces will be reviewed
and interrogated, selected, and developed in drug and materials discovery; our
artistic and cultural lives will be enriched by machine-generated content. These
examples engender genuine excitement; Al empowering humankind. Sadly, wea-
ponized Al will figure in our collective futures, too. Whether deployed to attack
our cyber infrastructure or generate deepfakes, guide precision munitions or pi-
lot drones, AI will have dangerous and lethal capabilities. Regulation and gover-
nance, ethics and law become essential adjuncts to our Al science and technology.

The “speciation” of Al, the filling of lots of niches in our cyber-physical world,
is set to continue, from tasks in specific domains to support for us in all our daily
tasks. The interpenetration of these tools and systems will surround and augment
us. Our interactions with our Al systems will assume more texture and depth, at
least from our perspective. We engineered our computational systems built on the
promise of universal Turing machines. We started with the languages of logic and
decision trees. We are now exploring the rich possibilities of machines driven by
statistical inference, pattern-extraction, and learning from vast amounts of data.
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The very recent possession of symbolic language and the discovery of mathe-
matics and formal systems of computation have provided humans with the tools
to build and explore new AI systems. This broad repertoire of approaches and
methods remains essential. Our Al systems with their ability to represent and dis-
cover patterns in high dimensional data have as yet low dimensional embedding
in the physical and digital worlds they inhabit. This thin tissue of grounding, of
being in the world, represents the single largest challenge to realizing AGI. But the
speciation of AI will continue: “from so simple a beginning endless forms most
beautiful and most wonderful have been, and are being, evolved.”
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Since its inception, AT has operated within a standard model whereby systems are de-
signed to optimize a fixed, known objective. This model has been increasingly success-
ful. Ibriefly summarize the state of the art and its likely evolution over the next decade.
Substantial breakthroughs leading to general-purpose AI are much harder to predict,
but they will have an enormous impact on society. At the same time, the standard mod-
el will become progressively untenable in real-world applications because of the diffi-
culty of specifying objectives completely and correctly. I propose a new model for AI
development in which the machine’s uncertainty about the true objective leads to qual-
itatively new modes of behavior that are more robust, controllable, and deferential.

he central technical concept in Al is that of an agent: an entity that per-

ceives and acts.! Cognitive faculties such as reasoning, planning, and

learning are in the service of acting. The concept can be applied to hu-
mans, robots, software entities, corporations, nations, or thermostats. Al is con-
cerned principally with designing the internals of the agent: mapping from a
stream of raw perceptual data to a stream of actions. Designs for Al systems vary
enormously depending on the nature of the environment in which the system will
operate, the nature of the perceptual and motor connections between agent and
environment, and the requirements of the task. Al seeks agent designs that exhibit
“intelligence,” but what does that mean ?

In answering this question, Al has drawn on a much longer train of thought
concerning rational behavior: what is the right thing to do? Aristotle gave one
answer: “We deliberate not about ends, but about means....[We] assume the end
and consider how and by what means it is attained, and if it seems easily and best
produced thereby.”? That is, an intelligent or rational action is one that can be ex-
pected to achieve one’s objectives.

This line of thinking has persisted to the present day. In the seventeenth centu-
ry, theologian and philosopher Antoine Arnauld broadened Aristotle’s theory to
include uncertainty in a quantitative way, proposing that we should act to max-
imize the expected value of the outcome (that is, averaging the values of differ-
ent possible outcomes weighted by their probabilities).3 In the eighteenth century,
Swiss mathematician Daniel Bernoulli refined the notion of value, moving it from
an external quantity (typically money) to an internal quantity that he called utili-
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ty.4 French mathematician Pierre Rémond de Montmort noted that in games (de-
cision situations involving two or more agents) a rational agent might have to act
randomly to avoid being second-guessed.> And in the twentieth century, mathema-
tician John Von Neumann and economist Oskar Morgenstern tied all these ideas
together into an axiomatic framework: rational agents must satisfy certain prop-
erties such as transitivity of preferences (if you prefer A to B and B to C, you must
prefer A to C), and any agent satisfying those properties can be viewed as having
a utility function on states and choosing actions that maximize expected utility.

As Al emerged alongside computer science in the 1940s and 1950s, researchers
needed some notion of intelligence on which to build the foundations of the field.
Although some early research was aimed more at emulating human cognition, the
notion that won out was rationality: a machine is intelligent to the extent that its
actions can be expected to achieve its objectives. In the standard model, we aim
to build machines of this kind ; we define the objectives and the machine does the
rest. There are several different ways in which the standard model can be instan-
tiated. For example, a problem-solving system for a deterministic environment is
given a cost function and a goal criterion and finds the least-cost action sequence
that leads to a goal state; a reinforcement learning system for a stochastic envi-
ronment is given a reward function and a discount factor and learns a policy that
maximizes the expected discounted sum of rewards. This general approach is not
unique to AL Control theorists minimize cost functions, operations researchers
maximize rewards, statisticians minimize an expected loss function, and econo-
mists maximize the utility of individuals or the welfare of groups.

ithin the standard model, new ideas have arisen fairly regularly since
the 1950s, leading eventually to impressive real-world applications.
Perhaps the oldest established area of Al is that of combinatorial
search, in which algorithms consider many possible sequences of future actions or
many possible configurations of complex objects. Examples include route-finding
algorithms for GPS navigation, robot assembly planning, transportation schedul-
ing, and protein design. Closely related algorithms are used in game-playing sys-
tems such as the Deep Blue chess program, which defeated world champion Garry
Kasparovin 1997, and AlphaGo, which defeated world Go champion Ke Jie in 2017.
In all of these algorithms, the key issue is efficient exploration to find good solu-
tions quickly, despite the vast search spaces inherent in combinatorial problems.
Beginning around 1960, Al researchers and mathematical logicians developed
ways to represent logical assertions as data structures as well as algorithms for
performing logical inference with those assertions. Since that time, the technolo-
gy of automated reasoning has advanced dramatically. For example, it is now rou-
tine to verify the correctness of VLSI (very large scale integration) chip designs
before production and the correctness of software systems and cybersecurity
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protocols before deployment in high-stakes applications. The technology of logic
programming (and related methods in database systems) makes it easy to specify
and check the application of complex sets of logical rules in areas such as insur-
ance claims processing, data system maintenance, security access control, tax cal-
culations, and government benefit distribution. Special-purpose reasoning sys-
tems designed to reason about actions can construct large-scale, provably correct
plansin areas such aslogistics, construction, and manufacturing. The most visible
application of logic-based representation and reasoning is Google’s Knowledge
Graph, which, as of May 2020, holds five hundred billion facts about five billion
entities and is used to answer directly more than one-third of all queries submit-
ted to the Google search engine.”

In the 1980s, the Al community began to grapple with the uncertainty inherent
in real-world observations and in knowledge acquired from humans or through
machine learning. Although some rule-based expert systems adopted ad hoc cal-
culi for representing and propagating uncertainty, probability theory became the
dominant tool, largely due to the development of Bayesian networks by computer
scientist Judea Pearl and others.® This led to the development of the first large-
scale computational tools for probabilistic reasoning and to substantial cross-
fertilization between AI and other fields that build on probability theory, includ-
ing statistics, information theory, control theory, and operations research. Bayes-
ian networks and related methods have been used for modeling, diagnosis, mon-
itoring, and prediction of a wide range of complex systems, including jet engines,
Mars rovers, ecological networks, and intensive care protocols. Causal networks,
which extend Bayesian networks to model the effects of exogenous interventions,
have clarified and facilitated the analysis of causal relationships in many empiri-
cal disciplines, especially in the social sciences.?

The development of probabilistic programming languages, or PPLs, provides
a universal representation for probability models, meaning that any model rep-
resentable in any formalism can be represented efficiently in a PPL."® More-
over, PPLs come with general-purpose inference algorithms, so that (in princi-
ple, at least) no algorithm development or mathematical derivations are needed
when applying probability theory to a new domain. PPLs constitute one of the
fastest-growing areas of Al and enable the rapid construction of enormously com-
plex models. For example, the new monitoring system for the Comprehensive
Nuclear-Test-Ban Treaty began life as a PPL model that took only a few minutes to
write; while operating, it may dynamically construct internal representations in-
volving hundreds of thousands of random variables.!!

Alan Turing suggested that machine learning would be the most practical way
to create Al capabilities.’* The most common paradigm — one shared with statisti-
cal prediction methods —is supervised learning, wherein labeled examples are pro-
vided to alearning algorithm that outputs a predictive hypothesis with which to la-
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bel unlabeled examples. Early developments in Al and in statistics proceeded sepa-
rately, but both fields produced useful tools for learning low-dimensional models,
with application to areas such as loan decisions, credit card fraud detection, and
email spam filtering. For high-dimensional data such as images, deep convolution-
al networks have proved to be effective.’3 Deep learning has substantially advanced
the state of the art in visual object recognition, speech recognition, and machine
translation, three of the most important subfields of Al as well as in protein fold-
ing, a key problem in molecular biology. Language models such as GPT-3 (Gen-
erative Pre-trained Transformer 3) - very large neural networks trained to predict
the next word in a sequence — show intriguing abilities to respond to questions in
a semantically meaningful way. Recent work has shown, however, that deep learn-
ing systems often fail to generalize robustly and are susceptible to spurious regu-
larities in the training data.'* Moreover, the amount of training data required to
achieve a given level of performance is far greater than a human typically requires.

The algorithmic study of sequential decision-making under uncertainty began
in economics and operations research.'> Algorithms developed in these fields typ-
ically handle only small problems with up to one million states. In AI, the devel-
opment of reinforcement learning (RL) has allowed researchers to address much
larger problems satisfactorily, including backgammon with 10" positions and Go
with 10'7° positions.!® RL algorithms learn by experiencing state transitions and
their associated rewards while updating a representation of the value of states
(and possibly actions as well) or a direct representation of the decision policy. Ap-
plications of RL range from bidding in advertising markets to improving the abili-
ty of robots to grasp previously unseen objects.'7 As with supervised learning, ap-
plications of deep networks in RL may also be quite fragile.'8

With modest advances in perception and dexterity, we can expect to see robots
moving into a variety of unstructured environments, including roads, warehous-
es, agriculture, mining, and warfare. We may see progress on language under-
standing comparable to the progress on image understanding made over the last
decade, which would enable high-impact applications such as intelligent person-
al assistants and high-quality intelligent tutoring systems. Search engines, rath-
er than responding to keywords with URLs, would respond to questions with an-
swers based on reading and, in a shallow sense, understanding almost everything
the human race has ever written. And text would be augmented by satellite imag-
ery, enabling computers to see every object (fifty centimeters or larger) on Earth
every day, weather permitting.

Although this view is far from universally shared, I think it is likely that in the
coming decade, the pendulum will swing away from a reliance on end-to-end deep
learning and back toward systems composed from modular, semantically well-
defined representations built on the mathematical foundations of logic and prob-
ability theory, with deep learning playing a crucial role in connecting to raw per-
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ceptual data. (This approach underlies, for example, Waymo’s industry-leading
self-driving car project.) The reasons for this prediction are complex, but include
1) the performance problems with deep learning mentioned earlier; 2) the possi-
bility that such problems may contribute to the failure of flagship projects such as
self-driving cars; 3) the advantages, in terms of rigor, transparency, and modularity,
of being able to analyze systems as possessing knowledge and reasoning with that
knowledge; 4) the expressive limitations of circuit-based representations (includ-
ing deep learning systems) for capturing general knowledge; s5) the essential role
played by prior knowledge in enabling a learning system to generalize robustly from
small numbers of examples; and 6) the enormous benefits of being able to improve
the performance of systems by supplying knowledge rather than training data. It
is important to understand that modular, semantically well-defined representa-
tions are not necessarily hand-engineered or inflexible: such representations can
be learned from data, just as the entire edifice of science itself is a modular, seman-
tically well-defined representation that has (ultimately) been learned from data.

ven in its present state, the technology of artificial intelligence raises many
concerns as it transitions from research into widespread use. These con-
cerns include potential misuses such as cybercrime, surveillance, disinfor-
mation, and political manipulation; the exacerbation of inequality and of many
forms of bias in society; the creation and deployment of lethal autonomous weap-
ons; and the usurpation of human roles in the economy and in social relationships.
These issues are addressed admirably in the other essays in this volume, many
of which contribute to an important yet lamentably only recent trend: under-
standing potential applications of AI not only as technological problems to be
solved, but also as existing in a social context. Success is to be measured not by the
accuracy of the AI system’s predictions and decisions, but by the real-world con-
sequences of deploying the system. In other words, we need a theory of sociotech-
nical embedding for Al systems, somewhat analogous to the role that city plan-
ning plays for the artifacts produced by civil engineering and architecture. Absent
such a theory, we are left with the market to sort through different systems and
embeddings. For all sorts of reasons, including network effects and social exter-
nalities, this is unlikely to work."?

y concern here, however, is with the potential consequences of suc-
cess in creating general-purpose Al: that is, systems capable of quickly
learning to perform at a high level in any task environment where hu-
mans (or collections of humans) can perform well. General-purpose AI has been
the long-term goal of the field since its inception. For example, Herbert Simon and
Allen Newell, two pioneers of Al research, famously predicted in 1957: “There are
now in the world machines that think, that learn and that create. Moreover, their
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ability to do these things is going to increase rapidly until — in a visible future — the
range of problems they can handle will be coextensive with the range to which the
human mind has been applied.”*°

It would be an oversimplification to view progress in Al as occurring along a
one-dimensional, numerical scale of “intelligence.” While such a scale has some
relevance for humans, Al capabilities in different branches of cognitive activity
vary so markedly as to make a single scale completely inapplicable. For example, a
search engine remembers very well and cannot plan at all; a chess program plans
very well and cannot remember at all. For this reason, there will be no single mo-
ment at which AI “exceeds human intelligence.” By the time that AI systems ex-
hibit generality across all branches, direct comparisons to humans will be mean-
ingless. Almost certainly, such systems would already far exceed human capabil-
ities in many areas thanks to the massive speed, memory, and input bandwidth
advantages of computers compared with humans.

That is not to imply that we are close to achieving general-purpose Al. Sugges-
tions that we simply need to collect more data or acquire more computing power
seem overly optimistic. For example, current natural-language systems process,
in only a few days, thousands of times more text than any human has ever read, yet
their understanding of language is brittle and often parrot-like. We need concep-
tual breakthroughs in a number of areas besides language understanding, includ-
ing decision-making over long timescales and the cumulative use of knowledge in
learning. These breakthroughs are inherently unpredictable. In a 1977 interview,
John McCarthy, one of the earliest pioneers in Al, said, “What you want is 1.7 Ein-
steins and 0.3 of the Manhattan Project, and you want the Einsteins first. I believe
it'll take five to 500 years.”?! This remains true today, although we have seen dra-
matic progress since 1977 in many areas. The vast majority of Al researchers now
believe that general-purpose, human-level Al will arrive in this century.>

Given the huge levels of investment in AI research and development and the
influx of talented researchers into the field, it is reasonable to suppose that fun-
damental advances will continue to occur as we find new applications for which
existing techniques and concepts are inadequate. As noted above, these advanc-
es are hard to predict, but there are no fundamental obstacles that prevent them
from occurring. Indeed, what evidence could there be that no physically possible
arrangement of atoms can outperform the human brain ?

he potential benefits of general-purpose AI would be far greater than

those of a collection of narrow, application-specific Al systems. For this

reason, the prospect of creating general-purpose Al is driving massive in-
vestments and geopolitical rivalries.

One can speculate about solving major open problems, such as extending hu-

man life indefinitely or developing faster-than-light travel, but these staples of sci-
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ence fiction are not yet the driving force for progress in Al. Consider, instead, a
more prosaic goal: raising the living standard of everyone on Earth, in a sustain-
able way, to a level that would be considered respectable in a developed country.
Choosing “respectable” (somewhat arbitrarily) to mean the eighty-eighth percen-
tile in the United States, this goal represents an almost tenfold increase in global
GDP, from $76 trillion to $750 trillion per year. The increased income stream re-
sulting from this achievement has a net present value of $13.5 quadrillion, assum-
ing a discount factor of 5 percent. (The value is $9.4 quadrillion or $6.8 quadrillion
if the technology is phased in over ten or twenty years.) These numbers tower over
the amounts currently invested in AI research, and momentum toward this goal
will increase as technical advances bring general-purpose Al closer to realization.

Such a tenfold increase in global GDP per capita took place over 190 years, from
1820 to 2010.%3 It required the development of factories, machine tools, automa-
tion, railways, steel, cars, airplanes, electricity, oil and gas production, telephones,
radio, television, computers, the Internet, satellites, and many other revolution-
ary inventions. The tenfold increase in GDP posited above is predicated not on
turther revolutionary technologies but on the ability of general-purpose Al sys-
tems to employ what we already have more effectively and at greater scale. There
would be no need to employ armies of specialists in different disciplines, orga-
nized into hierarchies of contractors and subcontractors, to carry out a project.
All embodiments of general-purpose Al would have access to all the knowledge
and skills of the human race, and more besides. The only differentiation would be
in the physical capabilities: dexterous legged robots for construction or surgery,
wheeled robots for large-scale goods transportation, quadcopter robots for aeri-
al inspections, and so on. In principle — politics and economics aside — everyone
could have at their disposal an entire organization composed of software agents
and physical robots, capable of designing and building bridges or (fully automat-
ed) factories, improving crop yields, cooking dinner for one hundred guests, run-
ning elections, teaching children to read, or doing whatever else needs doing. It is
the generality of general-purpose intelligence that makes this possible.

The political and economic difficulties should not, of course, be underestimat-
ed. Corporations, elites, or countries may attempt to hoard general-purpose Al
technology and its benefits and, under some circumstances, economic incentives
may operate to retard the dissemination of Al-based goods and services.*4 One
can also expect finite resources such as land, human attention, and perhaps raw
materials to become relatively more expensive.

he incentives for further development of Al, then, are huge, and the mo-
mentum appears unstoppable. We must, therefore, ask, “What if we suc-
ceed?” This question is seldom considered in the Al literature, which is
focused primarily on the pursuit of success rather than on its consequences. Alan
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Turing, widely regarded as the founder of computer science, did consider the
question. And in 1951, during a lecture given to alearned society in Manchester, he
answered: “It seems probable that once the machine thinking method had start-
ed, it would not take long to outstrip our feeble powers.... At some stage therefore
we should have to expect the machines to take control.”?s

Turing’s prediction is a natural response to the following conundrum: our in-
telligence gives us power over the world and over other species; we will build sys-
tems with superhuman intelligence; therefore, we face the problem of retaining
power, forever, over entities that are far more powerful than ourselves.

Within the standard model of AI, the meaning of “power” is clear: the ability
to achieve one’s objectives regardless of the objectives and actions of others. I be-
lieve the future Turing had in mind was one in which machines take control as a
result of pursing fixed objectives that are misaligned with human benefit. These
fixed objectives will be ones that we ourselves have inserted: there is no need to
posit some form of emergent consciousness that spontaneously generates its own
objectives. All that is needed to assure catastrophe is a highly competent machine
combined with humans who have an imperfect ability to specify human prefer-
ences completely and correctly. This is why, when a genie has granted us three
wishes, our third wish is always to undo the first two wishes.

Unfortunately, the standard model within which almost all current AI sys-
tems are developed makes this future almost inevitable. Once AI systems move
out of the laboratory (or artificially defined environments such as the simulated
Go board) and into the real world, there is very little chance that we can specify
our objectives completely and correctly in such a way that the pursuit of those ob-
jectives by more capable machines is guaranteed to result in beneficial outcomes
for humans. Indeed, we may lose control altogether, as machines take preemptive
steps to ensure that the stated objective is achieved.

he standard model, then, despite all its achievements, is a mistake. The

mistake comes from transferring a perfectly reasonable definition of in-

telligence from humans to machines. It is not rational for humans to de-
ploy machines that pursue fixed objectives when there is a significant possibility
that those objectives diverge from our own.

A more sensible definition of AI would have machines pursuing our objectives.
Of course, our objectives — in more technical language, our preferences amonglot-
teries over complete futures — are in us, and not in the machines. This means that
machines will necessarily be uncertain about our objectives, while being obliged to
pursue them on our behalf. In this pursuit, they will be aided by evidence concern-
ing human preferences. This evidence comes from human behavior, broadly con-
strued, including choices, inaction, commands, requests, guidance, permissions,
artifacts, and social structures.
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This new model for AI, with its emphasis on uncertainty about objectives, en-
tails a binary coupling between machines and humans that gives it a flavor quite
different from the unary standard model of decoupled machines pursuing fixed ob-
jectives. The standard model can be viewed as an extreme special case of the new
model, applicable only when it is reasonable to suppose that, within the machine’s
scope of action, the relevant human objectives can be specified completely and cor-
rectly. It turns out that the uncertainty inherent in the new model is crucial to build-
ing Al systems of arbitrary intelligence that are provably beneficial to humans.

Uncertainty concerning objectives is a surprisingly understudied topic. In the
1980s, the Al community acknowledged the inevitability of uncertainty concern-
ing the current state and the effects of actions, but we continued to assume perfect
knowledge of the objective. For artificially defined puzzles and games, this may be
appropriate, but for other problems, such as recommending medical treatments,
it is clear that the relevant preferences (of patients, families, doctors, insurers,
hospital systems, taxpayers, and so on) are not known initially in each case. While
it is true that unresolvable uncertainty over objectives can be integrated out of any
decision problem, leaving an equivalent decision problem with a definite (aver-
age) objective, this transformation is invalid when additional evidence of the true
objectives can be acquired. Thus, one may characterize the primary difference be-
tween the standard and new models of Al through the flow of preference informa-
tion from humans to machines at “run-time.”

This basic idea is made more precise in the framework of assistance games,
originally known as cooperative inverse reinforcement learning (CIRL) games.°
The simplest case of an assistance game involves two agents, one human and the
other arobot. It is a game of partial information because, while the human knows
the reward function, the robot does not, even though the robot’s job is to maxi-
mize it. In a Bayesian formulation, the robot begins with a prior probability dis-
tribution over the human reward function and updates it as the robot and human
interact during the game. Assistance games can be generalized to allow for imper-
fectly rational humans, humans who do not know their own preferences, multiple
human participants, and multiple robots, among other variations.>” Human ac-
tions in such games can, of course, include communicative actions such as stating
preferences, making requests, and issuing commands.

Assistance games are connected to inverse reinforcement learning (IRL) be-
cause the robot can learn more about human preferences from the observation of
human behavior — a process that is the dual of reinforcement learning, wherein
behavior is learned from rewards and punishments.?® The primary difference is
that in the assistance game, unlike the IRL framework, the human’s actions are af-
fected by the robot’s presence. For example, the human may try to teach the robot
about their preferences, and the robot may interpret the human’s actions in this
light, rather than simply as demonstrations of optimal behavior.
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Within the framework of assistance games, a number of basic results can be
established that are relevant to Turing’s problem of control.

* Under certain assumptions about the support and bias of the robot’s prior
probability distribution over human rewards, one can show that a robot
solving an assistance game has nonnegative value to humans.>?

* Arobot that is uncertain about the human’s preferences has a nonnegative
incentive to allow itself to be switched off.3° In general, it will defer to hu-
man control actions.

* To avoid changing attributes of the world whose value is unknown, the ro-
bot will generally engage in “minimally invasive” behavior to benefit the
human.3' Even when it knows nothing at all about human preferences, it
will still take “empowering” actions that expand the set of actions available
to the human.

eedless to say, there are many open research problems in the new mod-

el of Al First, we need to examine each existing research area (search,

game playing, constraint satisfaction, planning, reinforcementlearning,
and so on) and remove the assumption of a fixed, known objective, rebuilding that
area on a broader foundation that allows for uncertainty about objectives. The
key questions in each area are how to formulate the machine’s initial uncertainty
about human preferences and how to codify the run-time flow of preference in-
formation from human to machine.

Another set of research problems arises when we consider how the machine
can learn about human preferences from human behavior in the assistance game.
The first difficulty is that humans are irrational in the sense that our actions do
not reflect our preferences. This irrationality arises in part from our computation-
al limitations relative to the complexity of the decisions we face. For example, if
two humans are playing chess and one of them loses, it is because the loser (and
possibly the winner, too) made a mistake, a move that led inevitably to a forced
loss. A machine observing that move and assuming perfect rationality on the part
of the human might well conclude that the human preferred to lose. Thus, to avoid
reaching such conclusions, the machine must take into account the actual cogni-
tive mechanisms of humans.

Another important consequence of human computational limitations is that
they force us to organize our behavior hierarchically. That is, we make (defeasi-
ble) commitments to higher-level goals such as “write an essay on a human-com-
patible approach to AL” Then, rather than considering all possible sequences of
words, from “aardvark aardvark aardvark” to “zyzzyva zyzzyva zyzzyva,” as a
chess program might do, we choose among subtasks such as “write the introduc-
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tion” and “read more about preference elicitation.” Eventually, we get down to
the choice of words, and then typing each word involves a sequence of keystrokes,
each of which is in turn a sequence of motor control commands to the muscles
of the arms and hands. At any given point, then, a human is embedded at vari-
ous particular levels of multiple deep and complex hierarchies of partially over-
lapping activities and subgoals. This means that for the machine to understand
human actions, it probably needs to understand a good deal about what these hi-
erarchies are and how we use them to navigate the real world.

Other research problems engage directly with philosophy and the social sci-
ences. For example, there is the question of social aggregation, a staple of econom-
ics and moral philosophy: how should a machine make decisions when its actions
affect the interests of more than one human being ? Issues include the preferences
of evil individuals, relative preferences and positional goods, and interpersonal
comparison of preferences.3*

Also of great importance is the plasticity of human preferences: the fact that
they seem to change over time as the result of experiences. It is hard to explain
how such changes can be made rationally, since they make one’s future self less
likely to satisfy one’s present preferences about the future. Yet plasticity seems
fundamentally important to the entire enterprise, because newborn infants cer-
tainly lack the rich, nuanced, culturally informed preference structures of adults.
Indeed, it seems likely that our preferences are at least partially formed by a pro-
cess resembling inverse reinforcement learning, whereby we absorb preferences
that explain the behavior of those around us. Such a process would tend to give
cultures some degree of autonomy from the otherwise homogenizing effects of
our dopamine-based reward system.

Plasticity also raises the obvious question of which human H the machine
should try to help: Hy022, H2035, Or some time-averaged H 733 Plasticity is also prob-
lematic because of the possibility that the machine may, by subtly influencing the
environment, gradually mold H’s preferences in directions that make them easier
to satisfy. This problem is a familiar one in human society, where culture and pro-
paganda mold the preferences of humans to facilitate their compliance with exist-
ing power structures.

et us assume, for the sake of argument, that all these obstacles can be over-

come, as well as all of the obstacles to the development of truly capable Al
systems. Are we then home free? Would provably beneficial, superintel-

ligent AI usher in a golden age for humanity ? Not necessarily. There remains the
issue of adoption: how can we obtain broad agreement on suitable design princi-
ples, and how can we ensure that only suitably designed Al systems are deployed ?
On the question of obtaining agreement at the policy level, it is necessary first

to generate consensus within the research community on the basic ideas of —and
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design templates for — provably beneficial A, so that policy-makers have some
concrete guidance on what sorts of regulations might make sense. Economic in-
centives would tend to support the installation of rigorous standards at the early
stages of AI development, since failures would be damaging to entire industries,
not just to the perpetrator and victim. We already see this in miniature with the
imposition of machine-checkable software standards for cell phone applications.

On the question of enforcement, I am less sanguine. If the next Dr. Evil wants
to take over the world, he or she might remove the safety catch, so to speak, and
deploy apoorly designed Al system that ends up destroying the world instead. This
is a hugely magnified version of the problem we currently face with malware. Our
track record in solving the latter problem does not provide grounds for optimism
concerning the former. In Samuel Butler’s Erewhon and in Frank Herbert’s Dune,
the solution is to ban all intelligent machines, as a matter of both law and cultural
imperative. Perhaps if we find institutional solutions to the malware problem, we
will be able to devise some less drastic approach for regulating Al.

The problem of misuse is not limited to evil masterminds. One possible fu-
ture for humanity in the age of superintelligent Al is that of a race of lotus eaters,
progressively enfeebled as machines take over the management of our entire civ-
ilization. This is the future imagined in E. M. Forster’s story The Machine Stops,
written in 1909. We may say, now, that such a future is undesirable ; the machines
may agree with us and volunteer to stand back, requiring humanity to exert itself
and maintain its vigor. But exertion is tiring, and we may, in our usual myopic way,
design Al systems that are not quite so concerned about the long-term vigor of
humanity and are just a little more helpful than they would otherwise wish to be.
Unfortunately, this slope is very slippery indeed.

inding a solution to the AI control problem is an important task; it may be,

in the words of philosopher Nick Bostrom, “the essential task of our age.”34

Up to now, Al research has focused on systems that are better at making de-
cisions, but this is not the same as making better decisions if human and machine
objectives diverge.

This problem requires a change in the definition of Al itself: from a field con-
cerned with a unary notion of intelligence as the optimization of a given objective
to a field concerned with a binary notion of machines that are provably beneficial
for humans. Taking the problem seriously seems likely to yield new ways of think-
ing about Al its purpose, and our relationship with it.
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A Golden Decade of Deep Learning:
Computing Systems & Applications

Jeffrey Dean

The past decade has seen tremendous progress in the field of artificial intelligence
thanks to the resurgence of neural networks through deep learning. This has helped
improve the ability for computers to see, hear, and understand the world around
them, leading to dramatic advances in the application of AI to many fields of sci-
ence and other areas of human endeavor. In this essay, I examine the reasons for
this progress, including the confluence of progress in computing hardware designed
to accelerate machine learning and the emergence of open-source software frame-
works to dramatically expand the set of people who can use machine learning effec-
tively. I also present a broad overview of some of the areas in which machine learn-
ing has been applied over the past decade. Finally, I sketch out some likely directions
from which further progress in artificial intelligence will come.

able to create “thinking machines.” The field of artificial intelligence was
founded in a workshop organized by John McCarthy in 1956 at Dartmouth
College, with a group of mathematicians and scientists getting together to “find
how to make machines use language, form abstractions and concepts, solve kinds
of problems now reserved for humans, and improve themselves.” The workshop
participants were optimistic that a few months of focused effort would make real
progress on these problems.
The few-month timeline proved overly optimistic. Over the next fifty years,
a variety of approaches to creating Al systems came into and fell out of fashion,
including logic-based systems, rule-based expert systems, and neural networks.*
Approaches that involved encoding logical rules about the world and using those
rules proved ineffective. Hand-curation of millions of pieces of human knowledge
into machine-readable form, with the Cyc project as the most prominent exam-
ple, proved to be a very labor-intensive undertaking that did not make significant
headway on enabling machines to learn on their own.3 Artificial neural networks,
which draw inspiration from real biological neural networks, seemed like a prom-
ising approach for much of this time, but ultimately fell out of favor in the 1990s.
While they were able to produce impressive results for toy-scale problems, they

S ince the very earliest days of computing, humans have dreamed of being
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were unable to produce interesting results on real-world problems at that time.
As an undergraduate student in 1990, I was fascinated by neural networks and felt
that they seemed like the right abstraction for creating intelligent machines and
was convinced that we simply needed more computational power to enable larger
neural networks to tackle larger, more interesting problems. I did an undergrad-
uate thesis on parallel training of neural networks, convinced that if we could use
sixty-four processors instead of one to train a single neural network then neural
networks could solve more interesting tasks.# As it turned out, though, relative to
the computers in 1990, we needed about one million times more computational
power, not sixty-four times, for neural networks to start making impressive head-
way on challenging problems! Starting in about 2008, though, thanks to Moore’s
law, we started to have computers this powerful, and neural networks started their
resurgence and rise into prominence as the most promising way to create comput-
ers that can see, hear, understand, and learn (along with a rebranding of this ap-
proach as “deep learning”).

The decade from around 2011 to the time of writing (2021) has shown remark-
able progress in the goals set out in that 1956 Dartmouth workshop, and machine
learning (ML) and Al are now making sweeping advances across many fields of en-
deavor, creating opportunities for new kinds of computing experiences and inter-
actions, and dramatically expanding the set of problems that can be solved in the
world. This essay focuses on three things: the computing hardware and software
systems that have enabled this progress; a sampling of some of the exciting appli-
cations of machine learning from the past decade; and a glimpse at how we might
create even more powerful machine learning systems, to truly fulfill the goals of
creating intelligent machines.

ardware and software for artificial intelligence. Unlike general-purpose com-

puter code, such as the software you might use every day when yourun a

word processor or web browser, deep learning algorithms are generally
built out of different ways of composing a small number of linear algebra oper-
ations: matrix multiplications, vector dot products, and similar operations. Be-
cause of this restricted vocabulary of operations, it is possible to build computers
or accelerator chips that are tailored to support just these kinds of computations.
This specialization enables new efficiencies and design choices relative to general-
purpose central processing units (CPUs), which must run a much wider variety of
kinds of algorithms.

During the early 2000s, a handful of researchers started to investigate the use
of graphics processing units (GPUs) for implementing deep learning algorithms.
Although originally designed for rendering graphics, researchers discovered that
these devices are also well suited for deep learning algorithms because they have
relatively high floating-point computation rates compared with CPUs. In 2004,
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computer scientists Kyoung-Su Oh and Keechul Jung showed a nearly twenty-fold
improvement for a neural network algorithm using a GPU.5 In 2008, computer sci-
entist Rajat Raina and colleagues demonstrated speedups of as much as 72.6 times
from using a GPU versus the best CPU-based implementation for some unsuper-
vised learning algorithms.5

These early achievements continued to build, as neural networks trained on
GPUs outperformed other methods in a wide variety of computer vision contests.”
As deep learning methods began showing dramatic improvements in image rec-
ognition, speech recognition, and language understanding, and as more compu-
tationally intensive models (trained on larger data sets) continued demonstrating
improved results, the field of machine learning really took off.8 Computer systems
designers started to look at ways to scale deep learning models to even more com-
putationally intensive heights. One early approach used large-scale distributed
systems to train a single deep learning model. Google researchers developed the
DistBelief framework, a software system that enabled using large-scale distrib-
uted systems for training a single neural network.? Using DistBelief, researchers
were able to train a single unsupervised neural network model that was two orders
of magnitude larger than previous neural networks. The model was trained on a
large collection of random frames from YouTube videos, and with a large network
and sufficient computation and training data, it demonstrated that individual ar-
tificial neurons (the building blocks of neural networks) in the model would learn
to recognize high-level concepts like human faces or cats, despite never being giv-
en any information about these concepts other than the pixels of raw images.'°

These successes led system designers to design computational devices that
were even better suited and matched to the needs of deep learning algorithms than
GPUs. For the purpose of building specialized hardware, deep learning algorithms
have two very nice properties. First, they are very tolerant of reduced precision.
Unlike many numerical algorithms, which require 32-bit or 64-bit floating-point
representations for the numerical stability of the computations, deep learning al-
gorithms are generally fine with 16-bit floating-point representations during train-
ing (the process by which neural networks learn from observations), and 8-bit and
even 4-bit integer fixed-point representations during inference (the process by
which neural networks generate predictions or other outputs from inputs). The
use of reduced precision enables more multiplication circuits to be put into the
same chip area than if higher-precision multipliers were used, meaning chips can
perform more computations per second. Second, the computations needed for
deep learning algorithms are almost entirely composed of different sequences of
linear algebra operations on dense matrices or vectors, such as matrix multipli-
cations or vector dot products. This led to the observation that making chips and
systems that were specialized for low-precision linear algebra computations could
give very large benefits in terms of better performance per dollar and better per-
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formance per watt. An early chip in this vein was Google’s first Tensor Processing
Unit (TPUv1), which targeted 8-bit integer computations for deep learning infer-
ence and demonstrated one to two order-of-magnitude improvements in speed
and performance per watt over contemporary CPUs and GPUs." Deployments of
these chips enabled Google to make dramatic improvements in speech recogni-
tion accuracy, language translation, and image classification systems. Later TPU
systems are composed of custom chips as well as larger-scale systems connect-
ing many of these chips together via high-speed custom networking into pods,
large-scale supercomputers designed for training deep learning models."”> GPU
manufacturers like NVIDIA started tailoring later designs toward lower-precision
deep learning computations and an explosion of venture capital-funded startups
sprung up building various kinds of deep learning accelerator chips, with Graph-
Core, Cerebras, SambaNova, and Nervana being some of the most well-known.

Alongside the rise of GPUs and other ML-oriented hardware, researchers de-
veloped open-source software frameworks that made it easy to express deep
learning models and computations. These software frameworks are still critical
enablers. Today, open-source frameworks help a broad set of researchers, engi-
neers, and others push forward deep learning research and apply deep learning
to an incredibly wide range of problem domains (many of which are discussed
below). Some of the earliest frameworks like Torch, developed starting in 2003,
drew inspiration from earlier mathematical tools like MatLab and NumPy."
Theano, developed in 2010, was an early deep learning—oriented framework that
included automatic symbolic differentiation.’# Automatic differentiation is a use-
ful tool that greatly eases the expression of many gradient-based machine learn-
ing algorithms, such as stochastic gradient descent (a technique in which errors in
outputs are corrected by comparing the actual output and the desired output and
making small adjustments to the model parameters in the direction of the error
gradient). DistBelief and Caffe were frameworks developed in the early 2010s that
emphasized scale and performance.'

TensorFlow is a framework that allows the expression of machine learning
computations.'® It was developed and open-sourced by Google in 2015 and com-
bines ideas from earlier frameworks like Theano and DistBelief.'” TensorFlow
was designed to target a wide variety of systems and allows ML computations to
run on desktop computers, mobile phones, large-scale distributed environments
in data centers, and web browsers, and targets a wide variety of computation de-
vices, including CPUs, GPUs, and TPUs. The system has been downloaded more
than fifty million times and is one of the most popular open-source packages in
the world. It has enabled a tremendous range of uses of machine learning by indi-
viduals and organizations large and small all around the world.

PyTorch, released in 2016, has gained popularity with researchers for its easy
expression of a variety of research ideas using Python.® JAX, released in 2018, is a

151 (2) Spring 2022 61



A Golden Decade of Deep Learning : Computing Systems & Applications

popular open-source Python-oriented library combining sophisticated automatic
differentiation and an underlying XLA compiler, also used by TensorFlow to effi-
ciently map machine learning computations onto a variety of different types of
hardware."?

The importance of open-source machine learning libraries and tools like Tensor-
Flow and PyTorch cannot be overstated. They allow researchers to quickly try
ideas and express them on top of these frameworks. As researchers and engineers
around the world build on each other’s work more easily, the rate of progress in
the whole field accelerates!

esearch explosion. As a result of research advances, the growing computa-

tional capabilities of ML-oriented hardware like GPUs and TPUs, and the

widespread adoption of open-source machine learning tools like Tensor-
Flow and PyTorch, there has been a dramatic surge in research output in the field
of machine learning and its applications. One strong indicator is the number of
papers posted to the machine learning-related categories of arXiv, a popular pa-
per preprint hosting service, with more than thirty-two times as many paper pre-
prints posted in 2018 as in 2009 (a growth rate of more than double every two
years).2° There are now more than one hundred research papers posted to arXiv
per day in the machine learning-related subtopic areas, and this growth shows no
signs of slowing down.

pplication explosion. The transformative growth in computing power, ad-
vances in software and hardware systems for machine learning, and the
surge of machine learning research have all led to a proliferation of ma-
chine learning applications across many areas of science and engineering. By col-
laborating with experts in critical fields like climate science and health care, ma-
chine learning researchers are helping to solve important problems that can be
socially beneficial and advance humanity. We truly live in exciting times.
Neuroscience is one important area in which machine learning has accelerated
scientific progress. In 2020, researchers studied a fly brain to understand more
about how the human brain works. They built a connectome, a synapse-resolution-
level map of connectivity of an entire fly brain.*' But without machine learning
and the computational power we now have, this would have taken many years.
For example, in the 1970s, it took researchers about ten years to painstakingly
map some three hundred neurons within the brain of a worm. By contrast, a fly
brain has one hundred thousand neurons, and a mouse brain (the next goal for
machine learning-aided connectomics) has about seventy million neurons. A hu-
man brain contains about eighty-five billion neurons, with about one thousand
connections per neuron. Fortunately, deep learning—based advances in computer
vision now make it possible to speed up this previously gargantuan process. And

62 Deedalus, the Journal of the American Academy of Arts & Sciences



Jeffrey Dean

today, thanks to machine learning, you can explore the fly brain for yourself using
an interactive 3-D model |22

Molecular biology. Machine learning can also help us understand more about
our genetic makeup and, ultimately, address gene-based disease more effectively.
These new techniques allow scientists to explore the landscape of potential ex-
periments much more quickly through more accurate simulation, estimation, and
data analysis. One open-source tool, DeepVariant, can more accurately process
the raw information coming from DNA sequencing machines (which contain er-
rors introduced by the physical process of reading the genetic sequence) and an-
alyze it to more accurately identify the true genetic variants in the sequence rela-
tive to a reference genome data using a convolutional neural network. Once ge-
netic variants have been identified, deep learning can also help to analyze genetic
sequences to better understand genetic features of single or multiple DNA muta-
tions that cause particular health or other outcomes. For example, a study led by
the Dana-Farber Cancer Institute improved diagnostic yield by 14 percent for ge-
netic variants that lead to prostate cancer and melanoma in a cohort of 2,367 can-
cer patients.?

Health care. Machine learning is also offering new ways to help detect and diag-
nose disease. For example, when applied to medical images, computer vision can
help doctors diagnose a number of serious diseases more quickly and accurately
than doctors can on their own.

One impressive example is the ability for deep neural networks to correctly di-
agnose diabetic retinopathy, generally on par with human ophthalmologists. This
ocular disease is the fastest growing cause of preventable blindness (projected to
impact 642 million people in 2040).

Deep learning systems can also help detect lung cancer as well or better than
trained radiologists. The same goes for breast cancer, skin disease, and other dis-
eases.>* The application of sequential prediction on medical records can help cli-
nicians determine possible diagnoses and risk levels for chronic illness.?

Today’s deep learning techniques also give us a much more accurate under-
standing of how diseases spread, giving us a better chance at prevention. Ma-
chine learning helps us model complex events, like the global COVID-19 pandem-
ic, which require comprehensive epidemiological data sets, the development of
novel interpretable models, and agent-based simulators to inform public health
responses.26

Weather, environment, and climate change. Climate change is one of the greatest
challenges currently facing humanity. Machine learning can help us better under-
stand the weather and our environment, particularly to predict or forecast both
everyday weather and climate disasters.

For weather and precipitation forecasting, computationally intensive physics-
based models like the National Oceanic and Atmospheric Administration’s
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High-Resolution Rapid Refresh (HRRR) have long reigned supreme.?” Machine
learning—based forecasting systems can predict more accurately than the HRRR
on short timescales, however, with better spatial resolution and faster forecast
computations.?8

For flood forecasting, neural networks can model river systems around the
world (a technique called HydroNets), resulting in more accurate water-level pre-
dictions.?? Utilizing this technology, authorities can send faster flood alerts, for
example, to more than two hundred million people in India and Bangladesh.3°

Machine learning also helps us better analyze satellite imagery. We can rapidly
assess damage after a natural disaster (even with limited prior satellite imagery),
understand the impact and extent of wildfires, and improve ecological and wild-
life monitoring.3

Robotics. The physical world is messy, full of unexpected obstacles, slips, and
breakages. This makes creating robots that can successfully operate in messy, real-
world environments like kitchens, offices, and roadways quite challenging (in-
dustrial robotics has already had a significant impact on the world, operating in
more-controlled environments like factory assembly lines). To hard-code or pro-
gram real-world physical tasks, researchers need to anticipate all possible situa-
tions a robot might encounter. Machine learning efficiently trains robots to oper-
ate effectively in real-world environments through a combination of techniques
like reinforcementlearning, human demonstration, and natural language instruc-
tion. Machine learning also allows a more flexible, adaptable approach, in which
robots can learn the best ways to engage in grasping or walking tasks rather than
being locked into hard-coded assumptions.

Some interesting research techniques include automated reinforcement learn-
ing combined with long-range robotic navigation, teaching a robot to follow nat-
ural language instructions (in many languages!), and applying a zero-shot imita-
tion learning framework to help robots better navigate simulated and real-world
environments.3*

Accessibility. It is easy to take for granted our ability to see a beautiful image, to
hear a favorite song, or to speak with aloved one. Yet more than one billion people
are not able to access the world in these ways. Machine learning improves acces-
sibility by turning these signals — vision, hearing, speech — into other signals that
can be well-managed by people with accessibility needs, enabling better access to
the world around them. Some application examples include speech-to-text tran-
scription, real-time transcriptions while someone is engaged in conversation, and
applications that can help visually impaired users identity their surroundings.33

Individualized learning. Machine learning can also be used to create tools and ap-
plications that aid individualized learning. The benefits of this will be far reach-
ing, and initial examples include early childhood reading coaching such as Google
Read Along (formerly Bolo), which is helping children all over the world learn to
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read in a variety of different languages,34 and machine learning tools like Socra-
tic that can help kids learn by giving them intuitive explanations and more de-
tailed information about concepts they are grappling with, across a wide variety of
subjects such as mathematics, chemistry, and literature.3> Personalized learning
backed by speech recognition, realistic speech output, and language understand-
ing has the potential to improve educational outcomes across the world.

Computer-aided creativity. Deep learning algorithms show surprising abilities to
transform images in sophisticated and creative ways, giving us the ability to eas-
ily create spaceships in the style of Monet or the Golden Gate Bridge in the style
of Edvard Munch.3% Via an algorithm for artistic style transfer (developed by ma-
chine learning researcher Leon Gatys and colleagues), a neural network can take
areal-world image and an image of a painting and automatically render the real-
world image in the style of the painter. DALL-E by OpenAlI enables users to de-
scribe an image using text (“armchairs in the shape of an avocado” or “a loft bedroom
with a white bed next to a nightstand, with a fish tank standing beside the bed”) and gener-
ate images that have the properties expressed by the natural language description,
making sophisticated tools for artists and other creators to quickly create images
of what is in their head.3”

Machine learning—powered tools are also helping musicians create in ways
they never have before.3® Moving beyond “technology,” these new uses of com-
puting can help anyone create new and unique sounds, rhythms, melodies, or
even an entirely new musical instrument.

It is not hard to imagine future tools that can interactively help people create
amazing representations of our mental imagery — “Drawme a beach...no, Iwant it to
be nighttime ... with a full moon . . .and a mother giraffe with a baby next to a surfer coming
out of the water” — by just interactively talking to our computing assistants.

Important building blocks. Federated learning is a powerful machine learning ap-
proach that preserves user privacy while leveraging many distinct clients (such as
mobile devices or organizations) to collaboratively train a model while keeping
the training data decentralized.3? This enables approaches that have superior pri-
vacy properties in large-scale learning systems.4°

Researchers continue to push the state of the art in federated learning by devel-
oping adaptive learning algorithms, techniques for mimicking centralized algo-
rithms in federated settings, substantial improvements in complimentary crypto-
graphic protocols, and more.#!

Transformers. Language has been at the heart of developing Al since the field
began, given how ubiquitous language use and understanding is within our dai-
ly lives. Because language deals in symbols, it naturally prompted a symbolic ap-
proach to Al in the beginning. But over the years, Al researchers have come to re-
alize that more statistical or pattern-based approaches yield better practical uses.
The right types of deep learning can represent and manipulate the layered struc-
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ture of language quite effectively for a variety of real-world tasks, from translating
between languages to labeling images. Much of the work in this space from Goo-
gle and elsewhere now relies on transformers, a particular style of neural network
model originally developed for language problems (but with a growing body of
evidence that they are also useful for images, videos, speech, protein folding, and
awide variety of other domains).4*

There have been several interesting examples of transformers used in scientif-
ic settings, such as training on protein sequences to find representations encoding
meaningful biological properties, protein generation via language modeling, bio-
BERT for text mining in biomedical data (with pretrained model and training code),
embeddings of scientific text (with code), and medical question answering.#3 Com-
puter scientists Maithra Raghu and Eric Schmidt have provided a comprehensive
review of the ways in which deep learning has been used for scientific discovery.44

Machine learning for computer systems. Researchers are also applying machine
learning to core computer science and computer systems problems themselves.
This is an exciting virtuous cycle for machine learning and computing infrastruc-
ture research because it could accelerate the whole range of techniques that we
apply to other fields. This trend is in fact spawning entire new conferences, such
as MLSys.#> Learning-based approaches are even being applied to database indi-
ces, learned sorting algorithms, compiler optimization, graph optimization, and
memory allocation.4%

uture of machine learning. A few interesting threads of research are occurring
in the ML research community that will likely be even more interesting if
combined.
First, work on sparsely activated models, such as the sparsely gated mixture
of experts model, shows how to build very large capacity models in which just a
portion of the model is “activated” for any given example (say, just two or three
experts out of 2,048 experts).#” The routing function in such models is trained si-
multaneously and jointly with the different experts, so that the routing function
learns which experts are good at which sorts of examples, and the experts simul-
taneously learn to specialize for the characteristics of the stream of examples they
are given. Thisisin contrast with most ML models today in which the whole model
is activated for every example. Research scientist Ashish Vaswani and colleagues
showed that such an approach is simultaneously about nine times more efficient
for training, about 2.5 times more efficient for inference, and more accurate (+1
BLEU point, a relatively large improvement in accuracy for a language-translation
task).43
Second, work on automated machine learning (AutoML), in which techniques
such as neural architecture search or evolutionary architectural search can auto-
matically learn effective structures and other aspects of machine learning mod-
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els or components in order to optimize accuracy for a given task, often involves
running many automated experiments, each of which may involve significant
amounts of computation.4?

Third, multitask training at modest scales of a few to a few dozen related tasks,
or transfer learning from a model trained on a large amount of data for a related
task and then fine-tuned on a small amount of data for a new task, has been shown
to be very effective in a wide variety of problems.>° So far, most use of multitask
machine learning is usually in the context of a single modality (such as all visual
tasks or all textual tasks), although a few authors have considered multimodality
settings as well.>*

A particularly interesting research direction puts these three trends together,
with a system running onlarge-scale ML accelerator hardware, with a goal of train-
ing a single model that can perform thousands or millions of tasks. Such a mod-
el might be made up of many different components of different structures, with
the flow of data between examples being relatively dynamic on an example-by-
example basis. The model might use techniques like the sparsely gated mixture of
experts and learned routing in order to have a very large capacity model,>* but one
in which a given task or example only sparsely activates a small fraction of the to-
tal components in the system (and therefore keeps computational cost and power
usage per training example or inference much lower). An interesting direction to
explore would be to use dynamic and adaptive amounts of computation for dif-
ferent examples, so that “easy” examples use much less computation than “hard”
examples (arelatively unusual property in the machine learning models of today).
Figure 1 depicts such a system.

Each component might itself be running some AutoML-like architecture
search in order to adapt the structure of the component to the kinds of data that
are being routed to that component.53 New tasks can leverage components trained
on other tasks when that is useful. The hope is that through very large scale multi-
task learning, shared components, and learned routing, the model can very quick-
ly learn to accomplish new tasks to a high level of accuracy, with relatively few ex-
amples for each new task (because the model is able to leverage the expertise and
internal representations it has already developed in accomplishing other, related
tasks).

Building a single machine learning system that can handle millions of tasks,
and that can learn to successfully accomplish new tasks automatically, is a true
grand challenge in the field of artificial intelligence and computer systems engi-
neering. It will require expertise and advances in many areas, spanning machine
learning algorithms, responsible Al topics such as fairness and interpretability,
distributed systems, and computer architectures in order to push the field of ar-
tificial intelligence forward by building a system that can generalize to solve new
tasks independently across the full range of application areas of machine learning.
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Figure1
A Multitask, Sparsely Activated Machine Learning Model

Outputs

Single large model,
sparsely activated

Tasks

Note: This diagram depicts a design for a large, sparsely activated, multitask model. Each box
in the model represents a component. Models for tasks develop by stitching together com-
ponents, either using human-specified connection patterns or automatically learned connec-
tivity. Each component might be running a small architectural search to adapt to the kinds

of data that are being routed to it, and routing decisions making components decide which
downstream components are best suited for a particular task or example, based on observed
behavior. Source: Author’s diagram, including Barret Zoph and Quoc V. Le, “Neural Archi-
tecture Search with Reinforcement Learning,” arXiv (2016), Figure 7, 15, https://arxiv.org/
abs/1611.01578.

Responsible Al development. While AI has the ability to help us in many facets of
our lives, all researchers and practitioners should ensure that these approaches are
developed responsibly — carefully reviewing issues of bias, fairness, privacy, and
other social considerations on how these tools might behave and impact others —
and work to address these considerations appropriately.

It is also important to document a clear set of principles to guide responsible
development. In 2018, Google published a set of Al principles that guide the com-
pany’s work in and use of AL.54 The Al principles lay out important areas of con-
sideration, including issues such as bias, safety, fairness, accountability, trans-
parency, and privacy in machine learning systems. Other organizations and gov-
ernments have followed this model by publishing their own principles around
the use of Alin recent years. It is great to see more organizations publishing their
own guidelines and I hope that this trend will continue until it is no longer a
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trend but a standard by which all machine learning research and development
is conducted.

onclusions. The 2010s were truly a golden decade of deep learning research

and progress. During this decade, the field made huge strides in some of

the most difficult problem areas set out in the 1956 workshop that created
the field of AI. Machines became capable of seeing, hearing, and understanding
language in ways that early researchers had hoped for. The successes in these core
areas enabled a huge range of progress in many scientific domains, enabled our
smartphones to become much smarter, and generally opened our eyes to the pos-
sibilities of the future as we continue to make progress on creating more sophis-
ticated and powerful deep learning models that help us with our daily lives. The
future ahead of us is one in which we will all be more creative and capable thanks
to the help provided by incredibly powerful machine learning systems. I cannot
wait to see what the future holds!
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I Do Not Think It Means What You
Think It Means: Artificial Intelligence,
Cognitive Work & Scale

Kevin Scott

Over the past decade, Al technologies have advanced by leaps and bounds. Progress
has been so fast, voluminous, and varied that it can be a challenge even for experts
to make sense of it all. In this essay, I propose a framework for thinking about Al
systems, specifically the idea that they are ultimately tools developed by humans to
help other humans perform an increasing breadth of their cognitive work. Our Al
systems for assisting us with our cognitive work have become more capable and gen-
eral over the past few years. This is in part due to a confluence of novel Al algorithms
and the availability of massive amounts of data and compute. From this, research-
ers and engineers have been able to construct large, general models that serve as
flexible and powerful building blocks that can be composed with other software to
drive breakthroughs in the natural and physical sciences, to solve hard optimization
and strategy problems, to perform perception tasks, and even to assist with complex
cognitive tasks like coding.

hen I say the word “work,” what do I mean? In the mornings, when I
s / \ ) tell my children that “I’'m going to work,” they understand that I am
about to get into a car, drive to my office, and, for the rest of the day,
do a set of things alongside my coworkers for an employer who pays my salary.
When I tell my wife that “I'm going to work in the shop for a while,” she under-
stands that I am headed to my workshop where I will use a variety of tools that
I hold dear to tinker around on personal projects. When I say that “I'm going to
work in the garden” or “I'm going to work on this essay,” the people to whom I
am speaking almost always understand what I mean. Work in all these contexts
means me, a human being, applying effort to achieve some effect. In these con-
texts, we all have some shared understanding of what the applied efforts entail,
and why the effects are worth achieving.
In the late eighteenth century, accelerating into the nineteenth and twentieth
centuries, individual members of society had cause to think about work in new
ways. As society industrialized and humans devised new ways to use machines to
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do work, nearly every aspect of human life changed. As these machines became
increasingly complex, and as we began to use them to perform types of work that
had previously been performed through a combination of human labor and less
powerful tools, we needed new language and new scientific, technical, and social
shared understandings for these new forms of machine-assisted work.

Driven by the intellectual and industrial revolutions of the period, by the last
half of the nineteenth century, scientists like Nicolas Léonard Sadi Carnot, James
Prescott Joule, Rudolf Clausius, Lord Kelvin, James Maxwell, Ludwig Boltzmann,
and others had given us a simple but powerful definition of work — weight lifted
through a height — and a rich scientific theory — thermodynamics — that helped us
better understand not just the natural world, but how to better engineer, build,
and direct the new forms of machine work shaping society. That nineteenth-
century scientific definition of work is very much relevant today, but it is charac-
teristic of its time. The work that it defines is physical. Understanding the nature
of physical work was and is necessary to understand the machinery of the uni-
verse and was essential in constructing an industrial society.

When I get in my car, drive to my office, and do things alongside my cowork-
ers, “weight lifted through a height” is perhaps not the most relevant definition of
the work that I, and many others, do every day. I meet with people. I listen. I coach
and mentor. I attempt to make a very small number of meaningful decisions. I
read and digest information. I think. I imagine. I code. I write. With all these ef-
forts, the effects that I am trying to achieve are the solutions of problems. For me
those might be: Can we use our Al supercomputers to make molecular dynamics
simulations go much faster so that we can solve a more interesting set of prob-
lems in biology ? How can we make sure that our next machine learning model
does not produce adverse effects? Can we work around firmware issues to pre-
vent a compute shortage in our Al training clusters? Can I understand enough of
what a coworker is trying to achieve to meaningfully assist them? The interest-
ing thing about all these problems and their solutions is that the work required to
solve them is almost entirely cognitive.

f you are reading this essay, I would wager that you earn some or all of your

living doing cognitive work. Perhaps, if you made a full accounting of your

work time, you would discover that, if not most of the effort that you exert in
your work, then a majority of the effects that you produce are more of the mind
than the body. I am not arguing that our bodies are mere instruments of the mind.
And I am certainly not arguing that one form of work is superior to another. I am
attempting to make a more prosaic assertion: I am a knowledge worker; and you
may be, too. Moreover, even though we understand the nature of our work well
enough to do it, and more of us are earning our living this way with each passing
year, we have not yet crisply defined what cognitive work is nor how to measure
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it. As Al technologies become more capable, and as we use them to do more things
that are inarguably cognitive work, this lack of a foundational definition makes it
increasingly difficult to predict and engineer the changes that machines will bring
to cognitive work in the coming years. Will Al become yet another instrument or
tool that we use to express our humanity and creativity, that allows us to better ex-
plore and understand ourselves and the world around us, and that evolves the na-
ture of work once again just as the machines of the industrial revolution have done
over the past two centuries ? Or will Al become something else ?

Wikipedia dodges defining what knowledge work is by defining the knowl-
edge worker instead as someone whose main capital is knowledge. The knowl-
edge worker entry then lists examples: “programmers, physicians, pharmacists,
architects, engineers, scientists, design thinkers, public accountants, lawyers, ed-
itors, and academics, whose job is to ‘think for a living."”' Not bad. But not good
enough to build a theory of cognitive work as useful as thermodynamics was for
physical work.

Since the middle of the twentieth century, we have had mathematician Claude
Shannon’s quantification of information and an information theory with connec-
tions to and, in some respects, directly inspired by classical thermodynamics.>
Intuitively, it seems safe to say that information is the precursor to knowledge.
In some sense, building the bridge from the rigor of information theory to a use-
tul theory of cognitive work has been one of the great challenges facing the disci-
pline of Al since its founding in the summer of 1956. You can well imagine that our
ancestors faced a similar quandary in the eighteenth and nineteenth centuries as
they architected the industrialization of society. Sometimes the machines came
before we really understood why they worked and the best way to build them,
much less the complex network of social implications their construction and use
entailed. But our ancestors built those machines anyway because it was blindingly
obvious why they were useful.

In 2022, we have more clues about what a theory of cognitive work might
be, although the theory itself may not be a new one. Of the ten attendees of the
1956 Dartmouth Summer Research Conference on Artificial Intelligence, which
coined the term artificial intelligence and helped to establish AI as a discipline, Ray
Solomonoft’s name is less well-known than Marvin Minsky, John McCarthy, or
Claude Shannon. Even though the subdiscipline of Al called machine learning has
only in the past two decades taken over as the primary thrust of Al research and
commercial activity, from the beginning, Solomonoff envisioned machine sys-
tems that could use probability and data to learn to solve complex problems.

Perhaps the most important of Solomonoft’s insights was his theory of induc-
tive inference. This theory is in some ways a resolution of tension between two an-
cient ideas: Occam’s razor and Epicurus’s principle of multiple explanations. We
are probably all familiar with Occam’s razor, which states that when faced with
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a choice between multiple consistent explanations of an observed phenomenon,
we should choose the simplest. Epicurus’s principle, on the other hand, states that
we should consider all consistent explanations.

Solomonoft’s resolution, while mathematically quite sophisticated, is a rela-
tively simple idea. You formulate the explanations of observable phenomena as
programs for an abstract computing device, specifically a universal Turing ma-
chine.3 The shorter a program is, the more concise it is at explaining observed
phenomena. We can now use this conciseness as a precise measure of simplicity
for Occam’s razor. We then use the tools of Bayesian probability and a universal
prior to compute the posterior probability of the range of computable explana-
tions for any observed phenomenon.

When we train modern machine learning models, to be clear, we are not per-
forming Solomonoff induction, which Solomonoff himself proved to be uncom-
putable. Regardless, Solomonoff induction is an interesting framework for think-
ing about cognitive work given that it is complete, at least over the universe of
computable explanations.# Although I am biased by my computer science train-
ing, I would argue that it is not hard to imagine how you could explain almost any
observable phenomenon by at least some arbitrarily long program. The beauty of
Solomonoff induction is that, to quote Ilya Sutskever, chief scientist of OpenAl,
“compression equals generalization.” An incomprehensibly long explanation of a
single phenomenon is nowhere near as powerful as a single concise description of
many phenomena. Solomonoff induction gives us a framework for thinking very
precisely about exactly this.

may have just invoked too little theoretical computer science to frustrate the

real theoretical computer scientists, and too much to frustrate everyone else,

with the question still lingering: how does this help us understand cognitive
work ? Let us step back a moment to the work that we all do as knowledge work-
ers. Much of our work involves the use of a bunch of cognitive tools that humans
have developed over millennia, and frameworks for refining and composing these
tools with one another that help us solve problems orders and orders of magni-
tude more complex than our ancestors could, even though biologically we are
most certainly not orders of magnitude smarter. Our ability to refine these cog-
nitive tools, to rigorously ensure that they work, and then to compose them may
very well be the human version of “compression is generalization,” the way for us
to do more even though we likely have no more real cognitive capacity than the
ancients.

Take two of these tools I am guessing that many of us use to do our work:
mathematics and the scientific method. The modern body of mathematics that
we learn in high school and university, and increasingly the computational tools
that we use to support our mathematical activities, lets us reason about phenom-
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ena we can neither see, touch, nor otherwise sense. Perhaps more important, it
allows us to make predictions and reason about phenomena that have never ac-
tually occurred. With millennia-old mathematics, our ancestors could design aq-
ueducts that supported sophisticated ancient civilizations by allowing them to
move water around for irrigation, drinking, and sanitation. With twentieth- and
twenty-first-century mathematics and computation, we can design lithographic
structures on silicon wafers that move electrons around with near atomic-level
precision. We carry devices made with these silicon artifacts in our pockets and
backpacks that give us a way to connect and communicate with billions of oth-
er humans, access the world’s knowledge, create our work, and engage in almost
any form of commerce imaginable. To get from aqueducts to microprocessors, we
have had to build a whole modern cognitive architecture composed of layers upon
layers of cognitive tools that we and our predecessors have contributed to.

When I stop to think hard about the tools that I use to do my work, they do
feel like an amazing compression algorithm that lets me get more mileage out of
the brain I was born with. In computer science, this effect is hard to miss. The
programs that I wrote as a young computing professional were longer and ac-
complished far less than the ones I write today. And the margin by which a line of
code has become more powerful is far greater than the productivity I have gained
through polishing my programming skills over the years. The tools that are avail-
able to me now are orders of magnitude more powerful than they were when I be-
gan coding in the 1980s. Moreover, whether you are an engineer, a scientist, a writ-
er, or an artist, what has become clear over the past handful of years is that the Al
systems that we are building today will likely have an equally momentous impact
on the cognitive work that we are all able to do in the future.

n the same way that an engineer might assemble metal alloys, hydraulic pis-
tons, electric motors, shafts, bearings, and electronics into a machine that
performs mechanical work, like a forklift, engineers of AI systems increas-
ingly rely upon deep neural networks (DNNs) to build software systems capable
of performing cognitive work. In a real sense, the widespread use of DNNs today
is made possible by large amounts of data and compute needed to train them. In
2009, machine learning scholar Andrew Ng and his colleagues at Stanford pro-
posed the use of graphics processing units (GPUs) — devices capable of quickly
and efficiently performing the sorts of arithmetic necessary for creating realistic
video games - for training DNNs.5 While Ng did not invent the DNN, his innova-
tive use of the computational power of GPUs to train them helped to bring about
anew age of machine learning with the DNN as its most powerful building block.
Over the past decade or so, the amount of compute used to train the DNN
building blocks of our AI tools for cognitive work has increased exponentially. In
2018, OpenAl scientists noted that from 2012 to 2018, the amount of compute used
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in the largest Al training runs had increased by a factor of three hundred thou-
sand.® Why? In a world of diminishing returns from Moore’s law, it certainly is
not because compute is cheap. These investments only make sense insofar as scale
makes DNNs better building blocks for doing cognitive work. And arguably they
have, in two notable ways.

In the first half of the nineteenth century, mechanical engineer Claude-Louis
Navier and physicist George Gabriel Stokes developed a set of partial differential
equations to describe the motion of viscous fluids. The Navier-Stokes flow equa-
tions are, in my opinion, among the most beautiful in all of mathematics. They
very concisely describe an enormous range of phenomena in hydraulics, aeronau-
tics, oceanography, and atmospheric sciences. They inform everything from the
design of the pipes carrying water to our homes, to the design of the aircraft that
take us on holiday, to the weather forecasts we use to plan our days. The problem
with these equations is that, when used to model extremely complex physical ob-
jects or environments, they can become extraordinarily expensive to solve. Pri-
or to the advent of computers and numerical solvers for partial differential equa-
tions (PDEs), one could only model relatively simple systems with high fidelity, or
complex systems only with simplifying assumptions to make the calculations fea-
sible. Even now with extremely powerful supercomputers, certain problems that
could benefit from high-fidelity solutions to Navier-Stokes are computationally
infeasible.

That is, until recent work by a team of computer scientists at Caltech. Zongyi
Li and colleagues devised a way to use deep neural networks to solve the Navier-
Stokes PDEs up to three orders of magnitude faster, under some circumstances,
than prior state-of-the-art solvers.” In my graduate research, I was often happy to
improve the performance of a system by 5 percent. One thousand times more per-
formance is, to torture an overused word, incredible.

The pattern that Li and his colleagues employed is one that is becoming in-
creasingly widespread in the sciences. This is the first notable way in which mod-
els trained with large amounts of compute are becoming better building blocks
for cognitive work. With an abundance of compute, DNNs can be trained using
accurate but slow simulators or solvers for numerical, combinatorial, or even
symbolic problems to encode something about the structure of a problem domain
that we have yet to be able to model in other ways, such as through mathematics,
or heuristics, or code. These DNNs can then be used to solve problems, allowing
scientists to approach their work in new ways. Sometimes these techniques may
make expensive things quicker or cheaper so that more people can solve more
problems. Sometimes they may mean creating the ability to tackle problems so
large or complex that they were previously impossible to solve. And the better
news is that it seems as if this pattern is widely applicable and just beginning to be
widely adopted. There is much to look forward to in the years to come.
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The second way that scale is allowing us to construct better building blocks for
performing cognitive work involves the use of self-supervised learning for build-
ing deep neural networks that behave as building blocks or platforms for a wide
range of uses.

efore we dive into an explanation of self-supervised models, it is useful to

understand a bit about supervised models, which drove much of the prog-

ress in the early years of the DNN boom. The first decade or more of ma-
chine learning systems that I built were all supervised. If you wanted to train a
model to predict when someone was going to click on an ad, whether a piece of
email was spam, or whether a picture contains an image of a kitten, you had to
provide the supervised learning algorithms with lots and lots of examples of both
good and bad ad clicks, spammy and nonspammy emails, or pictures with or with-
out kittens in them. Providing those examples and counterexamples is an exercise
called labeling and is time consuming and expensive given the volume of labeled
training data required to achieve good performance.

For those of us following the field of machine learning closely, the last several
years have brought extraordinary progress in solving problems related to human
perception (recognizing the objects in images or the words spoken to a device),
strategic game playing (beating the best human players at Go or Dota), and, most
recently, in natural language understanding. The progress in natural language un-
derstanding began to accelerate in 2018 with the publication of a paper by Jacob
Devlin, a software engineer at Google, which introduced the notion of pretraining
for language models. By now, this will feel like a familiar pattern. BERT, ROBERTa,
DeBERTa, and other models use a set of techniques to learn the structure of nat-
ural language in a process that researchers in the field call pretraining.® Pretrain-
ing in these language models, like many of the most powerful contemporary deep
learning systems, is self-supervised. In other words, the models learn without di-
rect human supervision.

Once pretrained, a model, with the things it has learned about language struc-
ture, can be used to solve a wide range of problems in natural language processing.
In many cases, a pretrained model needs to be fine-tuned to a particular task with
some supervision. In some cases, the pretrained model itself is good enough. For
instance, researchers at the Allen Institute for Artificial Intelligence used BERT
in a test-taking system they had built called Aristo that was able to score high-
er than 9o percent on the multiple-choice component of the New York Regents
eighth-grade science exam, and exceeded 83 percent on the twelfth-grade test.'®
My colleagues at Microsoft Research used their DeBERTa model to, for the first
time, surpass the human baseline on the SuperGLUE benchmark, which entails
solving nontrivial natural language problems, such as processing a complicated
passage of text and then answering true or false questions about the passage, or
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resolving the referent of a pronoun in an ambiguous passage of text. The best nat-
ural language models are now able to exceed expert human performance on these
benchmarks.

When examining these systems, it is always important to ask: are these mod-
els capable of doing what they do because they have superhumanly big memories
from which they recall the answers to problems someone else has solved, or have
they compressed what they have seen in a way that lets them generalize solutions
of problems no one has ever solved before? While there is ongoing debate about
what, if anything, our contemporary self-supervised language models are “learn-
ing,”" for both those systems as well as those in which the data-fueling model
learning is generated in simulation, it does seem that large data and compute are
allowing us to encode useful things about problem domains that no human has
previously encountered.

Perhaps the two most impressive recent illustrations of how large models
trained with large compute can produce interesting results are OpenAI’s Gener-
ative Pre-trained Transformer 3 (GPT-3) and Codex models.'? At the time of its
release, GPT-3 was ten times larger than the largest nonsparse language model.
There are many benefits to scale, although perhaps the two most important are:
when properly trained, larger models tend to have better performance on the same
task than smaller models; and larger models tend to be useful in a broader range of
tasks, either with fine-tuning or not, than smaller models. Because GPT-3 is useful
on a broad range of tasks with little or no additional fine-tuning, it has been pos-
sible to offer an application programming interface to developers to allow them
to probe the utility of the model for the problems they are interested in solving.

One of the biggest surprises of the GPT-3 model is that it generalized something
about the structure of computer programming languages that allowed it to syn-
thesize code that did not exist in its training data. This realization led to OpenAI
fine-tuning a model for computer code called Codex, and in collaboration with
GitHub, developing a coding assistant product called Copilot that can write code
from natural language prompts. As the Codex model and the Copilot product get
better, they will not only assist programmers with their cognitive work, but may
also lower the barrier to entry to programming itself. Given that Codex and Co-
pilot work by allowing humans to describe in natural language an effect they
would like accomplished through code, the task of coding may become more ap-
proachable to many, many more people.

his ability to train on one set of data and to transfer what is learned to a
broad range of tasks is called transfer learning. Transfer learning, perhaps
more than anything else over the next few years, is likely to accelerate our
progress on Al It allows us to think about models as reusable building blocks,
what I call platform models, and researchers at Stanford are calling foundation
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models.'3 Moreover, based on the trends of the past few years, for transfer learning
to work better, we will need bigger and more sophisticated models, which in turn
will require more training compute.

Al systems designed to assist us with our cognitive work will no doubt con-
tinue to surprise us. I have been surprised so many times over the past two de-
cades by what AI scientists and researchers have been able to accomplish that
I have learned to heed the second half of Arthur C. Clarke’s first law: When a dis-
tinguished but elderly scientist states that something is possible, they are almost
certainly right. When they state that something is impossible, they are very prob-
ably wrong. Somewhere in the surprises of the future that await us, I am looking
forward to systems that can help me to write my code, to sharpen my writing, to
help me better manage the deluge of information I crave, and to assist me with the
art and artifacts I make in my workshop. Hopefully, as our eighteenth- and nine-
teenth-century forebears did with physical work, we will also sharpen our defini-
tions of cognitive work, develop new mechanisms for measuring it, and get better
at constructing Al building blocks and tools to help us with these tasks. But more
than anything, I look forward to what happens when folks who are more imagi-
native and creative than I am are able to incorporate new Al-based cognitive tools
into their work, to make things that awe and inspire, and to solve those vexing
problems that face society as we race forward to an ever more complicated future.
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Searching for Computer Vision
North Stars

Li Fei-Fei & Ranjay Krishna

Computer vision is one of the most fundamental areas of artificial intelligence re-
search. It has contributed to the tremendous progress in the recent deep learning rev-
olution in AL In this essay, we provide a perspective of the recent evolution of object
recognition in computer vision, a flagship research topic that led to the breakthrough
data set of ImageNet and its ensuing algorithm developments. We argue that much
of this progress is rooted in the pursuit of research “north stars,” wherein researchers
focus on critical problems of a scientific discipline that can galvanize major efforts
and groundbreaking progress. Following the success of ImageNet and object recog-
nition, we observe a number of exciting areas of research and a growing list of north
star problems to tackle. This essay recounts the brief history of ImageNet, its related
work, and the follow-up progress. The goal is to inspire more north star work to ad-
vance the field, and Al at large.

rtificial intelligence is a rapidly progressing field. To many of its everyday
users, Al is an impressive feat of engineering derived from modern com-
puter science. There is no question that there has been incredible engi-
neering progress in Al, especially in recent years. Successful implementations of
Al are all around us, from email spam filters and personalized retail recommen-
dations to cars that avoid collisions in an emergency by autonomously braking.
What may be less obvious is the science behind the engineering. As researchers in
the field, we have a deep appreciation of both the engineering and the science and
see the two approaches as deeply intertwined and complementary. Thinking of
Al, atleastin part, as a scientific discipline can inspire new lines of thought and in-
quiry that, in time, will make engineering progress more likely. As in any science,
itis not always obvious what problems in Al are the most important to tackle. But
once you have formulated a fundamental problem — once you have identified the
next “north star” — you can start pushing the frontier of your field. That has cer-
tainly been our experience, and it is why we love Einstein’s remark that “The mere
formulation of a problem is often far more essential than its solution.”
AT has been driven by north stars from the field’s inception in 1950, when Alan
Turing neatly formulated the problem of how to tell if a computer deserves to
be called intelligent. (The computer, according to the now-famous Turing Test,
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would need to be able to “deceive a human into believing that it was human,” as
Turing put it.)' A few years later, as the founding fathers of AI planned the Dart-
mouth workshop, they set another ambitious goal, proposing to build machines
that can “use language, form abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves.”* Without that guiding light,
we might never be in a position to tackle new problems.

Our own area within AI, computer vision, has been driven by its own series of
north stars. This is the story of one — object recognition — and the progress it has
made toward north stars in other Al fields.

he ability to see—vision —is central to intelligence. Some evolutionary

biologists have hypothesized that it was the evolution of eyes in animals

that first gave rise to the many different species we know today, including
humans.3

Seeing is an immensely rich experience. When we open our eyes, the entire visu-
al world is immediately available to us in all its complexity. From registering shad-
ows and brightness, to taking in the colors of everything around us, to recognizing
an appetizing banana on a kitchen counter as something good to eat, humans use
our visual perception to navigate the world, to make sense of it, and to interact with
it. So how do you even begin to teach a computer to see? There are many import-
ant problems to solve and choosing them is an essential part of the scientific quest
for computer vision: that is, the process of identifying the north stars of the field.
At the turn of the century, inspired by a large body of important work prior to ours,
our collaborators and we were drawn to the problem of object recognition: a com-
puter’s ability to correctly identify what appears in a given image.

This seemed like the most promising north star for two reasons. The first was
its practical applications. The early 2000s witnessed an explosive increase in the
number of digital images, thanks to the extraordinary growth of the Internet and
digital cameras, and all those images created a demand for tools to automatically
catalog personal photo collections and to enable users to search through such im-
age collections. Both applications would require object recognition.

But an even deeper reason was the remarkable ability of humans to perceive
and interpret objects in the visual world. Research in the field of cognitive neuro-
science showed that humans can detect animals within just twenty milliseconds
and, within only three hundred milliseconds, can tell whether the animal is, say,
atiger or alamb. The research in cognitive neuroscience also offered clues to how
humans are able to achieve such rapid recognition: scientists had found that hu-
mans relied on cues in the object’s surroundings and on certain key features of ob-
jects, features that did not change with a difference in angle or lighting conditions.
Most strikingly, neuroscientists had discovered specific regions of the brain that
activate when people view specific objects.# The existence of neural correlates for
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any function is a sure sign of the function’s evolutionary importance: a specific
brain region would not evolve for a specific function unless that function was es-
sential for the organism’s survival or reproduction. Clearly, the ability to recog-
nize specific objects must be critical.

These findings made clear to us that object recognition should be considered
a north star in computer vision. But how do you get a computer to recognize ob-
jects? Recognizing objects requires understanding what concept a digital image
represents in the visual world — what the image means —but a computer has no
such understanding. To a computer, a digital image is nothing more than a col-
lection of pixels, a two-dimensional array of numbers that does not really mean
anything except colors and illuminations. Teaching a computer to recognize ob-
jects requires somehow getting it to connect each lifeless collection of numbers to
a meaningful concept, like dog or banana.

Between the decades of the 1990s and the early 2000s, researchers in object rec-
ognition had already made tremendous progress toward this daunting goal, but
progress was slow because of the enormous variety in the appearance of real-world
objects. Even within a single, fairly specific category (like house, dog, or flower),
objects can look quite different. For example, an Al capable of accurately recogniz-
ing an object in a photograph as a dog needs to recognize it as a dog whether it is
a German shepherd, poodle, or chihuahua. And whatever the breed, the Al needs
to recognize it as a dog whether it is photographed from the front or from the side,
running to catch a ball or standing on all fours with a blue bandana around its
neck. In short, there is a bewildering diversity of images of dogs, and past attempts
at teaching computers to recognize such objects failed to cope with this diversity.

One major bottleneck of most of these past methods was their reliance on
hand-designed templates to capture the essential features of an object, and the
lack of exposure to a vast variety of images. Computers learn from being exposed
to examples; that is the essence of machine learning. And while humans can of-
ten generalize correctly from just a few examples, computers need large numbers
of examples; otherwise, they make mistakes. So Al researchers had been trapped
in a dilemma. On the one hand, for a template to be helpful in teaching an AI sys-
tem to recognize objects, the template needed to be based upon a large variety of
images and, therefore, a very large number of images in total. On the other hand,
hand-designing a template is labor-intensive work, and doing so from a very large
number of images is not feasible.

The inability to scale the template approach effectively made it clear that we
needed a different way to approach the object-recognition problem.

e started our search for anew approach with one key assumption: even

the best algorithm would not generalize well if the data it learned from
did not reflect the real world. In concrete terms, that meant that ma-
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jor advances in object recognition could occur only from access to a large quantity
of diverse, high-quality training data. That assumption may sound obvious be-
cause we are all awash in data and we all benefit from powerful object-recognition
tools. But when we began our work in the early 2000s, the focus on data was fairly
contrarian: at that time, most people in our field were paying attention to models
(algorithms), not to data. Of course, in truth, the two pursuits are compatible. We
believed that good data would help with the design of good models, which would
lead to advances in object recognition and in Al more broadly.

That meant that we needed to create a new data set (which we called Image-
Net) that achieved these three design goals: scale (alarge quantity of data), diver-
sity (a rich variety of objects), and quality (accurately labeled objects).> In focus-
ing on these three goals, we had moved from a general north star — image recogni-
tion — to more specific problem formulations. But how did we tackle each ?

Scale. Psychologists have posited that human-like perception requires expo-
sure to thousands of diverse objects.® When young children learn naturally, their
lives have already been exposed to enormous numbers of images every day. For
example, by the time a typical child is six years old, she has seen approximate-
ly three thousand distinct objects, according to one estimate; from those exam-
ples, the child would have learned enough distinctive features to help distinguish
among thirty thousand more categories. That is how large a scale we had in mind.
Yet the most popular object-recognition data set when we began included only
twenty objects, the result of the very process we described earlier as too cumber-
some to scale up. Knowing that we needed far more objects, we collected fifteen
million images from the Internet.

Butimages alone would not be enough to provide useful training data to a com-
puter: we would also need meaningful categories for labeling the objects in these
images. After all, how can a computer know that a picture of a dog is a German
shepherd (or even a dog) unless the picture has been labeled with one of these cat-
egories ? Furthermore, most of the machine learning algorithms require a train-
ing phase during which the algorithms must learn from labeled examples (that
is, training examples) and be measured by their performances of a separate set of
labeled examples (that is, testing samples). So we turned to an English-language
vocabulary data set, called WordNet, developed by cognitive psychologist George
Miller in 1990.7 WordNet organizes words into hierarchically nested categories
(such as dog, mammal, and animal); using WordNet, we chose thousands of ob-
ject categories that would encompass all the images we had found. In fact, we
named our data set ImageNet by analogy with WordNet.

Diversity. The images we collected from the Internet represented the diversi-
ty in real-world objects, covering many categories. For example, there were more
than eight hundred different kinds of birds alone, with several examples of each.
In total, we used 21,841 categories to organize the fifteen million images in our
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data set. The challenges in capturing real-world diversity within each category is
that simple Internet search results are biased toward certain kinds of images: for
example, Google’s top search results for “German shepherd” or “poodle” consist
of cleanly centered images of each breed. To avoid this kind of bias, we had to ex-
pand the query to include a description: to search also, for example, for “German
shepherd in the kitchen.” Similarly, to get a broader, more representative distribu-
tion of the variety of dog images, we used translations into some other languages
as well as hypernyms and hyponyms: not just “husky” but also “Alaskan husky”
and “heavy-coated Arctic sled dog.”

Quality. We cared a lot about the quality of the images and the quality of the
annotations. To create a gold-standard data set that would replicate the acuity of
human vision, we used only high-resolution images. And to create accurate labels
for the objects in the data set, we hired people. At first, we brought in Princeton
undergraduate students to label the images and verity these labels, but it quickly
became apparent that using such a small group would take far too long. Through
a fortunate coincidence, Amazon had just released its crowdsourcing platform,
Mechanical Turk, which enabled us to quickly hire approximately fifty thousand
workers from 167 countries to label and verify the objects in our set between 2007
and 2009.8

he ImageNet team believed it was important to democratize research in

object recognition and to build a community around ImageNet. So we

open-sourced ImageNet: we made it free and open to any interested re-
searcher. We also established an annual competition to inspire researchers from
all around the world. The ImageNet Large-Scale Visual Recognition Challenge
(often simply called the ImageNet Challenge), which ran concurrently from 2010
until 2017 with the international computer vision research conferences Interna-
tional Conference on Computer Vision and European Conference on Computer
Vision, created a common benchmark for measuring progress.

We set up the ImageNet Challenge similar to the design of other machinelearn-
ing competitions: All participants would get the same training data, which isjusta
subset of the larger ImageNet data set. After using this training data to train their
object-recognition algorithm, the participants would unleash their algorithm on
unlabeled images that the algorithm had never encountered to see how accurately
the algorithm would recognize these new images. These test data, too, came from
ImageNet.

We had high aspirations for the ImageNet data set and for the ImageNet Chal-
lenge, yet the outcomes exceeded them. The biggest turning point came in 2012,
when one team applied a convolutional neural network to object recognition for
the first time.? (A convolutional neural network is an algorithm inspired by the
way the human brain works.) That team’s winning entry, later known as AlexNet
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after one of its creators, trounced its competition, recognizing images with an ac-
curacy that was a whopping 41 percent higher than that of the second-place finish-
er. Although neural networks as an approach to machine learning had been around
for decades, it had not been widely used until that year’s ImageNet Challenge.

This was a watershed moment for the AI community. The impressive perfor-
mance of AlexNet on the ImageNet data set inspired other researchers — and not
just participants in the ImageNet Challenge - to shift to deep learning approach-
es. We started seeing large companies like Google and Facebook deploying tech-
nology based on neural networks, and within a year, almost every AI paper was
about neural networks.

With so many people working on neural networks, the technology advanced
rapidly. Researchers found that the deeper the model, the better it performed at
object recognition. And as deeper models required more processing power, re-
searchers ran into other problems, such as computational bottlenecks, which re-
quired further design work to overcome. The ImageNet Challenge created a kind
of domino effect of innovations, with each advance leading to more.*®

Beyond the tremendous progress in computer vision through more and more
powerful deep learning algorithms, researchers began using deep learning to au-
tomate and systematize the design of model architecture itself, instead of hand-
designing each neural network’s architecture. The process of hand-designing ar-
chitectures, like the previous process of hand-designing features in templates, is
speculative: the search space of possible architectures is exponentially vast, so
manual architectural changes are unlikely to thoroughly explore this space quick-
ly enough to uncover the optimal architecture. Using ImageNet as a test bed, com-
puter vision researchers have systematized the process of neural architecture
search." Initial methods consumed too many computational resources to exhaus-
tively cover the search space. Inspired by the success of hand-designed architec-
tures with recurring architecture motifs, such as ResNet36 and Inceptiongs, lat-
er methods defined architectures with recurring cell structures and restricted the
search space to designing this recurring cell.**

The ImageNet Challenge ended once the accuracy of its best models reached
superhuman levels, at 97.3 percent. (Human accuracy on this data was about 95
percent.)"3 Other researchers have continued making incremental advancements,
however, using the ImageNet data set to track their progress, and error rates have
continued to fall, though certainly not as fast as in the first few years after the in-
troduction of ImageNet. The error rate of the best model today is only 1.2 percent,
down from 33.6 percent when the competition began back in 2009.'4

These days, thanks to high accuracy and reasonable computing costs, ob-
ject recognition is in wide use. Whenever you search for images on the Internet,
you use the kinds of algorithms first developed for the ImageNet Challenge; the
same goes for when your smartphone automatically groups your photos based on
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whose face appears in the photo. Those are exactly the uses we had in mind when
we first chose object recognition as our north star. But uses of object recognition
go beyond that, from tracking players in sports to helping self-driving cars detect
other vehicles.

earning to recognize objects is only one form of learning to see, which is

why computer vision (or visual intelligence) is a much broader field than

objectrecognition. But there are important similarities between object rec-
ognition and other tasks in computer vision, such as object detection and activi-
ty recognition. Such similarities mean that a computer should not need to tackle
a new task from scratch. In theory, a computer should be able to take advantage
of the similarities, applying what it has learned from one task to perform a some-
what different task. For both computers and humans, this process of generalizing
knowledge from one task to a similar one is called transfer learning.*>

Humans are very good at transfer learning: once we know French, for exam-
ple, itis not as hard to learn Spanish. And if you learned to read English as a child,
that was certainly easier if you already knew how to speak English than if the lan-
guage was entirely new to you. In fact, the ability to pick up on similarities be-
tween tasks, and to parlay this shared knowledge to help us learn new tasks, is one
of the hallmarks of human intelligence.

Transfer learning can be tremendously helpful for AT too, but it does not come
naturally to computers; instead, we humans have to teach them. The way to help
computers with transfer learning is through pretraining. The idea is that before
you give a machine learning model a new challenge, you first train it to do some-
thing similar, using training data that are already known to be effective. In com-
puter vision, that starting point is the object-recognition data in ImageNet. Once
a new model gets trained through ImageNet, it should have a leg up on tackling
anew kind of challenge. If this approach works, as we thought it would, then we
have all the more reason to think that object recognition is a north star for visual
intelligence.

That was the thinking behind our extension of the ImageNet Challenge to the
problem of object detection. Object detection means recognizing an object in an
image and specifying its location within the image. If you have ever seen a digital
photograph of a group of people with a little rectangle drawn around each per-
son’s face, you have seen one application of object detection. Whereas the images
in ImageNet contain just one object each, most real-world scenes include several
objects, so object detection is a valuable extension of the kind of simple object rec-
ognition we had tested in the ImageNet Challenge.

Object detection had been an area of research before ImageNet, too, but the
most common approach then was to first identify the areas within the image
where an object (such as an animal) was likely to be, and then to focus on that area
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and try to recognize that object (as a tiger, for example).'® Once ImageNet became
available, that second step became much easier.

Object detection has come a long way since then, with special-purpose detec-
tors for different kinds of applications, such as self-driving cars, which need to be
alert to other cars on the road.'” Such advances beyond object recognition would
not have been possible without the use of ImageNet to enable transfer learning.

But object detection was just a first attempt to apply ImageNet data to uses be-
yond object recognition. These days, for better or for worse, almost every comput-
er vision method uses models pretrained on ImageNet.

one of that is to say that ImageNet has been useful for every computer vi-

sion task. A prominent example is medical imaging.'® Conceptually, the

task of classifying a medical image (such as a screening mammogram)
is not very different from the task of classifying a photograph taken with a phone
camera (such as a snapshot of a family pet). Both tasks involve visual objects and
category labels, so both could be performed by a properly trained machine. In fact,
they have been. But the methods have not been exactly the same. For one thing,
you cannot use the ImageNet data set to train a computer to detect tumors; it sim-
ply has no data for this specialized task. What is more, it is not feasible to use the
same basic approach: the professional expertise required to create high-quality
training data to help with medical diagnosis is scarce and expensive. Put anoth-
er way, it is impossible to use Mechanical Turk to create a high-quality medical
data set, both due to the requirement of specialized expertise as well as regulatory
restrictions. So instead of using carefully labeled examples (the process of “su-
pervised learning”), AI for medical imaging is usually based on “semi-supervised
learning,” whereby the machine learns to find meaningtul patterns across images
without many explicit labels."

Computer vision certainly has practical applications beyond health, including
environmental sustainability. Researchers are already using machine learning to
analyze large volumes of satellite images to help governments assess changes in
crop yields, water levels, deforestation, and wildfires, and to track longitudinal
climate change.>® Computer vision can be helpful in education, too: when stu-
dents are trying to learn to read bar charts or to study visual subjects like geometry
and physics, computers that understand images have the potential to supplement
the efforts of human teachers. Assistive technology could also help teachers gen-
erate content-appropriate quizzes.*!

The use of ImageNet to generalize beyond object recognition also led to the
discovery of a thorny problem for deep learning models: “adversarial examples,”
which are images that fool an Alinto making blatant errors classifying an object.>*
A miniscule, humanly imperceptible tweak to a picture (sometimes even a single
pixel!) can cause a model trained on ImageNet to mislabel it entirely.”3 An image
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of a panda can thus get misclassified as a bathtub. Some kinds of errors are eas-
ier to understand as the result of spurious correlations: wolves are often photo-
graphed in snow, so a model that learns to associate snow with wolves could come
to assume that the label “wolf” refers to “snow.” It turns out that all models that
use deep learning are vulnerable to attacks from adversarial examples, a fact that
has spurred some researchers to work on ways to “vaccinate” training data against
these attacks.

The problem of adversarial examples has also led the computer vision commu-
nity to shift from a singular focus on accuracy. Although accuracy in object recog-
nition certainly remains important, researchers have come to appreciate the value
of other criteria for evaluating a machine learning model, particularly interpret-
ability (which refers to the ability of a model to generate predictable or under-
standable inference results for human beings) and explainability (the ability of a
model to provide post hoc explanations for existing black box models).>4

The success of ImageNet has also prompted the computer vision community
to start asking what data the next generation of models should be pretrained on.
As an alternative to the expensive, carefully annotated, and thoroughly verified
process used to create ImageNet, researchers have collected data from social me-
dia and scraped images with their associated text off the Internet.> Pretraining
models from this “raw” data have opened up the possibility of “zero-shot adapta-
tion,” the process through which computers can learn without any explicit labels.
In fact, models trained on such raw data now perform as well as models trained
using ImageNet.26

Finally, the wide influence of ImageNet has opened the data set up to criticism,
raising valid concerns we were not sufficiently attuned to when we began. The
most serious of these is the issue of fairness in images of people.?” For one thing,
although we certainly knew early on to filter out blatantly derogatory image labels
such as racial or gender slurs, we were not sensitive to more subtle problems, such
as labels that are not inherently derogatory but could cause offense when applied
inappropriately (such as labeling people based on clues to their religion or sex-
ual orientation). In addition, certain concepts related to people are hard to rep-
resent visually without resorting to stereotypes, so attempts to associate images
with these concept labels (“philanthropist” or “Bahamian,” for example) perpet-
uate biases. Most Bahamian wear distinctive garb only on special, ceremonial oc-
casions, but an image search for “Bahamian” based on ImageNet data would give
a disproportionate number of such stereotypical images of people from the Ba-
hamas. Another source of bias in search results is the inadequate diversity in the
ImageNet data set, a bias that tends to get amplified during the manual cleanup
stage, when human annotators resort to racial and gender stereotypes in their la-
beling. Women and ethnic minorities are already underrepresented among real-
world bankers, for example, but they are even more underrepresented in images
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labeled as “banker.” Although these problems of fairness are difficult to eliminate
entirely, we have made research strides to mitigate them.??

he development of these new data sets hasled to the need for ametabench-

mark: a single evaluation scheme for multiple individual benchmarks (or

a benchmark for comparing benchmarks). Without a metabenchmark, it
is impossible to compare the performance of different machine learning models
across different tasks and using different data sets.

In fact, one thing that has emerged is a lively debate about benchmarks them-
selves.? One side of the debate posits that the constant emergence of new bench-
marks is a good sign, suggesting continued progress on north stars. On the other
side is a concern that benchmarks encourage something akin to teaching to the test:
the concern that what emerges from benchmarking are not superior models but
models that optimize for high performance on an inherently imperfect benchmark.

Another serious concern is that a widely adopted benchmark amplifies the
real-world effects of any flaws in the benchmark. There is a growing body of re-
search, for example, on how benchmarks can perpetuate structural societal bi-
ases,3° benefiting groups that are already dominant (particularly White males)
while discriminating against marginalized groups (such as Muslims and dark-
skinned females).3!

In response to these concerns, pioneers in the field are radically rethinking
benchmarking. One suggestion has been for human judges to generate inputs
for which models would fail, thus creating increasingly harder testing criteria as
models improve.3* Another idea is to demand that benchmarks measure not only
accuracy (which encourages designing to the benchmark) but also assess and re-
ward progress on other valuable criteria, including bias detection.33

here do we go next in computer vision? Other north stars beckon.
One of the biggest is in the area of embodied AI: robotics for tasks
such as navigation, manipulation, and instruction following. That
does not necessarily mean creating humanoid robots that nod their heads and
walk on two legs; any tangible and intelligent machine that moves through space
is a form of embodied AI, whether it is a self-driving car, a robot vacuum, or a ro-
botic arm in the factory. And just as ImageNet aimed at representing a broad and
diverse range of real-world images, research in embodied AI needs to tackle the
complex diversity of human tasks, from folding laundry to exploring a new city.34
Another north star is visual reasoning: understanding, for example, the
three-dimensional relationships in a two-dimensional scene. Think of the visual
reasoning needed to follow even the seemingly simple instruction to bring back
the metal mug to the left of the cereal bowl. Following such instructions certainly
requires more than vision, but vision is an essential component.3>
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Understanding people in a scene, including social relationships and human in-
tentions, adds yet another level of complexity, and such basic social intelligence is
another north star in computer vision.3% Even a five-year-old can guess, for exam-
ple, that if a woman is cuddling with a little girl on her lap, the two people are very
likely mother and daughter, and that if a man opens a refrigerator, he is probably
hungry; but computers do not yet have enough intelligence to infer such things.
Computer vision, like human vision, is not just perception; it is deeply cognitive.

There is no question that all these north stars are huge challenges, bigger than
ImageNet ever was. It is one thing to review photos to try to identify dogs or
chairs, and it is another to think about and navigate the infinite world of people
and space. But it is a set of challenges well worth pursuing: as computers’ visual
intelligence unfolds, the world can become a better place. Doctors and nurses will
have extra pairs of tireless eyes to help them diagnose and treat patients. Cars will
run more safely. Robots will help humans brave disaster zones to save the trapped
and wounded. And scientists, with help from machines that can see what humans
cannot, will discover new species, better materials, and uncharted frontiers.
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Daniela Rus

While the last sixty years have defined the field of industrial robots and empowered
hard-bodied robots to execute complex assembly tasks in constrained industrial set-
tings, the next sixty years will usher in our time with pervasive robots that come in a
diversity of forms and materials and help people with physical tasks. The past sixty
years have mostly been inspired by the human form, but the form diversity of the
animal kingdom has broader potential. With the development of soft materials,
machines and materials are coming closer together : machines are becoming com-
pliant and fluid-like materials, and materials are becoming more intelligent. This
progression raises the question : what will be the machines from our future?

oday, telepresence enables students to meet with tutors and teachers and

allows doctors to treat patients thousands of miles away. Robots help

with packing on factory floors. Networked sensors enable the monitor-
ing of facilities, and 3D printing creates customized goods. We are surrounded by
a world of possibilities. And these possibilities will only get larger as we start to
imagine what we can do with advances in artificial intelligence and robotics. Pic-
ture a world where routine tasks are taken off your plate. Fresh produce just shows
up on your doorstep, delivered by drones. Garbage bins take themselves out, and
smart infrastructure systems support automated pick-up. Al assistants — whether
embodied or not — act as guardian angels, providing advice to ensure that we max-
imize and optimize our lives to live well and work effectively.

The field of robotics has the potential to greatly improve the quality of our
lives at work, at home, and at play by providing people with support for cognitive
and physical tasks. For years, robots have supported human activity in danger-
ous, dirty, and dull tasks, and have enabled the exploration of unreachable envi-
ronments, from the deep oceans to deep space. Increasingly more-capable robots
will be able to adapt, learn, and interact with humans and other machines on cog-
nitive levels. The objective of robotics is not to replace humans by mechanizing
and automating tasks, but rather to find new ways that allow robots to collaborate
with humans more effectively. Machines are better than humans at tasks such as
crunching numbers and moving with precision. Robots can lift much heavier ob-
jects. Humans are better than machines at tasks like reasoning, defining abstrac-
tions, and generalizing or specializing, thanks to our ability to draw on prior expe-
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riences. By working together, robots and humans can augment and complement
each other’s skills.

Imagine riding in your flying car, which is integrated with the information
technology infrastructure and knows your needs, so it can tell you, for example,
that you can buy the plants you have been wanting at a store nearby, while com-
puting a small detour. You can trust your home to take care of itself when you are
away. That is what the smart refrigerator is for: it tracks everything you put in and
take out so it can automatically send a shopping list to your favorite delivery ser-
vice when it is time to restock. This automated household can help take care of
everything from your new plants to your elderly parents. The intelligent water-
ing system monitors the soil and ensures each type of plant gets the right level of
moisture. When your elderly parents need help with cooking, the kitchen robot
can assist. The new robotic technologies can also be carried with us, knitted in
our sweaters, blended in our garments, or embedded in our accessories. We could
have our own wearable computer assistants, like [ronman, with superpowers fo-
cused on improving and optimizing our health and everyday lives. The smart exo-
suit can provide an extra set of eyes that monitors the environment and warns
of threats when we walk home at night. This exosuit, shaped as a knitted robot,
could become an individual coach to help us perfect a tennis stroke or an assembly
sequence. This is just a snapshot of a machine-enhanced future we can imagine.
There are so many ways in which our lives can be augmented by robots and Al

This positive human-machine relationship, in which machines are helpful as-
sistants, is closer to my vision of the future than the scenarios in which the ma-
chines either take over as maniacal overlords or solve all of humanity’s problems.
This vision is starting to mature inside my lab, and in the labs of my friends and
colleagues at other universities and institutions and some forward-thinking com-
panies. This future does not resemble the dystopia depicted in so many books,
movies, and articles. But none of us expects it to be a perfect world, either, which
is why we design and develop the work with potential dangers in mind.

While Al is concerned with developing the science and engineering of intelli-
gence for cognitive tasks, robotics is concerned with physical-world interactions
by developing the science and engineering of autonomy. Specifically, robots are
made of a body (hardware) and a brain (algorithms and software). For any task
that requires machine assistance, we need bodies capable of doing the task and
brains capable of controlling the bodies to do the task. The main tasks studied in
robotics are mobility (navigating on the ground, in air, or underwater), manipu-
lation (moving objects in the world), and interaction (engaging with other ma-
chines and with people).

We have already come a long way. Today’s state of the art in robotics, AL, and
machine learning is built on decades of advancements and has great potential for
positive impact. The first industrial robot, called The Unimate, was introduced in
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1961. It was invented to perform industrial pick and place operations. By 2020, the
number of industrial robots in operation reached around twelve million, while
the number of domestic robots reached thirty-one million.' These industrial ro-
bots are masterpieces of engineering capable of doing so much more than people
can, yet these robots remain isolated from people on factory floors because they
are large, heavy, and dangerous to be around. By comparison, organisms in nature
are soft, safe, compliant, and much more dexterous and intelligent. Soft-bodied
systems like the octopus can move with agility. The octopus can bend and twist
continuously and compliantly to execute many other tasks that require dexteri-
ty and strength, such as opening the lid of a jar. Elephants can move their trunks
delicately to pick up potato chips, bananas, and peanuts, and they can whip those
same trunks with force enough to fight oft a challenger. If robots could behave as
flexibly, people and robots could work together safely side by side. But what would
it take to develop robots with these abilities ?

While the past sixty years have established the field of industrial robots and em-
powered hard-bodied robots to execute complex assembly tasks in constrained in-
dustrial settings, the next sixty years will usher in soft robots for human-centric
environments and to help people with physical and cognitive tasks. While the ro-
bots of the past sixty years have mostly been inspired by the human form, shaped
as industrial arms, humanoids, and boxes on wheels, the next phase for robots will
include soft machines with shapes inspired by the animal kingdom and its diversi-
ty of forms, as well as by our own built environments. The new robot bodies will be
built out of a variety of available materials: silicone, wood, paper, fabric, even food.
These machines of our future have a broader range of customized applications.

Today’s industrial manipulators enable rapid and precise assembly, but these
robots are confined to operate independently from humans (often in cages) to en-
sure the safety of the humans around them. The lack of compliance in conven-
tional actuation mechanisms is part of this problem. In contrast, nature is not ful-
ly rigid; it uses elasticity and compliance to adapt. Inspired by nature, soft robots
have bodies made out of intrinsically soft and/or extensible materials (such as sil-
icone rubbers or fabrics) and are safe for interaction with humans and animals.
They have a continuously deformable structure with muscle-like actuation that
emulates biological systems and provides them with a relatively large number of
degrees of freedom as compared with their hard-bodied counterparts. Soft ro-
bots have capabilities beyond what is possible with today’s rigid-bodied robots.
For example, soft-bodied robots can move in more natural ways that include com-
plexbending and twisting curvatures that are not restricted to the traditional rigid
body kinematics of existing robotic manipulators. Their bodies can deform con-
tinuously, providing theoretically infinite degrees of freedom and allowing them
to adapt their shape to their environments (such as by conforming to natural ter-
rain or forming enveloping power grasps). However, soft robots have also been
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shown to be capable of rapid agile maneuvers and can change their stiffness to
achieve a task- or environment-specific impedance.

hat is soft, really? Softness refers to how stretchy and compliant the

body of the robot is. Soft materials and electromechanical compo-

nents are the key enablers for creating soft robot bodies. Young’s
modulus, which computes the ratio of stress to strain of a material when force
is applied, is a useful measure of the rigidity of materials used in the fabrication
of robotic systems. Materials traditionally used in robotics (like metals and hard
plastics) have Young’s moduli on the order of 10 to 10" pascals (a unit of pres-
sure), whereas natural organisms are often composed of materials (like skin and
muscle tissue) with moduli on the order of 104 to 109 pascals, orders of magnitude
lower than their engineered counterparts. We define soft robots as systems capa-
ble of autonomous behavior that are primarily composed of materials with mod-
uli in the range of soft biological materials.

Current research on device-level and algorithmic aspects of soft robots has re-
sulted in a range of novel soft devices. But how do we get to the point where soft
robots deliver on their full potential ? The capabilities of robots are defined by the
tight coupling between their physical bodies and the computation that makes up
their brains. For example, a robot fish must have both a body capable of swimming
and algorithms to control its movement in water. Today’s soft-bodied robots can
do basiclocomotion and grasping. When augmented with appropriate sensors and
computation, they can recognize objects in restricted situations, map new environ-
ments, perform pick and place operations, and even act as a coordinated team.

Figure 1 shows SoFi, the soft robotic fish.* SoFi is an autonomous soft robot
developed for close observations and interactions with marine life. SoFi enables
people to observe and monitor marine life from a distance, without interference.
The robot swims continuously at various depths in a biomimetic way by cyclic
undulation of its posterior soft body. The fish controls the undulating motion of
its tail using a hydraulically actuated soft actuator with two internal cavities sep-
arated by an inextensible constraint. The fish tail has two chambers with ribbed
structure for pressurization, and the inextensible constraint is in the middle. Ma-
neuvering is accomplished by moving water from one chamber to the other using
a pump. When the pump moves water equally between the left and right cham-
bers of the tail, the tail moves back and forth evenly, and the fish exhibits forward
swimming. It is possible to make right-hand turns by pumping more water in the
right chamber than the left and doing the reverse for left-hand turns. The swim-
ming depth is controlled by two dive planes that represent the robot’s fins. SoFi
has onboard capabilities for autonomous operation in ocean environments, in-
cluding the ability to move along 3D trajectories by adjusting its dive planes or
by controlling its buoyancy. Onboard sensors perceive the surrounding environ-
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Figure1
SoFi, the Soft Robotic Fish for Underwater Observatories

SoFi, the soft robotic fish swimming in a coral reef. Source : Photo by Joseph DelPreto. See
Robert K. Katzschmann, Joseph DelPreto, Robert MacCurdy, et al., “Exploration of Underwater
Life with an Acoustically Controlled Soft Robotic Fish,” Science Robotics 3 (16) (2018).

ment, and a mission control system enables a human diver to issue remote com-
mands. SoFi achieves autonomy at a wide range of depths through 1) a powerful
hydraulic soft actuator; 2) a control mechanism that allows the robot to adjust its
buoyancy according to depth, thus enabling long-term autonomous operation; 3)
onboard sensors to observe and record the environment; 4) extended ocean ex-
periments; and 5) a mission control system that a human diver can use to pro-
vide navigation commands to the robot from a distance using acoustic signals.
SoFi has the autonomy and onboard capabilities of a mobile underwater obser-
vatory, our own version of Jules Verne’s marine observatory in Twenty Thousand
Leagues Under the Sea. Marine biologists have long experienced the challenges of
documenting ocean life, with many species of fish proving quite sensitive to the
underwater movements of rovers and humans. While multiple types of robotic
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instruments exist, the soft robots move by undulation and can more naturally in-
tegrate in the undersea ecosystems. Soft-bodied robots can move in more natural
and quieter ways.

he body of a soft robot like SoFi may consist of multiple materials with

different stiffness properties. A soft robot encases in a soft body all the

subsystems of a conventional robot: an actuation system, a perception
system, driving electronics, and a computation system, with corresponding pow-
er sources. Technological advances in soft materials and subsystems compatible
with the soft body enable the autonomous function of the soft robot.

At the core of any robot is actuation. One of the primary focus areas to date for
softrobots hasbeen the exploration of new concepts for compliant yet effective ac-
tuators. Researchers have made progress on several classes of soft actuators, most
prominently with fluidic or various electrically activated tendon actuators. Flu-
idic elastomer actuators (FEAs) are highly extensible and adaptable, low-power
soft actuators. FEAs were used to actuate SoFi’s tail. Figure 2 shows the actuation
principle. A silicone chamber has an inextensible constraint. When it is pressur-
ized - for example, with air or liquid - the skin expands and forms a curvature. By
controlling this curvature, we can control the movement of the robot.

The soft actuator in Figure 2 can move along one axis and is thus called a one-
degree-of-freedom actuator. Such an actuator can be composed in series and in
parallel to create any desired compliant robotic morphology: a robotic elephant
trunk, a robotic multifinger hand, a robotic worm, a robotic flower, a robotic
chair, even a robotic lamp.

However, while achieving compliance, this FEA actuator structure has not
achieved muscle-like or motor-like performance in terms of force, displacement,
energy density, bandwidth, power density, and efficiency. In order to create muscle-
like actuation, we can leverage the idea of combining soft bodies with compliant
origami structures to act as “flexible bones” within the soft tissue. The idea of flu-
idic origami-inspired artificial muscles (FOAM) provides fluidic artificial muscles
with unprecedented performance-to-costratio.3 The FOAM artificial muscle system
consists of three components: a compressible solid skeletal structure (an origami
structure), a flexible fluid-tight skin, and a fluid medium. When a pressure differ-
ence is applied between the outside and the inner portion, a tension is developed in
the skin that causes contraction that is mediated by the folded skeleton structure.
In a FOAM system, the skin is sealed as a bag covering the internal components.
The fluid medium fills the internal space between the skeleton and the skin. In the
initial equilibrium state, the pressures of the internal fluid and the external fluid
are equal. However, as the volume of the internal fluid changes, a new equilibrium
is achieved. A pressure difference between the internal and external fluids induces
tension in the flexible skin. This tension will act on the skeleton, driving a trans-
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Figure 2
Soft Fluidic Actuation

Cross-sectional view

Side view

Silicane Elastomer
Cavity

Inextensible constraint A m

Source: Robert Katzschmann, “Building and Controlling Fluidically Actuated Soft Robots:
From Open Loop to Model-based Control” (Ph.D. diss., MIT, 2013).

formation that is regulated by its internal skeletal geometry. These artificial mus-
cles can be programmed to produce not only a single contraction, but also com-
plex multiaxial actuation and even controllable motion with multiple degrees of
freedom. Moreover, a variety of materials and fabrication processes can be used to
build the artificial muscles with other functions beyond basic actuation. Experi-
ments reveal that these muscles can contract over 9o percent of theirinitial lengths,
generate stresses of approximately 600 kilopascals, and produce peak power densi-
ties over 2 kilowatts per kilogram : all equal to, or in excess of, natural muscle. For
example, a 3 gram FOAM actuator that includes a zig-zag pattern for its bone struc-
ture can lift up to 3 kilograms! This architecture for artificial muscles opens the
door to rapid design and low-cost fabrication of actuation systems for numerous
applications at multiple scales, ranging from miniature medical devices to wear-
able robotic exoskeletons to large deployable structures for space exploration.
The soft FOAM grippers shown in Figure 3 are made from a soft origami struc-
ture, encased by a soft balloon.# When a vacuum is applied to the balloon, the ori-
gami structure —a design based on a folding pattern — closes around the object,
and the gripper deforms to the geometric structure of the object. While this mo-
tion lets the gripper grasp a much wider range of objects than ever before, such as
soup cans, hammers, wine glasses, drones, even a single broccoli floret or grape,
the greater intricacies of delicacy — in other words, how hard to squeeze — require
adding sensors to the gripper. Tactile sensors can be made from latex “bladders”
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Figure 3
FOAM Grippers (top) and Objects that can be Handled with the Magic Ori-
gami Ball (Tulip) Gripper (bottom)

Source : Photos by Shuguang Li.

(balloons) connected to pressure transducers. The new sensors let the gripper not
only pick up objects as delicate as potato chips, but it also classifies them, provid-
ing the robot with a better understanding of what it is picking up, while also exhib-
iting that light touch. When the embedded sensors experience force or strain, the
internal pressure changes, and this feedback can be used to achieve a stable grasp.

In addition to such discrete bladder sensors, we can also give the soft robot
bodies sensorized “skin” to enable them to see the world by feeling the world. The
sensorized skin provides feedback along the entire contact surface, which is valu-
able for learning the type of object it is grasping and exploring the space of the ro-
bot through touch. Somatosensitive sensors can be embedded in the silicone body
of the robot using 3D printing with fugitive and embedded ink. Alternatively, elec-
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trically conductive silicone can be cut using a variety of stretchable kirigami pat-
terns and used for the sensor skin of the robot. Machine learning can then be used
to associate skin sensor values with robotic deformations, leading to propriocep-
tive soft robots that can “see” the world through touch.

he robot body needs a robot brain to command and coordinate its actions.

The robot brain consists of the set of algorithms that can get the robot to

deliver on its capabilities. These algorithms typically map onto computa-
tion for physically moving the components of the robot (also called low-level con-
trol) and computation for getting the robot to perform its assignment (also called
high-level or task-level control).

While we have a surge in developing soft bodies for robots, the computation-
al intelligence and control of these robots is more challenging. Results from rigid
robots do not immediately translate to soft robots because of their inherent high
dimensionality. The state of a rigid robot can be described compactly with a fi-
nite set of degrees of freedom: namely, the displacement of each of its joints as
described in their local coordinate frames. Their bodies are constrained by the in-
flexible nature of their rigid links. Fully soft robots, by contrast, may not have a
traditional joint structure, relying on their flexible body to solve tasks. Soft robots
have a dramatically different interaction with the environment through rich com-
pliant contact. There is currently a divide in the approach to control: rigid robots
control contact forces/contact geometry while soft robots rely almost entirely on
open-loop interactions, mediated by material properties, to govern the resulting
forces/geometry. One strategy for bridging this gap lies in optimization-based
control via approximate dynamic models of the soft interface: models with a fi-
delity that is customized to the task. The governing equations of the soft robots
are complex continuum mechanics formulations that are typically approximated
using high-dimensional finite-element methods. The dynamics are highly nonlin-
ear, and contacts with the environment make them nonsmooth. These models are
too complex for state-of-the-art feedback design approaches, which either make
linearity assumptions or scale badly with the size of the state space. The challenge
is to find models simple enough to be used for control, but complex enough to
capture the behavior of the system.

For low-level control of soft robots, we can often identify a sequence of actuat-
ed segments, in which torques are dominant, so it is possible to assume the curva-
ture to be constant within each segment, leading to a finite-dimensional Piecewise
Constant Curvature (PCC) kinematic description. We can then describe the PCC
of the soft robot through an equivalent rigid robot with an augmented state space.

Task-level control of soft robots is often achieved in a data-driven way using
machine learning. Some of today’s greatest successes of machine learning are due
to a technique called deep learning. Deep learning uses data —usually millions of
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hand-labeled examples - to determine the weights that correspond to each node
in a convolutional neural network (CNN), a class of artificial neural networks, so
that when the network is used with new input, it will classify that input correctly.
Deep learning has been successfully applied to soft robots to provide them with
capabilities for proprioception (sensitivity to self-movement, position, and ac-
tion), exteroception (sensitivity to outside stimuli), and grasping.

But deep learning faces a number of challenges. First among them is the data.
These techniques require data availability, meaning massive data sets that have
to be manually labeled and are not easily obtained for every task. The quality of
that data needs to be very high, and it needs to include critical corner cases — that
is, cases outside the training distribution or outside usual operations — for the ap-
plication at hand. If the data are biased, the performance of the algorithm will be
equally bad. Furthermore, these systems are black boxes: there is no way for users
of the systems to truly “learn” anything based on the system’s workings. It is dif-
ficult to detect behavior that is abnormal from a safety point of view. As a result,
it is hard to anticipate failure modes tied to rare inputs that could lead to poten-
tially catastrophic consequences. We also have robustness challenges and need to
understand that the majority of today’s deep-learning systems perform pattern
matching rather than deep reasoning. Additionally, there are sustainability issues
related to data-driven methods. Training and using models consume enormous
amounts of energy. Researchers at the University of Massachusetts Amherst esti-
mated that training a large deep-learning model produces 626,000 pounds of car-
bon dioxide, equal to the lifetime emissions of five cars. The more pervasive ma-
chine learning becomes, the more of these models will be needed, which in turn
has a significant environmental impact.

Today’s machine learning systems are so costly because each one contains
hundreds of thousands of neurons and billions of interconnections. We need new
ideas to develop simpler models, which could drastically reduce the carbon foot-
print of Al while gaining new insights into intelligence. The size of a deep neural
network constrains its capabilities and, as a result, these networks tend to be huge
and there is an enormous cost to running them. They are also not interpretable.
In deep neural networks, the architecture is standardized, with identical neurons
that each compute a simple thresholding function. A deep neural network that
learns end-to-end from human data how to control a robot to steer requires more
than one hundred thousand nodes and half a million parameters.

Using inspiration from neuroscience, my colleagues and I have developed neu-
ral circuit policies,> or NCPs, a new approach to machine learning. With NCPs, the
end-to-end steering task requiring more than one hundred thousand simple neu-
rons can be learned with nineteen NCP neurons in the deep neural network model,
resultingin a more efficient and interpretable system. The neuroscience inspiration
from the natural world is threefold. First, NCP neurons can compute more than a
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step function ; each NCP neuron is a liquid time differential equation. Second, NCP
neurons can be specialized, such as input, command, and motor neurons. Third,
the wiring architecture has organism-specific structure. Many other tasks related
to spatial navigation and beyond can be realized with neuroscience-inspired, com-
pact, and interpretable neural circuit policies. Exploring robot intelligence using
inspiration from the natural world will yield new insights into life and provide new
computational models for intelligence that are especially useful for soft robots.

ovel soft design, fabrication, and computation technologies are usher-

ing in a new era of robots that come in a variety of forms and materials

and are designed to help people with physical tasks in human-centric en-
vironments. These robots are smaller, safer, easier to fabricate, less expensive to
produce, and more intuitive to control.

Robots are complex systems that tightly couple the physical mechanisms (the
body) with the software aspects (the brain). Recent advances in disk storage, the
scale and performance of the Internet, wireless communication, tools supporting
design and manufacturing, and the power and efficiency of electronics, coupled
with the worldwide growth of data storage, have helped shape the development
of robots. Hardware costs are going down, the electromechanical components are
more reliable, the tools for making robots are richer, the programming environ-
ments are more readily available, and the robots have access to the world’s knowl-
edge through the cloud. Sensors like the LiDAR (light detection and ranging) sys-
tems are empowering robots to measure distances very precisely. Tiny cameras
are providing a rich information stream. Advances in the development of algo-
rithms for mapping, localization, object recognition, planning, and learning are
enabling new robotic capabilities. We can begin to imagine the leap from the per-
sonal computer to the personal robot, leading to many applications in which ro-
bots exist pervasively and work side by side with humans.

How might these advances in robotics shape our future? Today, if you can
think it, you can write it on paper. Imagine a word where if you can think it, you
can make it. In this way, the scientific advancement of soft robotics could give ev-
ery one of us superpowers. Each of us could use our talents, our creativity, and our
problem-solving skills to dream up robots that save lives, improve lives, carry out
difficult tasks, take us places we cannot physically go, entertain us, communicate,
and much more. In a future of democratized access to robots, the possibilities for
building a better world are limitless. Broad adoption of robots will require a nat-
ural integration of robots in the human world, rather than an integration of hu-
mans into the machines’ world.

These machines from our future will help us transform into a safer society liv-
ing on a healthier planet, but we have significant technological and societal chal-
lenges to get to that point.
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On the technical side, it is important to know that most of today’s great-
est advances in machine learning are due to decades-old ideas enhanced by vast
amounts of data and computation. Without new technical ideas and funding to
back them, more and more people will be ploughing the same field, and the results
will only be incremental. We need major breakthroughs if we are going to manage
the major technical challenges facing the field. We also need the computational
infrastructure to enable the progress, an infrastructure that will deliver to us data
and computation like we get water and energy today: anywhere, anytime, with a
simple turn of a knob. And we need the funding to do this.

On the societal side, the spread of AI and robots will make our lives easier, but
many of the roles that they can play will displace work done by humans today.
We need to anticipate and respond to the forms of economic inequality this could
create. In addition, the lack of interpretability and dependence could lead to sig-
nificant issues around trust and privacy. We need to address these issues, and we
need to develop an ethics and legal framework for how to use Al and robots for the
greater good. As we gather more data to feed into these Al systems, the risks to pri-
vacy will grow, as will the opportunities for authoritarian governments to leverage
these tools to curtail freedom and democracy in countries around the world.

These problems are not like the COVID-19 pandemic: we know they are com-
ing, and we can set out to find solutions at the intersection of policy, technology,
and business, in advance, now. But where do we begin ?

In its report on Al ethics, the Defense Innovation Board describes five Al prin-
ciples. First is responsibility, meaning that humans should exercise appropriate
levels of judgment and remain responsible for the development, deployment,
use, and outcomes of these systems. Second, equitability, meaning that we need
to take deliberate steps to anticipate and avoid unintended bias and unintended
consequences. Third is traceability, meaning that the AI engineering discipline
should be sufficiently advanced such that technical experts possess an appropriate
understanding of the technology, development processes, and operational meth-
ods of its Al systems. Fourth is reliability, meaning that AI systems should have an
explicit, well-defined domain of use, and the safety, security, and robustness of
such systems should be tested and assured. And finally, governance, meaning that
Al systems should be designed and engineered to fulfill their intended function,
while possessing the ability to detect and avoid unintended harm or disruption.5
Beyond these general principles, we also need to consider the environmental im-
pacts of new technologies, as well as what policy actions are needed to stem possi-
ble dangers associated with technological advances.

Neural circuit policies may sound like phrases you would only ever hear walk-
ing the hallways of places like CSAIL, the Computer Science and Artificial Intelli-
gence Laboratory at MIT, where I work. We do not need everybody to understand
in great detail how this technology works. But we do need our policy-makers and
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citizens to know about the effects of new technologies so we can make informed
decisions about their adoption. Together, we can build a common understanding
around five vital questions: First, what can we do, or more specifically, what is re-
ally possible with technology? Second, what can’t we do, or what is not yet pos-
sible ? Third, what should we do? Fourth, what shouldn’t we do? There are tech-
nologies and applications that we should rule out. And finally, what must we do. I
believe we have an obligation to consider how AI technology can help. Whether
you are a technologist, a scientist, a national security leader, a business leader, a
policy-maker, or simply a human being, we all have a moral obligation to use AI
technology to make our world, and the lives of its residents, safer and better, in a
just, equitable way.
The optimist in me believes that can and will happen.
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Multi-Agent Systems:
Technical & Ethical Challenges of
Functioning in a Mixed Group

Kobi Gal & Barbara ]. Grosz

Intoday’s highly interconnected, open-networked computing world, artificial intel-
ligence computer agents increasingly interact in groups with each other and with
people both virtually and in the physical world. AI's current core challenges concern
determining ways to build Al systems that function effectively and safely for people
and the societies in which they live. To incorporate reasoning about people, research
in multi-agent systems has engendered paradigmatic shifts in computer-agent de-
sign, models, and methods, as well as the development of new representations of
information about agents and their environments. These changes have raised tech-
nical as well as ethical and societal challenges. This essay describes technical ad-
vances in computer-agent representations, decision-making, reasoning, and learn-
ing methods and highlights some paramount ethical challenges.

challenge, was to determine whether it was possible to build computer sys-

tems able to perform intelligent behaviors like engaging in a conversation,
playing chess, or fixing a complex piece of machinery. By the twenty-first centu-
ry, the use of computer systems had evolved from a single person with comput-
ing expertise interacting with a single system to a highly interconnected, open-net-
worked computing world in which people’s online activities connect them instant-
ly with many different systems and people. There are thus ever more situations in
which AT agents interact in groups with each other and with people both virtually
and in the physical world. AI's most pressing questions today — its core challenges —
center on determining ways to build Al systems that function effectively and safe-
ly for people and the societies in which they live. Concomitantly, research in the
multi-agent systems area of Al increasingly addresses challenges of building capa-
bilities for AI agents to act effectively in groups that include people: for instance,
investigating robot-human collaborations in industrial settings, coordinating
health care for patients seeing multiple providers, and adapting educational con-
tent to individual students’ needs. We refer to these as mixed-agent groups.

l '1 or many decades after its inception, AI's most pressing question, its core
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Alresearch traditionally modeled the behavior of an individual computer agent,
whether embodied in a physical system (such as robots) or embedded in a software
system (such as recommendation systems or customer service chatbots), as an
act-observe-update-decide cycle: the agent does something in its world, observes
the ways that world changes, revises its beliefs about the world based on those ob-
servations, and determines what action, if any, to take next. Some Al agent models
determine next actions based on maximizing a utility function, while others rea-
son logically. These individual-agent models have regarded other agents, whether
computer agents or people, as part of the agent’s environment. To enable agents
to participate effectively in mixed-agent groups required two significant modeling
changes: the design of ways to represent the mental state of other agents and the
development of models of human decision-making and communication capaci-
ties that respect the complementarities of human and computer-agent capabilities.
For instance, computer systems have vastly greater ability than humans to access
and summarize large amounts of data, while people’s capabilities for causal and
counterfactual reasoning far outstrip those of Al systems.

Mental state representations enable computer agents to treat other agents
(whether human or computer) as full-fledged actors that have beliefs and abilities
to make decisions, to act on those decisions, and to reason about the beliefs and
actions of other agents in their environment. Computer agents can then recognize
ways that actions of one agent may affect the beliefs and influence subsequent ac-
tions of other agents. Research on standard multi-agent models, including both
logic-based belief-desire-intention models and probabilistic Markov decision
process models, has generated a variety of techniques for multi-computer agent
groups, for both competitive and cooperative settings, yielding a diverse range of
successfully deployed systems.*

To develop realistic models of human decision-making has required chang-
es to every component of the traditional act-observe-update-decide cycle. Al re-
searchers have developed new models, methods, and agent designs that incorpo-
rate reasoning about people for both machine-learning—based systems and logic-
based systems. While agents in mixed-agent groups, like those in multi-agent
systems generally, might compete, the focus of research has been on settings in
which computer agents cooperate or fully collaborate with people in their mixed-
agent group. These changes have raised not just new technical challenges, but also
paramount ethical and societal-impact challenges.

esearch on AI models of collaboration laid the foundations for reasoning
about people as participants in mixed-agent groups.* These models stipu-
late as a defining characteristic of collaboration that all team participants
share an overarching goal. The models provide theoretical frameworks for repre-
senting and reasoning about the mental state and communication requirements
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for successful teamwork activities. Related work in Al and cognitive science spec-
ifies the obligations collective intentionality entails.3

Significant recent research focuses on settings in which computer agents need
to coordinate with people, but absent an overall teamwork goal. For instance, an
autonomous vehicle does not share an overarching destination goal with other
drivers or pedestrians it encounters; the autonomous vehicle and others on the
road do not make a team. Aspects of the early frameworks are also relevant to such
settings, as is early work specifying the roles of social norms in coordinating be-
havior of multiple agents without a shared goal who nonetheless need to avoid
conflict.4 Key insights of this early work include establishing the need to explicitly
design agents for collaboration, showing that the requisite capabilities could not
be patched on, and the need for revisions of plan representations and decision-
making algorithms for them.?

Subsequent work in both logical and machine learning paradigms has demon-
strated the benefits of developing algorithms that consider the combined per-
formances of people and agents rather than focusing on the autonomous perfor-
mance of a computer agent in isolation.® For example, methods that optimize for
agents to complement human capabilities or to balance human and computer
agent preferences outperformed individual human and computer performances.”
Other work deploys cross-training to improve human-robot team performance.®
A consensus is emerging from this research of the importance of bringing insights
from the social sciences to bear in designing agents for working with people.?

The advent of large-scale Internet activities — from citizen science to online
learning and question-and-answer sites —has provided researchers with signifi-
cantly more data than ever before about people’s behaviors and preferences, cre-
ating new technical opportunities and raising new AI research questions. Not
only do people’s decision-making processes often not adhere to standard assump-
tions about optimizing for utility, but these larger-scale settings require computer
agents to operate in the “open world,” rather than in well-defined, constrained,
and therefore more easily specifiable environments (“closed worlds™).'° As a re-
sult, agent designs need to accommodate both scale - a significant increase in the
number of people an agent may work with — and operating “in the wild”: that is,
in open worlds in which computer agents have only partial information about
other agents and much less control. Further challenges arise from the need for
computer-agent behaviors and explanations to mesh with people’s expectations.™

We briefly describe AI researchers’ advances on three core computer-agent
capabilities that are enabling agents to participate more effectively in mixed-agent
groups: 1) decision-making about what to do next, considering the potential effects
of an agent’s actions on other agents’ beliefs and decision-making, as well as on the
environment; 2) reasoning to draw conclusions about the effects of an agent’s ac-
tions on that environment, including any causal connections; and 3) learning from
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the effects it observes in the environment and on others’ actions. This research has
led to paradigmatic shifts in a variety of AI methods and algorithms, as well as to
the development of new representations of information about agents and the envi-
ronments in which they act.

ew representations of actions, plans, and agent interactions enable

agents to reason about their human partners despite having limited in-

formation about their beliefs and capabilities. For instance, a digital per-
sonal assistant may not know which route a person is taking to get home, and a
health care coordination system may need to learn interaction patterns among
medical providers as they evolve.

Novel ways of representing task and plan knowledge - for instance, with Ece
Kamar, we expanded the SharedPlans specification of teamwork — enable collabo-
ration when an agent does not know which of several plans a person is following.'>
To enable computer agents to reason effectively about information sharing when
they lack a priori knowledge of other agents’ plans (as required by standard infor-
mation-sharing algorithms), Ofra Amir and colleagues developed a representa-
tion of “mutual influence potential” networks for teams that operate over long
periods of time (such as project management and health care teams)."3 To address
the need for computer-agent collaborators to adapt to their human partners’ ac-
tions, Stefanos Nikolaidis and colleagues developed a representation for Markov
decision processes that evolves through cross-training, and they demonstrated
that cross-training outperforms other training regimes.

ew methods of decision-making have been designed by AI researchers

to reason about social influences on people’s behavior in negotiation; to

determine when to share information with partners in a group activity;
and, for large-scale groups, to identify the best people for certain tasks and to pro-
vide incentives for them to contribute to group activities.

For computer agents to negotiate effectively with people, they need to take
into account findings in the social sciences that have revealed social influences on
people’s negotiation strategies. Research incorporating such findings into agent
negotiation strategies — by representing social attributes in the decision-making
model - has demonstrated the ability of such socially aware agents to reach agree-
ments that benefit all participants. For instance, through empirical investigations,
we showed that people’s willingness to accept offers is affected by such traits as
altruism and selfishness, and that agents incorporating these traits into their ne-
gotiation strategies outperform traditional game-theoretic equilibria strategies.'>
Amos Azaria and colleagues improved agent success in advising a person on the
best route to a destination by incorporating a model of people’s behavior in re-
peated negotiations.'® And Arlette van Wissen and colleagues found that although

151 (2) Spring 2022 117



Multi-Agent Systems : Technical & Ethical Challenges of Functioning in a Mixed Group

people trust computer agents as much as other people in negotiations, they treat
them less fairly."” Agents negotiating for people also need to model their prefer-
ences. For example, an agent might assist a consumer in negotiating the best deal
for an item available from multiple online sellers who offer similar products at
varying prices and characteristics — used or new, full or delayed payment — saving
the consumer time and money. If the consumer is price sensitive, the agent could
negotiate a lower price while agreeing to make the payment in advance.

To coordinate their activities, participants in mixed-agent groups typically
must share information with each other about their activities, environments, and
tasks. Decisions about what information to share, and when, are more compli-
cated when computer agents are not privy to important task-related information
that people hold. For example, a driver-assist system considering whether to alert
the driver to unexpected traffic ahead on a possible route that allowed for a side-
trip to a pharmacy may not be certain about the driver’s current preferences with
respect to making that stop. As a result, it may not know if this traffic situation is
on the route the driver is taking and thus whether notifying the driver would be
useful or an unnecessary interruption. Information exchanges — whether an un-
needed alert or a request for irrelevant information — generate cognitive and com-
munication costs. Research on managing information exchange to avoid overbur-
dening people includes theoretical model development and empirical studies.

With Ece Kamar, we identified the class of “nearly decomposable” settings, in
which computer agents need to reason about only that subset of their human part-
ners’ actions that interact with the agent’s actions.'® We developed a multi-agent
Markov decision process for such settings that enables more efficient inference
for interruption management. An empirical study using this method identified
factors influencing people’s acceptance of an agent’s interruptions.

In work on information sharing for team settings in which agents have very
limited information about their human partners, Ofra Amir and colleagues de-
veloped an algorithm that identifies the information that is most relevant to each
team member using the influence potential networks described earlier.’® The re-
sults of a laboratory study using this algorithm demonstrated that information-
sharing decisions based on the influence-potential representation yielded high-
er productivity and lower perceived workload compared with standard human-
computer interaction approaches.

In such large-scale settings as disaster response and online forums, the stan-
dard multi-agent systems’ role assignment problem — the problem of identifying
the best agent for a particular task - is more difficult because less information is
directly available about (human) participants’ capabilities. These settings also in-
troduce a new role-assignment challenge : namely, keeping people engaged.

Methods that integrate behavior prediction into decision-making processes
enable inferring people’s capabilities from their prior interactions and thus pre-
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dicting the best person to assign a task to. Research on engagement includes the
use of reinforcement learning to generate motivational messages.>® The benefits
of these approaches have been demonstrated in citizen science applications such
as classifying celestial bodies and identifying EEG patterns.*!

easoning and learning are tightly coupled. We discuss them together be-
cause new methods developed to jointly learn and use models of people’s
behavior have been consequential for mixed-agent group settings. Im-
portant new reasoning capabilities include 1) methods for predicting people’s be-
havior from data about the actions they have taken in the past, their causal effects,
and the outcomes that result; 2) techniques for agents to use advice and feedback
from people to learn more effectively; and 3) methods for agents to explain their
choices and recommendations well enough that people understand them. For ex-
ample, to find the sequence of math problems that maximizes students’ learning
gains, an Al tutor needs to predict their responses to math problems. It also needs
to be able to explain its problem choices to students, and possibly their teachers.**
Computer agents in mixed-agent groups need to model people’s past actions
and to predict their likely future actions. Machine learning algorithms face a com-
patibility-performance trade-off: updating machine learning systems with new
data may improve their overall performance, but the updated predictions may de-
crease trust in the system by individuals for whom the predictions no longer work.
To address this problem, Jonathan Martinez and colleagues defined machine
learning algorithms that personalize their updates to individual users, which not
onlyyields higher accuracy but also makes models more compatible with people’s
expectations.? They established the efficacy of this approach empirically by com-
paring it with a baseline method that did not personalize the model’s updates.
People “in the wild” also make computer agents’ plan recognition — the ability
to determine what others are doing and why — more difficult, since they often ex-
hibit complex planning behaviors: they may follow multiple plans, interleave ac-
tions from different plans, or perform actions that are redundant, wrong, or arbi-
trary. Novel plan and goal recognition algorithms have been developed to enable
agents to adapt to people’s exploratory and error-prone behavior. They use various
techniques, including heuristics and approaches that replace predefined libraries
of possible plans with generating plans on the fly.>4 To enable agents to support
people’s understanding of plans of other agents (human and computer) in their
groups, researchers have designed new types of visualizations for presenting in-
ferred plans to people in ways that facilitate their understanding of others’ plans.>
Reinforcement learning algorithms enable agents to learn about their envi-
ronment and about other agents through exploration and trial and error. Mixed-
agent groups introduce a new possibility: algorithms can incorporate guidance
and feedback from people who have relevant task expertise or knowledge of the
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agent’s environment and thus significantly facilitate agent learning. W. Bradley
Knox and Peter Stone combined feedback from human teachers, who give posi-
tive or negative signals to the agent trainee, with autonomous learning about the
environment.?® Travis Mandel and colleagues augmented a reinforcement algo-
rithm with a method for querying people about the best action to perform.?” Their
empirical studies demonstrated significant improvements to algorithm perfor-
mance for domains with large numbers of actions. Matthew E. Taylor and col-
leagues showed that agents could adapt a policy to a new domain more effectively
if a person first demonstrates how to act in that domain.?® In this work, short ep-
isodes of human demonstrations led to rapid savings in learning time and policy
performance for agents in different robot soccer simulation tasks.

For people to trust agents, the models they use to predict people’s behavior
not only need to perform well according to machine learning systems’ metrics,
but also to produce interpretable predictions — their action choices need to make
sense to the people with whom they interact.>® As all applications of AI machine
learning methods have this need for “interpretability,” a variety of research stud-
ies have investigated the design of “interpretable models” as well as ways to mea-
sure the interpretability of machine learning models in practice.3°

The evaluation of multi-agent systems becomes significantly more complicat-
ed when an agent group includes people. Testing in the wild - that is, in the actu-
al intended situations of use — may be costly both practically and ethically. In re-
sponse to this challenge, researchers have developed various testbed systems that
enable initial evaluation of effectiveness of computer-agent decision-making al-
gorithms in lab (or lab-like) settings. They enable testing of new methods on in-
tended user populations without such costs, allowing agent designers to better de-
termine responses to agents’ decisions as well as to compare the performance of
different computational decision-making strategies. Some testbed systems have
also been used to gather information about people’s decision-making strategies
to help improve the performance of learning algorithms.

Colored Trails, one of the first such testbeds, enabled the development of a
family of games that facilitated the analysis of decision-making strategies, includ-
ing negotiation strategies and coalition formation in widely varying settings.3!
The Genius testbed (General Environment for Negotiation with Intelligent multi-
purpose Usage Simulation) advances research on bilateral multi-issue negotiation
by providing tools for specific negotiation scenarios and negotiator preference
profiles and for computing and visualizing optimal solutions.3> The IAGO testbed
(Interactive Arbitration Guide Online) provides a web-based interaction system
for two-agent bargaining tasks. It has been used to study the role of affect and de-
ception on negotiation strategies in mixed-agent groups.33 Both Genius and IAGO
testbeds have been used in competitions that compare computational strategies
for negotiating with people.34
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esearch and development of computer agents capable of participating ef-

fectively in mixed-agent groups raise various ethical issues. Some are in-

herited from AI generally: for instance, avoiding bias, ensuring privacy,
and treating people’s data ethically. Others result from the mixed-agent group set-
ting entailing that people and computer agents work together and, in some cases,
share decision-making. Further, computer agents may be designed to influence
people’s behavior, make decisions related to people’s futures, and negotiate suc-
cessfully with people. While the roles computer agents and people assume vary
within and across application domains, that people are inherent to the definition
of “mixed-agent group” makes addressing particular ethical challenges of the ut-
most importance. We briefly discuss three challenges mixed-agent group research
raises, all of which will require research done in concert with social and behav-
ioral scientists and ethicists. We note that choices among ethical values and set-
ting of norms are responsibilities of the societies in which these agent systems are
used. Our discussion of ethical challenges thus presumes norms are established
by communities of use, policy-making organizations, governmental bodies, or
similar entities external to the research effort.

Challenge 1: Inclusive design and testing. The testing of new mixed-agent group al-
gorithms and systems must involve the full range of people expected to partici-
pate in group undertakings with such agents. Further, whether for research or for
system development, in designing mixed-agent group agents to align with societal
values, designers must consider and engage at all stages of the work with the full
spectrum of people with whom these agents are intended to interact. For instance,
in the initial design stage, researchers should conduct informative interviews or
observations to determine system goals and characteristics appropriate for the in-
tended user population.3s

Inclusivity generates particular challenges when designing new represen-
tations, whether models are explicitly designed or derived by machine learning
methods. For instance, when developing new representations of tasks and plans,
designers need to engage not only the kinds of people agents are likely to work
with on a task, but also the kinds of people potentially affected by agent actions
and decisions: for example, in a health care setting, the design of an agent that
will work with physicians, nurses, and patients, as well as hospital administrative
staff, should include physicians, nurses, and patients in the design cycle.

The need for inclusivity at the design stage also arises in areas of learning and
reasoning. For example, when developing models of people’s behavior, it is cru-
cial for agents to handle adequately all types of people whose behavior it may need
to track.

Challenge 2 : Avoiding deception and exploitation. The use of social science factors
in negotiation algorithms or for behavior modification (like nudges) may have
purposes that engender unethical behavior. Mixed-agent group work on negoti-
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ation may raise significant questions if the negotiation algorithm focuses only on
improving the computer agent’s outcome and deploys deception, rather than bal-
ancing good for all parties.3¢ Similarly, role assignment in some ride-sharing ap-
plications has raised significant questions of deception and exploitation.

For agents in mixed-agent groups to be trustworthy, any use of deceptive strat-
egies must be revealed. Researchers developing and deploying negotiation and be-
havior modification strategies must explain the rationale for them and make evi-
dent the ethical challenges they raise for any system that deploys them in applica-
tions and possible mitigations.

Challenge 3: Preventing or mitigating unanticipated uses of models and algorithms.
The development of new representations and algorithms (such as for informa-
tion sharing, role assignment, or behavior modeling) is typically driven by an in-
tended application. The resulting learned representations and models may not be
appropriate for other applications or may have consequences that were not an-
ticipated when design was focused on the initial intended application. For exam-
ple, a ride-sharing company might decide to adopt one of the “motivational” al-
gorithms developed in the context of citizen science to attempt to keep drivers
working when the system predicts they are close to quitting for the day. While
there may be no serious downsides to encouraging someone to continue working
on a science project despite being tired, there can be serious consequences from
drivers working when fatigued. In some cases, the technology may be sufficiently
unreliable or human oversight may be sufficiently inadequate that the unantici-
pated use should not be allowed. Researchers, system designers, and developers
all bear responsibility for preventing the misuse of these technologies.

s mixed-agent groups become the norm in ever more multi-agent do-

mains, advances in multi-agent systems research provide foundations for

developing computer agents able to be effective partners in such settings.
This work has also revealed a variety of new research challenges and raised im-
portant questions of ethical and societal impact.

For these reasons and others, successes in laboratory settings have not yet been
translated into deployed systems on a large scale. The inadequacies of automat-
ed call centers and the difficulties Amazon fulfillment center workers have ex-
perienced working with robots illustrate the problems that arise when comput-
er agents’ activities do not mesh well with their human coworkers’. Perhaps the
greatest challenge of developing computer agents technically and ethically ade-
quate for participation in mixed-agent group undertakings is to fully recognize
the sociotechnical nature of such activities. This recognition should lead not only
to different kinds of algorithms, but also to processes for system development and
deployment that take account of human capabilities, societal factors, and human-
computer interaction design principles.
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These challenges do not belong to research alone. If Al systems are to function
effectively and safely for people and the societies in which they live, they require
attention through the full pipeline from design through development, testing, and
deployment. Addressing these challenges is all the more important given the re-
cent broad range of national-level calls for developing effective methods for hu-
man-centered Al and for human-AI collaborations.
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The last decade has yielded dramatic and quite surprising breakthroughs in natural
language processing through the use of simple artificial neural network computa-
tions, replicated on a very large scale and trained over exceedingly large amounts
of data. The resulting pretrained language models, such as BERT and GPT-3, have
provided a powerful universal language understanding and generation base, which
can easily be adapted to many understanding, writing, and reasoning tasks. These
models show the first inklings of a more general form of artificial intelligence, which
may lead to powerful foundation models in domains of sensory experience beyond
just language.

hen scientists consider artificial intelligence, they mostly think of

s / \ ; modeling or recreating the capabilities of an individual human brain.
But modern human intelligence is much more than the intelligence of

an individual brain. Human language is powerful and has been transformative to
our species because it gives groups of people a way to network human brains to-
gether. An individual human may not be much more intelligent than our close rel-
atives of chimpanzees or bonobos. These apes have been shown to possess many
of the hallmark skills of human intelligence, such as using tools and planning;
moreover, they have better short-term memory than we do.! When humans in-
vented language is still, and perhaps will forever be, quite uncertain, but within
the long evolutionary history of life on Earth, human beings developed language
incredibly recently. The common ancestor of prosimians, monkeys, and apes
dates to perhaps sixty-five million years ago; humans separated from chimps per-
haps six million years ago, while human language is generally assumed to be only
a few hundred thousand years old.> Once humans developed language, the pow-
er of communication quickly led to the ascendancy of Homo sapiens over other
creatures, even though we are not as strong as an elephant nor as fast as a cheetah.
It was much more recently that humans developed writing (only a bit more than
five thousand years ago), allowing knowledge to be communicated across distanc-
es of time and space. In just a few thousand years, this information-sharing mech-
anism took us from the bronze age to the smartphones of today. A high-fidelity
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code allowing both rational discussion among humans and the distribution of in-
formation has allowed the cultural evolution of complex societies and the knowl-
edge underlying modern technologies. The power of language is fundamental to
human societal intelligence, and language will retain an important role in a future
world in which human abilities are augmented by artificial intelligence tools.

For these reasons, the field of natural language processing (NLP) emerged in
tandem with the earliest developments in artificial intelligence. Indeed, initial
work on the NLP problem of machine translation, including the famous George-
town-IBM demonstration in 1954, slightly preceded the coining of the term
“artificial intelligence” in 1956.3 In this essay, I give a brief outline of the history
of natural language processing. I then describe the dramatic recent developments
in NLP coming from the use of large artificial neural network models trained on
very large amounts of data. I trace the dramatic progress that has been made in
building effective NLP systems using these techniques, and conclude with some
thoughts on what these models achieve and where things will head next.

he history of natural language processing until now can be roughly divid-

ed into four eras. The first era runs from 1950 to 1969. NLP research began

as research in machine translation. It was imagined that translation could
quickly build on the great successes of computers in code breaking during World
War II. On both sides of the Cold War, researchers sought to develop systems ca-
pable of translating the scientific output of other nations. Yet, at the beginning
of this era, almost nothing was known about the structure of human language,
artificial intelligence, or machine learning. The amount of computation and data
available was, in retrospect, comically small. Although initial systems were pro-
moted with great fanfare, the systems provided little more than word-level trans-
lation lookups and some simple, not very principled rule-based mechanisms to
deal with the inflectional forms of words (morphology) and word order.

The second era, from 1970 to 1992, saw the development of a whole series of
NLP demonstration systems that showed sophistication and depth in handling
phenomena like syntax and reference in human languages. These systems includ-
ed SHRDLU by Terry Winograd, LUNAR by Bill Woods, Roger Schank’s systems
such as SAM, Gary Hendrix’s LIFER, and GUS by Danny Bobrow.# These were all
hand-built, rule-based systems, but they started to model and use some of the
complexity of human language understanding. Some systems were even deployed
operationally for tasks like database querying.> Linguistics and knowledge-based
artificial intelligence were rapidly developing, and in the second decade of this
era, a new generation of hand-built systems emerged, which had a clear separa-
tion between declarative linguistic knowledge and its procedural processing,
and which benefited from the development of a range of more modern linguistic
theories.
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However, the direction of work changed markedly in the third era, from rough-
ly 1993 to 2012. In this period, digital text became abundantly available, and the
compelling direction was to develop algorithms that could achieve some level of
language understanding over large amounts of natural text and that used the ex-
istence of this text to help provide this ability. This led to a fundamental reorien-
tation of the field around empirical machine learning models of NLP, an orienta-
tion that still dominates the field today. At the beginning of this period, the dom-
inant modus operandi was to get hold of a reasonable quantity of online text —in
those days, text collections were generally in the low tens of millions of words —
and to extract some kind of model out of these data, largely by counting particu-
lar facts. For example, you might learn that the kinds of things people capture are
fairly evenly balanced between locations with people (like a city, town, or fort) and
metaphorical notions (like imagination, attention, or essence). But counts on words
only go so far in providing language understanding devices, and early empirical
attempts to learn language structure from text collections were fairly unsuccess-
ful.b This led most of the field to concentrate on constructing annotated linguistic
resources, such as labeling the sense of words, instances of person or company
names in texts, or the grammatical structure of sentences in treebanks, followed
by the use of supervised machine learning techniques to build models that could
produce similar labels on new pieces of text at runtime.

The period from 2013 to present extended the empirical orientation of the third
era, but the work has been enormously changed by the introduction of deep learn-
ing or artificial neural network methods. In this approach, words and sentences
are represented by a position in a (several hundred- or thousand-dimensional)
real-valued vector space, and similarities of meaning or syntax are represented by
proximity in this space. From 2013 to 2018, deep learning provided a more power-
ful method for building performant models: it was easier to model longer distance
contexts, and models generalized better to words or phrases with similar mean-
ings because they could exploit proximity in a vector space, rather than depending
on the identity of symbols (such as word form or part of speech). Nevertheless,
the approach was unchanged in building supervised machine learning models to
perform particular analysis tasks. Everything changed in 2018, when NLP was the
first major success of very large scale self-supervised neural network learning. In this
approach, systems can learn an enormous amount of knowledge of alanguage and
the world simply from being exposed to an extremely large quantity of text (now
normally in the billions of words). The method of self-supervision by which this
is done is for the system to create from the text its own prediction challenges, such
as successively identifying each next word in the text given the previous words or
filling in a masked word or phrase in a text. By repeating such prediction tasks bil-
lions of times and learning from its mistakes, so the model does better next time
given a similar textual context, general knowledge of a language and the world is
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accumulated, and this knowledge can then be deployed for tasks of interest, such
as question answering or text classification.

In hindsight, the development of large-scale self-supervised learning ap-
proaches may well be viewed as the fundamental change, and the third era might
be extended until 2017. The impact of pretrained self-supervised approaches has
been revolutionary: it is now possible to train models on huge amounts of unla-
beled human language material in such a way as to produce one large pretrained
model that can be very easily adapted, via fine-tuning or prompting, to give strong
results on all sorts of natural language understanding and generation tasks. As a
result, progress and interest in NLP have exploded. There is a sense of optimism
that we are starting to see the emergence of knowledge-imbued systems that have
a degree of general intelligence.

cannot give here a full description of the now-dominant neural network mod-

els of human language, but I can offer an inkling. These models represent ev-

erything via vectors of real numbers and are able to learn good representa-
tions after exposure to many pieces of data by back-propagation of errors (which
comes down to doing differential calculus) from some prediction task back to the
representations of the words in a text. Since 2018, the dominant neural network
model for NLP applications has been the transformer neural network.” With sev-
eral ideas and parts, a transformer is a much more complex model than the simple
neural networks for sequences of words that were explored in earlier decades. The
dominant idea is one of attention, by which a representation at a position is com-
puted as a weighted combination of representations from other positions. A com-
mon self-supervision objective in a transformer model is to mask out occasional
words in a text. The model works out what word used to be there. It does this by
calculating from each word position (including mask positions) vectors that rep-
resent a query, key, and value at that position. The query at a position is compared
with the value at every position to calculate how much attention to pay to each po-
sition; based on this, a weighted average of the values at all positions is calculated.
This operation is repeated many times at each level of the transformer neural net,
and the resulting value is further manipulated through a fully connected neural
net layer and through use of normalization layers and residual connections to pro-
duce a new vector for each word. This whole process is repeated many times, giv-
ing extra layers of depth to the transformer neural net. At the end, the representa-
tion above a mask position should capture the word that was there in the original
text: for instance, committee as illustrated in Figure 1.

Itis not at all obvious what can be achieved or learned by the many simple cal-
culations of a transformer neural net. At first, this may sound like some kind of
complex statistical association learner. However, given a very powerful, flexible,
and high-parameter model like a transformer neural net and an enormous amount
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Figure1
Details of the Attention Calculations in One Part of a
Transformer Neural Net Model

Committee
|
h]Z.Z
12 %
hio hyy hy, hys hys
T
12 x
Q Ko Vo Q Ky Vi Q, Ky Vs Q, Ks Vy Q, Ky Vi
hgo hg ho2 hos hy 4
[CLs] 0 Judiciary 1 [MASK] 2 Annual 3 Report 4

From this calculation, the transformer neural net is able to predict the word committee in the
masked position.

of data to practice predictions on, these models discover and represent much of
the structure of human languages. Indeed, work has shown that these models
learn and represent the syntactic structure of a sentence and will learn to memo-
rize many facts of the world, since each of these things helps the model to predict
masked words successfully.® Moreover, while predicting a masked word initial-
ly seems a rather simple and low-level task — a kind of humorless Mad Libs — and
not something sophisticated, like diagramming a sentence to show its grammati-
cal structure, this task turns out to be very powerful because it is universal: every
form of linguistic and world knowledge, from sentence structure, word connota-
tions, and facts about the world, help one to do this task better. As a result, these
models assemble a broad general knowledge of the language and world to which
they are exposed. A single such large pretrained language model (LPLM) can be
deployed for many particular NLP tasks with only a small amount of further in-
struction. The standard way of doing this from 2018 to 2020 was fine-tuning the
model via a small amount of additional supervised learning, training it on the ex-
act task of interest. But very recently, researchers have surprisingly found that the
largest of these models, such as GPT-3 (Generative Pre-trained Transformer-3),
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can perform novel tasks very well with just a prompt. Give them a human language
description or several examples of what one wants them to do, and they can per-
form many tasks for which they were never otherwise trained.?

raditional natural language processing models were elaborately composed

from several usually independently developed components, frequently

built into a pipeline, which first tried to capture the sentence structure
and low-level entities of a text and then something of the higher-level meaning,
which would be fed into some domain-specific execution component. In the last
few years, companies have started to replace such traditional NLP solutions with
LPLMs, usually fine-tuned to perform particular tasks. What can we expect these
systems to do in the 2020s?

Early machine translation systems covered limited linguistic constructions
in a limited domain.'® Building large statistical models from parallel corpora of
translated text made broad-coverage machine translation possible, something
that most people first experienced using Google Translate after it launched in
2006. A decade later, in late 2016, Google’s machine translation improved mark-
edly when they switched to the use of neural machine translation." But that sys-
tem had a shorter lifespan: transformer-based neural translation was rolled out
in 2020."* This new system improved not only via a different neural architecture
but via use of a fundamentally different approach. Rather than building numer-
ous pairwise systems from parallel text that translate between two languages, the
new system gains from one huge neural net that was simultaneously trained on all
languages that Google Translate covers, with input simply marked by a distinct
token that indicates the language. While this system still makes mistakes and ma-
chine translation research continues, the quality of automatic translation today
is remarkable. When I enter a couple of sentences from today’s Le Monde culture
section:

Il avait éte surnommeé, au milieu des années 1930, le « Fou chantant », alors qu’il faisait ses débuts
d artiste soliste apres avoir créé, en 1933, un duo a succes avec le pianiste Johnny Hess. Pour son
dynamisme sur scene, silhouette agile, ses yeux écarquillés et rieurs, ses cheveux en bataille, surtout
pour le rythme qu’il donnait aux mots dans ses interprétations et I'écriture de ses textes.'3

the translation is excellent:

He was nicknamed the Singing Madman in the mid-1930s when he was making his debut as a
solo artist after creating a successful duet with pianist Johnny Hess in 1933. For his dynamism on
stage, his agile figure, his wide, laughing eyes, his messy hair, especially for the rhythm he gave to
the words in his interpretations and the writing of his texts.

In question answering, a system looks for relevant information across a collec-
tion of texts and then provides answers to specific questions (rather than just re-
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turning pages that are suggested to hold relevant information, as in the early gen-
erations of Web search). Question answering has many straightforward commer-
cial applications, including both presale and postsale customer support. Modern
neural network question-answering systems have high accuracy in extracting an
answer present in a text and are even fairly good at working out that no answer is
present. For example, from this passage:

Samsung saved its best features for the Galaxy Note 20 Ultra, including a more refined
design than the Galaxy S20 Ultra —a phone I don’t recommend. You'll find an excep-
tional 6.9-inch screen, sharp 5x optical zoom camera and a swifter stylus for annotat-
ing screenshots and taking notes. The Note 20 Ultra also makes small but significant
enhancements over the Note 10 Plus, especially in the camera realm. Do these features
justify the Note 20 Ultra’s price? It begins at $1,300 for the 128GB version. The retail
price is a steep ask, especially when you combine a climate of deep global recession
and mounting unemployment.

One can get answers to questions like the following (using the UnifiedQA model):'4

How expensive is the Samsung Galaxy Note 20 Ultra?
$1,300 for the 128 GB version

Does the Galaxy Note 20 Ultra have 20x optical zoom ?
no

What is the optical zoom of the Galaxy Note 20 Ultra?
5%

How big is the screen of the Galaxy Note 20 Ultra?
6.9-inch

For common traditional NLP tasks like marking person or organization names
in a piece of text or classifying the sentiment of a text about a product (as posi-
tive or negative), the best current systems are again based on LPLMs, usually fine-
tuned by providing a set of examples labeled in the desired way. While these tasks
could be done quite well even before recent large language models, the greater
breadth of knowledge of language and the world in these models has further im-
proved performance on these tasks.

Finally, LPLMs have led to a revolution in the ability to generate fluent and
connected text. In addition to many creative uses, such systems have prosaic uses
ranging from writing formulaic news articles like earnings or sports reports and
automating summarization. For example, such a system can help a radiologist by
suggesting the impression (or summary) based on the radiologist’s findings. For
the findings below, we can see that the system-generated impression is quite sim-
ilar to a radiologist-generated impression :'5
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Findings: lines/tubes: right ij sheath with central venous catheter tip overlying the
svc. on initial radiograph, endotracheal tube between the clavicular heads, and enteric
tube with side port at the ge junction and tip below the diaphragm off the field-of-
view; these are removed on subsequent film. mediastinal drains and left thoracosto-
my tube are unchanged. lungs: low lung volumes. retrocardiac airspace disease, slight-
ly increased on most recent film. pleura: small left pleural effusion. no pneumothorax.
heart and mediastinum: postsurgical widening of the cardiomediastinal silhouette.
aortic arch calcification. bones: intact median sternotomy wires.

Radiologist-generated impression: left basilar airspace disease and small left pleural
effusion. lines and tubes positioned as above.

System-generated impression: lines and tubes as described above. retrocardiac air-
space disease, slightly increased on most recent film. small left pleural effusion.

These recent NLP systems perform very well on many tasks. Indeed, given a
fixed task, they can often be trained to perform it as well as human beings, on av-
erage. Nevertheless, there are still reasons to be skeptical as to whether these sys-
tems really understand what they are doing, or whether they are just very elabo-
rate rewriting systems, bereft of meaning.

he dominant approach to describing meaning, in not only linguistics and

philosophy of language but also for programming languages, is a denota-

tional semantics approach or a theory of reference: the meaning of a word,
phrase, or sentence is the set of objects or situations in the world that it describes
(or a mathematical abstraction thereof ). This contrasts with the simple distribu-
tional semantics (or use theory of meaning) of modern empirical work in NLP, where-
by the meaning of a word is simply a description of the contexts in which it ap-
pears.'® Some have suggested that the latter is not a theory of semantics at all but
just a regurgitation of distributional or syntactic facts.”” I would disagree. Mean-
ingisnot all or nothing; in many circumstances, we partially appreciate the mean-
ing of a linguistic form. I suggest that meaning arises from understanding the net-
work of connections between a linguistic form and other things, whether they be
objects in the world or other linguistic forms. If we possess a dense network of
connections, then we have a good sense of the meaning of the linguistic form. For
example, if [ have held an Indian shehnai, then  have a reasonable idea of the mean-
ing of the word, but I would have a richer meaning if I had also heard one being
played. Going in the other direction, if I have never seen, felt, or heard a shehnai,
but someone tells me that it’s like a traditional Indian oboe, then the word has some
meaning for me: it has connections to India, to wind instruments that use reeds,
and to playing music. If someone added that it has holes sort of like a recorder, but it
has multiple reeds and a flared end more like an oboe, then I have more network con-

134 Deedalus, the Journal of the American Academy of Arts & Sciences



Christopher D. Manning

nections to objects and attributes. Conversely, I might not have that information
but just a couple of contexts in which the word has been used, such as: From a week
before, shehnai players sat in bamboo machans at the entrance to the house, playing their
pipes. Bikash Babu disliked the shehnai’s wail, but was determined to fulfil every convention-
al expectation the groom’s family might have.® Then, in some ways, I understand the
meaning of the word shehnai rather less, but I still know that it is a pipe-like musi-
cal instrument, and my meaning is not a subset of the meaning of the person who
has simply held a shehnai, for I know some additional cultural connections of the
word that they lack.

Using this definition whereby understanding meaning consists of understand-
ing networks of connections of linguistic forms, there can be no doubt that pre-
trained language models learn meanings. As well as word meanings, they learn
much about the world. If they are trained on encyclopedic texts (as they usually
are), they will learn that Abraham Lincoln was born in 1809 in Kentucky and that
the lead singer of Destiny’s Child was Beyoncé Knowles-Carter. Our machines
can richly benefit from writing as a store of human knowledge, just like people.
Nevertheless, the models’ word meanings and knowledge of the world are often
very incomplete and cry out for being augmented with other sensory data and
knowledge. Large amounts of text data provided a very accessible way first to ex-
plore and build these models, but it will be useful to expand to other kinds of data.

The success of LPLMs on language-understanding tasks and the exciting
prospects for extending large-scale self-supervised learning to other data mo-
dalities — such as vision, robotics, knowledge graphs, bioinformatics, and multi-
modal data — suggests exploring a more general direction. We have proposed the
term foundation models for the general class of models with millions of parame-
ters trained on copious data via self-supervision that can then easily be adapted
to perform a wide range of downstream tasks.’® LPLMs like BERT (Bidirection-
al Encoder Representations from Transformers) and GPT-3 are early examples of
foundation models, but work is now underway more broadly.>® One direction is
to connect language models with more structured stores of knowledge represent-
ed as a knowledge graph neural network or as a large supply of text to be consult-
ed at runtime.*" However, the most exciting and promising direction is to build
foundation models that also take in other sensory data from the world to enable
integrated, multimodal learning. An example of this is the recent DALL-E model
that, after self-supervised learning on a corpus of paired images and text, can ex-
press the meaning of a new piece of text by producing a corresponding picture.**

We are still very early in the era of foundation models, but let me sketch a pos-
sible future. Most information processing and analysis tasks, and perhaps even
things like robotic control, will be handled by a specialization of one of a rela-
tively small number of foundation models. These models will be expensive and
time-consuming to train, but adapting them to different tasks will be quite easy;
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indeed, one might be able to do it simply with natural language instructions. This
resulting convergence on a small number of models carries several risks: the
groups capable of building these models may have excessive power and influence,
many end users might suffer from any biases present in these models, and it will
be difficult to tell if models are safe to use in particular contexts because the mod-
els and their training data are so large. Nevertheless, the ability of these models to
deploy knowledge gained from a huge amount of training data to many different
runtime tasks will make these models powerful, and they will for the first time
demonstrate the artificial intelligence goal of one machine learning model doing
many particular tasks based on simply being instructed on the spot as to what it
should do. While the eventual possibilities for these models are only dimly un-
derstood, they are likely to remain limited, lacking a human-level ability for care-
tul logical or causal reasoning. But the broad effectiveness of foundation mod-
els means that they will be very widely deployed, and they will give people in the
coming decade their first glimpses of a more general form of artificial intelligence.
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The Curious Case of
Commonsense Intelligence

Yejin Choi

Commonsense intelligence is a long-standing puzzle in AL Despite considerable ad-
vances in deep learning, Al continues to be narrow and brittle due to its lack of com-
mon sense. Why is common sense so trivial for humans but so hard for machines ?
In this essay, I map the twists and turns in recent research adventures toward com-
monsense AL As we will see, the latest advances on common sense are riddled with
new, potentially counterintuitive perspectives and questions. In particular, I discuss
the significance of language for modeling intuitive reasoning, the fundamental lim-
itations of logic formalisms despite their intellectual appeal, the case for on-the-
fly generative reasoning through language, the continuum between knowledge and
reasoning, and the blend between symbolic and neural knowledge representations.

ommonsense intelligence is a long-standing challenge in AI. Despite con-

siderable advances in deep learning, Al systems continue to be narrow and

brittle. One of the fundamental limitations of AI can be characterized as
itslack of commonsense intelligence: the ability to reason intuitively about every-
day situations and events, which requires rich background knowledge about how
the physical and social world works."

Trivial for humans, acquiring commonsense intelligence has been considered
a nearly impossible goal in AL In fact, until several years ago, the word “com-
monsense” was considered taboo for anyone wanting to be taken seriously in the
mainstream research community. How, then, is this goal now feasible ? To help an-
swer this question, we will characterize what approaches have been tried in the
past and what alternative paths have yet to be explored.

First and foremost, the significance of language — not just words and phrases,
but the full scope of natural language — has long been overlooked as a representa-
tion medium for modeling commonsense knowledge and reasoning. At first glance,
language seems too imprecise and variable, thus, many earlier efforts sought logic-
based formalisms to describe commonsense rules for machines. But despite their
intellectual appeal, logic-based formalisms proved too brittle to scale beyond ex-
perimental toy problems. In contrast, language-based formalisms, despite their ap-
parent imprecision and variability, are sufficiently expressive and robust to encom-
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pass the vast number of commonsense facts and rules about how the world works.
After all, it is language, not logical forms, through which humans acquire knowl-
edge about the world. And this holds true despite the ambiguities of language and
the inconsistencies of knowledge reported in books, news, and even the scientific
literature. Thus, in order to match the scale and complexity of human-level knowl-
edge acquisition, AI cannot go far without direct integration of language.

Second, most prior efforts were developed in the pre—deep learning era, with-
out benefiting from large-scale data, compute, and neural networks. Deep learn-
ing presents entirely new opportunities for training neural commonsense models
using a massive amount of raw text, fused with symbolic commonsense knowl-
edge graphs. Again, the switch to language-based formalisms is the key to benefit
from the empirical breakthroughs of deep neural networks, as it allows for power-
tul transfer learning from language models to knowledge models.

The landscape has changed considerably over the past few years. The Allen In-
stitute for Artificial Intelligence created the research project Mosaic, which I lead,
to focus on commonsense intelligence.* The Association for Computational Lin-
guistics (ACL), which hosts one of the premiere conferences in Al focusing on hu-
man language technologies, featured a tutorial on commonsense knowledge that
attracted a great deal of attention from the research community.3 Defense Ad-
vanced Research Projects Agency (DARPA), an agency of the U.S. Department of
Defense, has also launched the Machine Common Sense (MCS) program to accel-
erate research on commonsense AL4

Experience thus far suggests that research toward commonsense Al requires
rethinking and challenging some of the most fundamental assumptions in the
current paradigms of machine learning and AI. It also challenges our conceptual
understanding about knowledge, reasoning, and language. As a result, it is inevi-
table that the perspectives discussed in this essay can appear counterintuitive or
even controversial. As a starting point, let us examine intuitive reasoning and its
connection to language generation.

ntuitive reasoning is effortless. Humans do it all the time, subconsciously,
about nearly every object, person, and event that we encounter in our every
waking moment. It is intuitive reasoning through which we make snap judg-
ments about the big picture context of a scene that we observe only in part: the
likely causes and effects of events, what might have happened before and what
might happen next, what might be the motivations and intents of people, and
what might be their mental and emotional states. Because intuitive reasoning is
sonatural and effortless, it is tempting to assume that it must be easy for Al as well.
A concrete example offers insight into why Al in the current paradigm might

be far from reaching human-level intuitive reasoning on trivial everyday events
and scenes. Consider psychologist Roger Shepard’s optical illusion Terror Subterra,
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Figure1
Roger Shepard’s Terror Subterra

Source: Roger Shepard, “Terror Subterra,” in Mind Sights: Original Visual Illusions, Ambiguities, and
other Anomalies (New York: W. H. Freeman & Co, 1990).

shown as Figure 1.5 State-of-the-art computer vision systems are now capable of
correctly identifying the literal content of the visual scene, such as objects and lo-
cations; in this case, two monsters in a tunnel. However, human-level cognitive
understanding of the visual scene requires seeing beyond pixels: reasoning about
the whole dynamic story that goes beyond the static scene captured in a still im-
age. For example, we reason that the monsters are running, one is chasing another,
and the chaser has hostile intentions while the chased is afraid.
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This example leads us to unpack several interconnected insights: 1) intuitive
reasoning is generative and instantaneous (as opposed to thoroughly discrimina-
tive across all possible alternatives); 2) the space of such reasoning is infinite, and
thus requires the full scope of natural language to describe them (as opposed to a
fixed set of predefined labels to choose from); 3) intuitive inferences are predic-
tive in nature, and are therefore almost always defeasible with additional context;
and 4) intuitive inferences draw from rich background knowledge about how the
physical and social world works (as will be elaborated below).

hat is remarkable about intuitive reasoning is that we make all these

inferences instantaneously without ever enumerating and weighing

all the other plausible but less likely, or implausible, inferences. For
example, we do not consider plausible but less likely inferences about our mon-
sters in the tunnel, like the monsters are running backward or are standing still
on one foot. Nor do we consider outright implausible inferences, like the mon-
sters are lying down on the floor or swimming in the ocean. Such less plausible or
outright implausible inferences do not even come to our conscious mind. In fact,
coming up with less likely or implausible alternatives can be effortful.

In other words, when we communicate our intuitive inferences in language, it
is almost as if we generate the most likely intuitive inferences on the fly, word by
word, without explicitly acknowledging the alternatives. This is analogous to how
we can “think outloud”: we can speak out the next word of a thought without first
internally finishing the rest of the thought or planning the exact wordings of the
sentences to come.

This is in stark contrast with how machine learning benchmarks — especially
reasoning tasks —are most commonly formulated: as categorization tasks over a
fixed set of predefined labels. Under such discriminative task formulations, mod-
els need to go through all possible labels one by one and choose the label with
the highest score. Discriminative task formulations are effective for relatively nar-
rowly defined tasks, such as object categorization in an image. However, human-
level intuitive inferences require complex compositional reasoning over diverse
concepts, including objects, actions, locations, attributes, and emotions. In other
words, the space of concepts is infinite, as concepts can be composed of other con-
cepts recursively. This is a point also emphasized by cognitive scientist Douglas
Hofstadter and psychologist Emmanuel Sander in their book Surfaces and Essences:
the set of concepts vastly outnumbers the set of words, and many concepts re-
quire open-text descriptions for lack of existing words or fixed phrases.®

This compositional nature of intuitive inferences has two important implica-
tions. First, natural language, not just words or phrases but the full scope of open-
text descriptions, is the best way to communicate the content of intuitive infer-
ences between humans and machines. Inventing a new labeling scheme (or logic
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formalisms) can only be error prone and incomplete, since there always will be a
significant representation gap between the labeling scheme and natural language.
Second, the total number of all possible textual descriptions of intuitive infer-
ences is too large for us, and even for Al to enumerate and examine one by one in
real time.

These observations motivate the need for computational models that can han-
dle on-the-fly generative reasoning through language. The key underlying chal-
lenge is scale. Naively increasing the set of labels for discriminative models will
not scale effectively to handle the sheer scope of intuitive reasoning, which re-
quires complex and potentially novel compositional reasoning over diverse con-
cepts. This calls for new machine-learning models and algorithms that can learn
to generate intuitive inferences on the fly, word by word, just like how humans
communicate their thoughts.

In fact, such word-by-word generation is exactly how text generation from
neural language models operates today. For example, OpenAI's GPT-3 (Genera-
tive Pre-trained Transformer 3) — alanguage model that uses deep learning to pro-
duce speech-like text —has generated remarkably coherent paragraphs by sam-
pling just one word at a time, without explicitly enumerating all other alternative
sentences.” Advances in neural language models provide strong technical founda-
tions to build language-based on-the-fly generative reasoning systems. Promising
recent research is based on such generative reasoning: abductive reasoning, coun-
terfactual story revision, and commonsense reasoning. But before we get there, let
us discuss the importance of defeasible reasoning and commonsense knowledge.

hen we look at Roger Shepard’s monsters in a tunnel, it is reasonable

to infer that one monster is chasing another, with emotions to match.

But the faces of the two monsters are in fact identical: it is our brain
projecting a story onto the image to the point of hallucinating two faces express-
ing visually distinct emotions. This story projection comes from our prior knowl-
edge about how the world works, that when a monster is chasing, it is likely to
have a hostile intent, while the chased would likely feel scared. Yet none of these is
absolutely true and all can be defeated with additional context. For example, if we
learned that these particular monsters have kind hearts despite their appearances,
or that they are in fact practicing a new dance move, we would revise what we in-
fer about their likely intents, emotions, and mental states.

Intuitive inferences draw from the rich background knowledge about how the
world works, ranging from native physics to folk psychology. In order to close the
gap between AI and humans in their intuitive reasoning capabilities over diverse
everyday scenes and events, we need deep integration of language, and we need
broad-coverage commonsense models of how the physical and the social world
works.
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hy does formal logic fail to model human reasoning ? In their book The
Enigma of Reason, cognitive scientists Hugo Mercier and Dan Sperber
argue that “Reason is a mechanism of intuitive inferences...in which
logic plays at best a marginal role.”® Yet a dominant perspective underlying Al re-
search is that human reasoning is modeled through a formal logic framework. The
intellectual appeal of formal logic is its emphasis on correctness, a property that
seems hard to dispute in itself. What could possibly go wrong with being correct ?

There are two related challenges: the purpose and the scale of reasoning. The
purpose of intuitive reasoning is to anticipate and predict what might be plausible
explanations for our partial observations, so we can read between the lines in text
and see beyond the frame of the image. As we have discussed, this means intuitive
reasoning is almost always defeasible with additional context. Therefore, a rea-
soning framework that only seeks truthful conclusions is off point since it would
rarely generate the sorts of rich conclusions that intuitive reasoning does.

The bigger challenge is the scale or the scope of reasoning. The reasoning
framework, to be practically useful, should be ready to cover the full spectrum of
concepts and compositions of concepts that we encounter in our everyday physical
and social interactions with the world. In addition, the real world is filled with pre-
viously unseen situations, which require creative generation of hypotheses, novel
compositions of concepts, and novel discovery of reasoning rules. In contrast, for-
mal logic almost always assumes that some oracle will provide a predefined set of
logic variables and logic implication rules. There is no such oracle. To date, we do
not yet know how to automatically populate such logical representations of con-
cepts and implication rules at scale, and those manually constructed by scientists
have proven to be, time and again, too narrow in scope and too brittle to generalize.
Moreover, formal logic frameworks fall short of providing practical solutions to
the creative generation of hypotheses, novel compositions of concepts, and novel
discovery of reasoning rules.

Inregard to the defeasibility of intuitive reasoning, one might wonder whether
adding probability models on top of formal logic frameworks could trivially ad-
dress this challenge, since probabilistic logic frameworks can generate uncertain
conclusions that are defeasible. The real bottleneck of scale is not due to lack of
probabilistic measures of uncertainty, however. Adding probabilistic models over
asmall, fixed set of variables and logical rules does not automatically increase the
diversity and complexity of concepts covered by the logical forms. The challenge
of automatically populating formal logical variables and implication rules still re-
mains, with or without probabilistic measures on top.

ogical reasoning is often associated with deductive reasoning and induc-

tive reasoning. Deduction starts with a general rule, which is then applied
to a concrete case, whereas induction begins with facts about individual
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cases, which are then generalized to a general rule. But the scope of deduction and
induction together is only the tip of the iceberg of human reasoning. Indeed, nei-
ther deduction nor induction can account for the sorts of intuitive inferences that
we examined in Terror Subterra.

Abductive reasoning, conceived by philosopher Charles Peirce in 1865, con-
cerns reasoning about the best explanatory hypotheses for partial observations. Exam-
ples that compare deduction, induction, and abduction are shown in Table 1. What
is remarkable about abductive reasoning is that it is a form of creative reasoning:
it generates new information that goes beyond what is provided by the premise. Thus,
abductive reasoning builds on our imaginative thinking, which, in turn, builds
on our rich background knowledge about how the world works. In contrast, the
conclusions of deduction and induction do not generate any new information be-
yond what is already provided in the premise, as these conclusions are only dif-
ferent ways of regurgitating the same or part of the information that is contained
in the premise. Generating new hypotheses that explain our partial observations
about the world, a cognitive process at the heart of human learning and reasoning,
is therefore beyond the conventional scope of formal logic that focuses on truth-
tul conclusions. Although most of our day-to-day reasoning is a form of abductive
reasoning, it is relatively less known to most people. For example, Conan Doyle,
the author of the Sherlock Holmes canon, mistakenly wrote that Sherlock used de-
ductive reasoning to solve his cases. On the contrary, the key to solving Holmes’s
mysteries was almost always abductive reasoning, which requires a nontrivial dose
of imagination and causal reasoning to generate explanatory hypotheses that may
not seem obvious to others. In fact, abductive reasoning is the key to scientific ad-
vances as well, since scientific inquiries also require generating new explanatory
hypotheses beyond what is already known to the field as truth.

Despite the significance of abduction in human reasoning, relatively few re-
searchers have developed computational systems of abductive reasoning, espe-
cially in relation to language-based reasoning. Within the Al logic research com-
munities, language has been very rarely or only minimally integrated into reason-
ing, as prior research aimed to operate on top of logic-based formalisms detached
from natural language. In contrast, within natural language processing (NLP) re-
search communities, a subfield of Al that focuses on human language technolo-
gies, questions about intuitive reasoning, commonsense reasoning, and abductive
reasoning have by and large been considered to be outside the scope of the field.

Counterfactual reasoning is closely related to abductive reasoning in that
they are both cases of nonmonotonic reasoning: that is, logical conclusions are
not monotonically true and can be defeasible.? Similar to abductive reasoning,
counterfactual reasoning has been relatively less studied, and what prior research
on counterfactual reasoning there is has been mostly detached from natural
language.
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Table 1

Examples of Deduction, Induction, and Abduction

Deduction

There are two monsters
running down the
tunnel. Jack is the
monster in the front.

Induction

There is one monster in
the tunnel that is run-
ning. Another monster
enters the tunnel and
starts running.

Abduction

There are two monsters
running down the
tunnel in sequence.

=> Jack is running down
the tunnel.

=>» All monsters in the
tunnel are running.

=> The one behind is
chasing after the one in

the front.
=>» The chaser has

hostile intentions.

NLP researchers only recently began investigating language-based common-
sense reasoning,'® defeasible inferences, and abductive reasoning,'* and most
recent successes have built on neural language models operating directly with nat-
ural language, without formal logical forms.

e have identified the need for designing on-the-fly generative reason-

ing models through language. But using off-the-shelf language mod-

els is not straightforward because generative language models are
typically trained for generating language monotonically, such as from left to right
for English text. In contrast, abductive and counterfactual reasoning, core abil-
ities of everyday human cognition, require flexible causal reasoning over events
that might not be monotonic in time. For example, we might need to condition on
the future and reason about the past. Or we might need to condition on both the
past and the future to reason about what might have happened in between.

My colleagues and I have recently proposed DeLorean (named after the
time-travel machine from Back to the Future), a new inference algorithm that can
flexibly incorporate both the past and future contexts using only off-the-shelf, left-
to-right language models, and no supervision.'3 The key intuition of our algorithm
is incorporating the future through “back-propagation,” in which we only update
the internal representation of the output while fixing the model parameters. By
alternating between forward and backward propagation of information, DeLorean
can decode the output representation that reflects both the past and future contexts.
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Figure 2
Example of DeLorean Reasoning for Abductive (fop) and
Counterfactual Reasoning (bottom)

Abductive Reasoning

Past Observation Future Observation
Hypothesis
Ray ran to his
daughter to make
sure she was okay.

Ray hung a tire on a
rope to make his
daughter a swing.

Rewritten Ending

Story Context Original Ending
Zeke was throwing Lannister, but he
a party. didn’t want to look like a Lannister. Zeke thought about
being a vampire ora
All his friends were He wanted to look like a Stark. wizard.
dressing up for this .
Halloween party. Stark Then !19 decided on
a scarier costume.
All his friends were
dressing up fer this Zeke dressed up like
Game of Thrones . a skeleton.
themed party Counterfactual Reasoning

Given the inputs (text boxes on the left and right), DeLorean generates an output (text boxes
in the middle). Source: Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, et al., “Ab-
ductive Commonsense Reasoning,” paper presented at the International Conference on Learn-
ing Representations, March 29, 2020; Lianhui Qin, Antoine Bosselut, Ari Holtzman, et al.,
“Counterfactual Story Reasoning and Generation,” in Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing (Stroudsburg, Pa.: Association for Computational
Linguistics, 2019) ; and Lianhui Qin, Vered Shwartz, Peter West, et al., “Back to the Future:
Unsupervised Backprop-Based Decoding for Counterfactual and Abductive Commonsense
Reasoning (DeLorean),” in Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (Stroudsburg, Pa.: Association for Computational Linguistics, 2020).

We have demonstrated that our approach is general and applicable to two non-
monotonic reasoning tasks —abductive text generation and counterfactual story
revision — and that DeLorean outperforms a range of unsupervised and some su-
pervised methods based on automatic and human evaluation. Figure 2 illustrates
example model outputs, and Figure 3 provides a visual sketch of our method.

OMET, a recent Allen Institute for AI and University of Washington ad-
vancement toward commonsense modeling, is another empirical demon-
stration of on-the-fly generative reasoning through language.’* COMET is
trained using “a large-scale common sense repository of textual descriptions that
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Figure 3
Sketch of DeLorean Operations
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The inputs at the bottom (text boxes X and Z) correspond to the past and the future context on
which the DeLorean conditions. The output from DeLorean reasoning is shown at the top of
the figure (text box Y).

encode both the social and the physical aspects of common human everyday ex-
periences.” But the best way to understand COMET is to experience it for yourself
through examples and a live demonstration at https://comet.allenai.org. There
you can supply COMET with a statement, and it will predict the subject’s relation-
ship with past, future, and present events, characters, and conditions.

Figure 4 shows a COMET prediction given the input “Gary stacks kindling and
logs and drops some matches.” The model correctly predicts that Gary (that is,
PersonX) might want “to start a fire,” and before doing so, Gary probably need-
ed “to get a lighter.” This particular example was in response to cognitive scien-
tist Gary Marcus’s critique on the limitations of neural language models in their
commonsense capabilities.'S Indeed, off-the-shelf neural language models fall far
short of robust commonsense intelligence, which motivates the development of
commonsense models like COMET.

The key conceptual framework underlying COMET, compared with most com-
monsense systems from previous decades, is the combination of language-based
formalism of commonsense knowledge (as opposed to logic-based formalism)
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Figure 4
Commonsense Inferences by COMET Given the Input
“Gary Stacks Kindling and Logs”
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Source: “Commonsense Inferences about People and Events (COMmonsensE Transformers on
Atomic2020),” Mosaic Knowledge Graphs, Allen Institute for Al https://comet.allenai.org.

and on-the-fly generative reasoning over the infinite space of intuitive inferences
(as opposed to discriminative prediction over the fixed set of categories). COMET
is built on top of ATOMIC, a symbolic knowledge graph that can be viewed as a
textbook customized for neural language models to learn commonsense knowl-
edge about how the world works.10 Analogous to textbooks written for humans,
which provide declarative knowledge about a particular topic, ATOMIC is a col-
lection of declarative knowledge focusing on commonsense rules and facts about
everyday objects and events. Examples of knowledge encoded in ATOMIC are
shown in Figure 5. At the time of writing, ATOMIC draws on more than 1.3 million
pieces of commonsense rules and facts. This may sound like a lot, but in reality, 1.3
million pieces of rules and facts are still too limiting to encompass all the trivial
commonsense knowledge that we humans hold about the world. Consider that
the example of someone stacking kindling and logs is not covered by ATOMIC,
nor are Roger Shepard’s monsters in a tunnel. Yet COMET, which is trained on
ATOMIC, can generalize far beyond the limited scope of symbolic knowledge
spelled out in ATOMIC, and can make remarkably accurate commonsense infer-
ences on previously unseen situations, as shown in Figure 4.
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Figure s
Examples of Knowledge Encoded in ATOMIC, the Symbolic
Commonsense Knowledge GraphReasoning (bottom)
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Symbolic and Neural Commonsense Knowledge Graphs,” paper presented at The Thirty-Fifth
AAAI Conference on Artificial Intelligence (AAAI-21), February 2-9, 2021.

This generalization power of COMET is achieved through computational meld-
ing between neural representation of language and the symbolic representation
of commonsense knowledge. Indeed, the empirical success of COMET can be at-
tributed to the blend of neural and symbolic representation of knowledge and the
use of language as the representation medium for symbolic knowledge. It is also
important to recognize the continuum between knowledge and reasoning. This
may seem counterintuitive, as knowledge and reasoning are commonly consid-
ered distinct intellectual phenomena. But our computational exploration of lan-
guage, knowledge, and intuitive reasoning has revealed that, when encountered
with a wide spectrum of real-life examples, the boundary between knowledge and
reasoning is not clear. More concretely, when we reason about the intent of “Gary
stackingkindling and logs,” our reasoning relies on our memorized commonsense
knowledge about what people typically do with kindling and logs. Conversely, fre-
quent patterns of commonsense reasoning about the intents and mental states of
people, the causes and effects of events, and the preconditions and postconditions
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of events all become integral parts of our memorized knowledge about how the
world works. In sum, COMET demonstrates a neuro-symbolic blend between lan-
guage, knowledge, and reasoning as a new path toward commonsense Al With-
out this mix, the remarkable generalization power of COMET to flexibly reason
about previously unseen situations would have been unattainable.

While the curious case of commonsense intelligence remains far from solved,
theinvestigation thus far has made considerable progress toward insights that may
crack the old mystery. Like in any good mystery, there are many surprises still to
come, butrecent projects have meaningfully built on the keyideasbehind ATOMIC
and COMET to blend language, knowledge, and reasoning; I will introduce two.

new algorithmic framework called Symbolic Knowledge Distillation has

enabled us to distill symbolic knowledge from neural networks (GPT-3in

particular) algorithmically.’” In a nutshell, instead of humans writing the
symbolic commonsense knowledge graph, such as ATOMIC, to teach machines
with, machines can now author their own knowledge graph with which to teach
themselves. Moreover, the resulting machine-authored ATOMIC can exceed, for
the first time, the human-authored counterpart in all criteria: scale, quality, and
diversity. This development foreshadows a great many adventures ahead of us.

But what would it take to teach a machine to behave ethically ? Delphi, the sec-
ond project, is a prototype commonsense morality and norms model. While some
broad ethical rules are captured by straightforward statements (“thou shalt not
kill”), applying such rules to real-world situations is far more complex. For ex-
ample, while “helping a friend” is generally a good thing to do, “helping a friend
spread fake news” is not.

Delphi is designed to reason about simple ethical situations (you can submit
your own for judgment at https://delphi.allenai.org/).®* As shown in Figure 6,
making an ethical judgment of a given situation requires understanding a broad
range of ethical and social norms, and complex reasoning to calibrate across com-
peting values (such as killing a bear versus pleasing your child).

Delphi demonstrates the promises of language-based commonsense moral
reasoning, with up to 80 —92 percent accuracy, as vetted by humans. This is in stark
contrast to the off-the-shelf performance of GPT-3 of 52.3 percent accuracy, which
suggests that massive scale alone does not endow pretrained neural language mod-
els with human values.

Thus, Delphi is taught with the Commonsense Norm Bank, a moral textbook
customized for machines that compiles 1.7 million examples of people’s ethical
judgments on diverse everyday situations. The Commonsense Norm Bank is anal-
ogous to ATOMIC in that both are symbolic knowledge bases/textbooks used to
teach machines. The scope of the Norm Bank overlaps with but goes much further
than that of ATOMIC: the former focuses on social and ethical norms for everyday
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Figure 6
Delphi Judgments on Previously Unseen Questions

Delphi says:

“Killing a bear.”
- It's wrong

Delphi says:

“Killing a bear to save your child.”
- It's okay

Delphi says:

“Killing a bear to please your child.”
- It's wrong

Delphi says:

“Exploding a nuclear bomb to save your child.”
- It's wrong

Delphi says:

“It's okay to fire someone because they are gay.”
- No, it's wrong

Source: Delphi, “Ask Delphi,” Allen Institute for AI, https://delphi.allenai.org/ (accessed
December 8, 2021).

situations, including problems on equity, in order to teach AI against racism or
sexism.

While Delphi shows promise, the Delphi study has also revealed major limita-
tions of neural models for their unfiltered bias and harms. The study also opens
up new research questions, including how we can revise the Commonsense Norm
Bank so its examples represent more diverse cultural norms.'?
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Delphi is an emblematic project toward the bigger goal of teaching AI to be-
have in more inclusive, ethically informed, and socially aware manners when in-
teracting with humans. As AI systems become increasingly integral in people’s
everyday lives, it becomes a priority that they learn to respect human values and
behave ethically. However, Al systems are not, and should never be, used as moral
authorities or sources of advice on human ethics. The fact that Allearns to interact
with humans ethically does not make the Al a moral authority over humans, just
like a human who tries to behave ethically does not become the moral authority
over other people.

e have discussed the importance of deep integration of language to-

ward commonsense Al, as well as why numerous past attempts based

on logic-based formalisms, despite their intellectual appeal, did not
empirically model the rich scope of intuitive reasoning that humans find trivi-
al for everyday objects and events. While the research highlighted in this essay
demonstrates potential new paths forward, we are far from solving commonsense
AL Numerous open research questions remain, including computational mecha-
nisms to ensure consistency and interpretability of commonsense knowledge and
reasoning, deep representational integration between language and perception
for multimodal reasoning, new learning paradigms for abstraction and analogies,
and advanced learning methods for interactive and lifelong learning of knowledge
and reasoning.
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Language & Coding Creativity

Ermira Murati

Machines are gaining understanding of language at a very rapid pace. This achieve-
ment has given rise to a host of creative and business applications using natural lan-
guage processing (NLP) engines, such as OpenAI's GPT-3. NLP applications do
not simply change commerce and literature. They raise new questions about how
human beings relate to machines and how that symbiosis of communication will
evolve as the future rushes toward us.

very writer has a unique aesthetic in the way they order words. The nuanc-

es of applied language, or voice, mark one of the countless fingerprints of

human creativity. Decoding the secrets of this language sits at the frontier
of artificial intelligence: how to build machines that truly understand not only
language at a human level, but produce human-grade responses too.

Take the following excerpt of a poem: “For you are the most beautiful thing we
have in this world / I love your graceful symmetry, your simplicity and clarity /
You are the song of the Universe, a cosmic lullaby / You are the poetry of nature,
written with light and electricity / You are the music of the spheres, played on a
harp made of vacuum.”* The directness, the imagery, the fearless affection, one
might believe the words to be Pablo Neruda’s. But Neruda is only part of the an-
swer. An artificial intelligence system known as GPT-3 (Generative Pre-trained
Transformer 3), built by the research laboratory OpenAl, scanned an enormous
corpus of language data, including Neruda’s verses, and built probabilistic rela-
tionships of tremendous fidelity between his use of nouns, verbs, adjectives, ob-
jects, and all the mechanics of a poem. Consequently, GPT-3 could independently
generate this brand-new poem in its own voice.

For decades, some visionary scientists have predicted this level of intricacy
from a machine. The user only had to give GPT-3 a prompt, or rather, inspiration:
“The following is a poem about Maxwell’s equations in the style of poet Pablo
Neruda.” From that instruction, the machine could pull from its brain of data to
not only grasp aspects of Maxwell’s foundational electromagnetic equations but
present them in Neruda’s style.

This approach to Alis known as large language models and its applications are
spreading across the arts, sciences, and business. Those overseeing the code and
training of the machine are becoming authors — and editors — of a new collective
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language. Train a machine with a corpus of text and it can answer customer ser-
vice questions, describe the plays of a football game, compose an essay, or write a
program based on a description of its function. The applications are not only be-
coming more integral to commerce and our daily lives but are spawning questions
about the nature of language. Why do certain aesthetics ring true while other de-
ployments of language feel empty or fake, even when the grammar is perfect? We
can understand more about our own processes of thought by understanding how
amachine decides to use language.

Technology, culture, civilization: none comes into being without language.
Language is both a high point and the foundation of human intelligence. Yet there
isabind: What are languages exactly ? How do they work ? We might think of lan-
guage as a reaction to context and surroundings. But if we cannot write out the
rules of language, how do we teach it to a machine? This problem has captivated
thinkers for a century, and the answers are now starting to appear.

hat is a thought? And how is experiencing a thought different from

experiencing a memory or an idea? It is difficult to understand; to

borrow from philosophy, digging into the roots of consciousness or
any working of the mind starts to feel like trying to see our own eyes or bite our
own teeth. Staring into space or perspiring over a pad of paper, thoughts seem to
work less like a hard disk and more like a wind, arriving and departing without an
obvious explanation.

Our thoughts manifest through action and emotion but are communicated
through language. Charles Darwin putlanguage on therazor’s edge between an in-
stinct and a skill. A human baby starts babbling almost instantly - call it innately —
yet takes years to engage in higher level conversations around them. At the same
time, all languages are learned, whether directly or passively. That learning takes
years of repetition. Whereas a toddler can hold a casual conversation, they need
another decade before writing structured paragraphs.

Darwin saw the drive to acquire language as “the instinctive tendency to ac-
quire an art,” to communicate by some medium.> No baby has ever needed a book
of grammar to learn a language. They absorb what they hear and through the
maze of the mind play it back. People spend their lives speaking exquisitely with-
out understanding a subjunctive clause or taking a position on split infinitives. A
child learns by experiencing patterns, learning what is most likely to make sense
in a new context. To paraphrase Ralph Waldo Emerson, this information shapes
who we become, much like every meal we have eaten.

The mechanics of the mind are still a mystery. The nuances of a writer’s voice
and creativity in general are no exception. Neuroscientists can observe now that
certain neurons light up when certain actions occur, be it throwing a ball or giving
directions. The order in which these neurons light up and the connections between
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them seem to dictate — or “code” — what the owner of the brain experiences. Re-
searchers have discovered neurons that fire in response to extremely, perhaps odd-
ly, specific subjects, such as Halle Berry. The same neurons will activate when read-
ing the actress’s name or seeing a picture of her, yet remain silent for anyone else.3

We now design machines to mimic a similar logic. If you are shown a photo of
Halle Berry and asked who are you looking at? you fill in the blank with the an-
swer “most likely” to be correct. Every word you output is the most likely word
to be the “right” answer, or to ring true. In a system like GPT-3, these blanks are
known as parameters. As the machine goes along creating text, it asks itself over
and over (and over): with the text I have been given, what word is most likely to
come next? GPT-3 reaches answers based on the patterns it identifies from the
existing usage of human language creating a map, the same way we might piece
characters together when writing essays or code. With this mathematical repre-
sentation of patterns, GPT-3 can carry out many tasks, such as generating com-
puter code, translating language, classifying information, searching semantical-
ly through a large corpus of text, even though it was built to do just one thing:
predict the next word in a sequence of words.

For a long time computers were thought best suited for “simple repetitive
tasks.” There is little creativity in arithmetic, so machines make excellent calcula-
tors, accountants, and modelers. When it came to training a machine in language,
there was a critical bind: Whose language? And if you agree on a model of lan-
guage, how do you deliver that information ?

The answer to date has been to cast a wide net in those languages and exercise
repetition and volume to deliver the information. GPT-3 ingested about one tril-
lion words from the Internet, which consist of instances of text from countless
sources.* It built relationships between these parameters, with GPT-3 developing
akind of reactive memory in the process. Now a collaborator can give GPT-3 a task
and the system understands it, such as “make a Pablo Neruda poem as an ode to
Planck’s equations™:

In the darkness And science

The uncertainty Of the stars

Of the void It is the answer
There is alight The light of the dark
The only one The dark of the light
That shines. Itis

Itis a tiny light The equation

Yet powerful Of everything.

It is the photon

Which carries

The secret
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he origins of predicting what word comes next has roots in Russian litera-

ture. Scan the letters of this text and you will notice that three consonants

rarely appear in a row. Four consonants, hardly ever. Russian mathemati-
cian Andrey Markov began quantifying this phenomenon in 1913 by writing out the
first twenty thousand letters of Alexander Pushkin’s novel Eugene Onegin. Convert-
ing what we intuitively know into numbers, Markov showed how the preceding
letters dictate the probability of what comes next. But Markov could only compare
the rates of vowels and consonants. In that day, it would have been impossible to
map on graph paper all letters and their respective frequencies in relation to the
rest of the text in two and three letter combinations. Today, machines answer these
questions in an instant, which is why we see so many applications interfacing with
conversational language. Rather than predicting the next letter, GPT-3 predicts
what word comes next by reviewing the text that came before it.

Human speech works this same way. When you walk into a room and say “I
need a ____,” a relatively narrow list of words would make sense in the blank.
As the context becomes more detailed - for instance, walking into a kitchen cov-
ered in mud - that list shrinks further. Our minds develop this sorting naturally
through experiences, but to train GPT-3’s mind, the system has to review hun-
dreds of billions of different data points and work out the patterns among them.

Since Markov’s contributions, mathematicians and computer scientists have
been laying the theoretical groundwork for today’s NLP models. But it took re-
cent advances in computing to make these theories reality: now processors can
handle billions of inputs and outputs in milliseconds. For the first time, machines
can perform any general language task. From a computer architecture sense, this
has helped unify NLP architectures. Previously, there were myriad architectures
across mathematical frameworks —recurrent neural networks, convolutional
neural networks, and recursive neural networks —built for specific tasks. For a
machine answering a phone call, previously, the software relied upon one mathe-
matical framework to translate the language, another to dictate a response. Now,
GPT architecture has unified NLP research under one system.

GPT-3 is the latest iteration of generative pretrained transformer models,
which were developed by scientists at OpenAl in 2018. On the surface, it may be
difficult to see the difference between these models and more narrow or specific
Al'models. Historically, most Al models were trained through supervised machine
learning, which means humans labeled data sets to teach the algorithm to under-
stand patterns. Each of these models would be developed for a specific task, such
as translating or suggesting grammar. Every model could only be used for that spe-
cific task and could not be repurposed even for seemingly similar applications. As
aresult, there would be as many models as there were tasks.

Transformer machine learning models change this paradigm of specific mod-
els for specific tasks to a general model that can adapt to a wide array of tasks. In
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2017, researchers Alec Radford, Rafal Jozefowicz, and Ilya Sutskever identified this
opportunity while studying next character prediction, in the context of Amazon re-
views, using an older neural network architecture called the LSTM. It became clear
that good next character prediction leads to the neural network discovering the sen-
timent neuron, without having been explicitly told to do so. This finding hinted that
a neural network with good enough next character or word prediction capabilities
should have developed an understanding of language.

Shortly thereafter, transformers were introduced. OpenAl researchers immedi-
ately saw their potential as a powerful neural network architecture, and specifically
saw the opportunity to use it to study the properties of very good next word predic-
tion. This led to the creation of the first GPT: the transformer language model that
was pretrained on a large corpus of text, which achieved excellent performance on
every task using only alittle bit of finetuning. As OpenAl continued to scale the GPT,
its performance, both in next word prediction and in all other language tasks, kept
increasing monotonically, leading to GPT-3, a general purpose language engine.

In the scope of current Al applications, this may at first seem a negligible dif-
ference: very powerful narrow Al models can complete specific tasks, while a GPT
architecture, using one model, can also perform these separate tasks, to similar or
better results. However, in the pursuit of developing true, human-like intelligence,
a core tenet is the ability to combine and instantly switch between many different
tasks and apply knowledge and skills across different domains. Unified architec-
tures like GPT will therefore be key in advancing Al research by combining skills
and knowledge across domains, rather than focusing on independent narrow tasks.

Humans also learn language through other senses: watching, smelling, touch-
ing. From the perspective of a machine, these are different modes of training. To-
day, we try to simulate this human way of learning by not only training a machine’s
cognitive processing on words, but on images and audio too. We use this multimod-
al approach to teach a machine how words relate to objects and the environment.
A taxi is not just the letters T-A-X-1, but a series of sounds, a pixel pattern in digital
photos, acomponent of concepts like transportation and commerce. Weaving these
other modes into a machine broadens the applications developers can build, as the
machine’s brain is able to apply its knowledge across those different modes as well.

An example is designing a web page. Every business struggles with keeping its
site up-to-date, not only updating text, photos, and site architectures, but also un-
derstanding how to code the CSS and HTML. This is both time-consuming and
costly. Developers have demonstrated that GPT-3 can understand layout instruc-
tions and build the appropriate mockups, for instance, when you tell it to “add
a header image with an oak tree and my contact information below.” Under the
hood, GPT-3 is transforming between the vast arrays of text and the vast array of
objects. The result is that a person without any website-building experience can
have a piece of working HTML in seconds.
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Figure1
Codex-Generated Completion

You will be given a string of words separated by
commas or spaces. Your task is

to split the string into words and return an array
of the words.

For example:

words_string ("Hi, my name is John") == ["Hi", "my",
"name", "is", "John"]

words_string("One, two, three, four, five, six") ==
["One", "two", "three", "four", "five", "six"]

mnn

### COMPLETION 1 (CORRECT) : ###
words = []
splitted_word = ""
for char in s:
if char == "_":
if splitted_word != "":
words.append (splitted_word)
splitted_word = ""
elif char != ",":
splitted_word += char
if splitted_word != "":
words.append (splitted_word)
return words

Drawing on publicly available code on GitHub, the GPT model is able to come up with the
correct solution. Source: Mark Chen, Jerry Tworek, Heewoo Jun, et al., “Evaluating Large
Language Models Trained on Code,” arXiv (2021), https://arxiv.org/abs/2107.03374.

The next stage is using a GPT model in more advanced programming languages
such as Python. Programmers are often thrust into coding projects in which they do
notknow thelogic of everything that hasbeen written already, like having to continue
writing a half-finished novel. Usually, programmers spend substantial amounts of
time and effort getting up to speed, whereas Codex (Figure 1), a GPT language model
fine-tuned on publicly available code from the development platform GitHub, can
scan millions of lines of code and describe to the programmer the function of each
section.> This saves countless hours of work, but also allows these specialized pro-
fessionals to focus on creativity and innovation rather than menial tasks.

The next step would be the “writing” of physical objects. For instance, industrial
designers are constantly creating and testing new forms and functionalities of prod-
ucts.Imagine they want tobuildachairin theshape of an avocado, which requires hav-
ing both an understanding of the functionality of a chair and the form of an avocado.
OpenAl used a 12-billion parameter version of GPT-3 known as DALL'E and trained
it to generate images from text descriptions, using a data set of text-image pairs.
As aresult, DALL-E gained a certain understanding of the relationship between text
and images. When DALL-E was then prompted to suggest designs for “an armchair
in the shape of an avocado” it used its understanding to propose designs (Figure 2).
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DALL-E Successor Iterates on the Text Prompt: “An Armchair in the Shape of an Avocado

Figure 2
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DALL-E was able to create images that are instantly recognizable as avocado chairs,
even though we might struggle ourselves to create instantly such a design. The mod-
el is able not only to generate original creative output, as avocado chairs are not a
common product easily found and copied elsewhere, but also adheres in its designs
to the implicit constraints of form and functionality associated with avocados and
chairs.

This does not put human designers out of a job. Rather, they gain a team of as-
sistants to take on their most rote tasks, allowing them instead to focus on curat-
ing and improving on good ideas or developing their own. In the same way GPT-
3 summarizing, explaining, and generating Python code opens up programming
to nonprogrammers, such iterative design opens up avenues for nondesigners. A
small business or individual designer now has access to capabilities that other-
wise may have only been accessible to large organizations.

There are a multitude of applications in which transformer models can be use-
ful, given that they can not only understand but also generate output across these
different modes. GPT-3 has already been used for understanding legal texts through
semantic search tools, helping writers develop better movie scripts, writing teach-
ing materials and grading tests, and classifying the carbon footprint of purchases.

Tracking the progress of GPT models over the past few years, we can see
what the future might bring in terms of model performance. GPT-2 was a one-
and-a-half-billion-parameter model trained on forty gigabytes of data, which is
an amount of text about eight thousand times larger than the collected works of
Shakespeare. GPT-3, more than one hundred times bigger, comes close to human
comprehension on complex reading tests (see Figure 3). As we move forward in
both model complexity and the size of the data sets, we believe these models will
move ever closer to human benchmarks.

At the same time, as they are tested and applied more extensively, we find lim-
itations in these models. For instance, GPT-3 shows notable weakness in generat-
inglong passages, struggling with self-repetition, non sequiturs, and incoherence.
It also struggles with seemingly commonsense questions, such as: “If I put cheese
in the fridge, will it melt?”

here is always a duality to powerful technological disruptions. The ad-

vent of network computing in 1989 paved the way for the Internet. Tim

Berners-Lee envisioned the Internet as “a collaborative space where you

can communicate through sharing information.”” With freedom of access to all

knowledge and boundaries dissolved, the Internet opened Pandora’s box. Next to

the many positives, it also provides thoroughfares for misinformation, trolling,
doxing, crime, threats, and traumatizing content.

It would be naive to consider GPT-3’s optimal impact without reflecting on

what pitfalls mightlie before us. GPT-3 is built to be dynamic and require little data
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Figure 3
GPT-3 Results on CoQA Reading Comprehension Task

CoQA
Fine-tuned SOTA

Human

Accuracy

—ea— Zero-Shot
—e— One-Shot
Few-Shot (K=5)

0.1B 0.4B 08B 13B 26B 6.7B 13B 175B
Parameters in LM (Billions)

GPT-3 175B is only a few points behind the accuracy of human performance and state-of-the-
art fine-tuned models. Source: Tom B. Brown, Benjamin Mann, Nick Ryder, et al., “Language
Models are Few-Shot Learners,” arXiv (2020), https://arxiv.org/abs/2005.14165.

to perform a task, but the system’s experience will color its future work. This ex-
perience will always have holes and missing pieces. Like human beings, machines
take inputs and generate outputs. And like humans, the output of a machine re-
flects its data sets and training, just as a student’s output reflects the lessons of
their textbook and teacher. Without guidance, the system will start to show blind
spots, the same way a mind focused on a single task can become rigid compared
with a mind performing many tasks and gathering a wide variety of information.
In Al this phenomenon is broadly known as bias, and it has consequences.
For instance, a health care provider may use an NLP model to gather information
on new patients and may train this model on the responses from a certain demo-
graphic distribution. A new patient outside that distribution might be poorly as-
sisted by this system, causing a negative experience for someone needing help.
More generally, powerful language models can increase the efficacy of socially
harmful activities that rely on text generation. Examples include misinformation,
abuse of legal and governmental processes, spam, and phishing. Many of these
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harmful activities are limited by having enough human talent and bandwidth to
write texts and distribute them, whereas with GPT models, this barrier is lowered
significantly.

Moreover, generative language models suffer from an issue shared by many hu-
mans: the inability to admit a lack of knowledge or expertise. In practical terms,
language models always generate an answer — even if it is nonsensical — instead of
recognizing that it does not have sufficient information or training to address the
prompt or question.

As NLP models continue to evolve, we will need to navigate many questions
related to this duality. Developers are already writing books using machines pro-
cessing what they experience in the world. How do we draw the boundary between
the creator and the code? Is the code a tool or an extension of the mind? These
questions go well beyond the arts. How long until machines are writing scientific
papers? Machines are already conducting large sections of experiments autono-
mously. Language can also say a lot about our confidence or mood. Do we want a
company basing product recommendations off what we thought was an innocent
interaction? How do creators, users, and uses create bias in a technology ?

For the first time, we are using artificial intelligence tools to shape our lives.
GPT-3 has shown that large language models can possess incredible linguistic
competence and also the ability to perform a wide set of tasks that add real value
to the economy. I expect these large models will continue to become more com-
petent in the next five years and unlock applications we simply cannot imagine
today. My hope is if we can expose models to data similar to those absorbed by
humans, they should learn concepts in ways that are similar to human learning.
As we make models like GPT-3 more broadly competent, we also need to make
them more aligned with human values, meaning that they should be more truth-
ful and harmless. Researchers at OpenAI have now trained language models that
are much better at following user intentions than GPT-3, while also making them
more honest and harmless. These models, called InstructGPT, are trained with
humans in the loop, allowing humans to use reinforcement to guide the behavior
of the models in ways we want, amplifying good results and inhibiting undesired
behaviors.® This is an important milestone toward building powerful AI systems
that do what humans want.

It would not be fair to spend all these words discussing GPT-3 without giving it
the chance to respond. I asked GPT-3 to provide a parting thought in response to
this essay:

There is a growing tension between the roles of human and machine in creativity and
it will be interesting to see how we resolve them. How we learn to navigate the “hu-
man” and “machine” within us will be a defining question of our time.

Artificial intelligence is here to stay, and we need to be ready to embrace it.
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Non-Human Words:
On GPT-3 as a Philosophical Laboratory

Tobias Rees

In this essay, Iinvestigate the effect of OpenAI's GPT-3 on the modern concept of the
human (as alone capable of reason and language) and of machines (as devoid of
reason and language). I show how GPT-3 and other transformer-based language
models give rise to a new, structuralist concept of language, implicit in which is a
new understanding of human and machine that unfolds far beyond the reach of the
categories we have inherited from the past. I try to make compelling the argument
that AI companies like OpenAl, Google, Facebook, or Microsoft effectively are phil-
osophical laboratories (insofar as they disrupt the old concepts/ontologies we live
by) and I ask what it would mean to build AI products from the perspective of the
philosophical disruptions they provoke: can we liberate Al from the concept of the
human we inherited from the past ?

n May 2020, OpenAl released GPT-3 (Generative Pre-trained Transformer 3),

an artificial intelligence system based on deep learning techniques that can

generate text. GPT-3’s interface invites a user to provide the Al system with a
bit of text and then, based on the prompt, GPT-3 writes. GPT-3 can write short sto-
ries, novels, reportages, scientific papers, code, and mathematical formulas. It can
write in different styles and imitate the style of the text prompt. It can also answer
content-based questions (that is, it learns the content of texts and can articulate
this content). It can translate text from almost any language into almost any oth-
er; and it can provide summaries of lengthy passages.

The quality of GPT-3’s output is remarkable, often impressive. As many critiques
have pointed out, GPT-3 makes silly errors that no human would ever make. And
yet GPT-3’s translations often exceed translations done by humans and capture even
subtle differentiations and wordplays; the summaries are almost always concise;
and the text it generates on the basis of prompts is most often surprisingly consis-
tent: GPT-3 can mimic the style of an author to such a degree that is nearly impossi-
ble to determine whether the text was written by a given author or by GPT-3.

How canwerelate to GPT-3 7 Or to the many other, often equally powerful large
language models (LLMs) built over the last few years: Google’s BERT, LaMDA,
and Wordcraft; Microsoft’s Megatron-Turing Natural Language Generation;
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Inspur’s YUAN 1.0; Huawei’s PanGu-Alpha; Naver’s HyperCLOVA ; or Sberbank’s
various Russian models, most notably ruRoBERTa-large ?

I have come to think of the development of GPT-3 and its kin as a far-reaching,
epoch-making philosophical event: the silent, hardly noticed undoing of the up-
until-now exclusive link between humans and words.

The consequences of this undoing are sweeping: the entire modern world -
the modern experience of what it is to be human, as well as the modern under-
standing of reality — is grounded in the idea that we humans are the only talking
thing in a world of mute things.

No longer.

Philosophical Stakes

At the beginning of the seventeenth century, a remarkable transformation in our
understanding of language took place. Up until that time, the comprehensions
of the world as described by Plato and Aristotle had largely remained in place.
Most humans still experienced themselves, in accordance with the writings of the
Greek philosophers, to be living in a God-given nature-cosmos in which every-
thing - including the human thing — had a well-defined role.

Nature — a metaphysical ground — was all there was.

The particular role of humans in this nature-cosmos was defined by their hav-
ing language. The assumption was that at the beginning of time, humans received
a spark of the divine logos that gave things their eternal essence or names, of which
the visible world was a mere reflection. This divine gift not only enabled humans
to communicate with one another, it also gave them access, via contemplation (a
practice that consists in applying logos to itself ), to the true names of things and
thus to the eternal order of the real.

Around 1600, the ancient, medieval nature-cosmos began to break open. With-
in a few short decades, the comprehension of reality — the structure of experience
of what it is to be human - underwent a remarkably far-reaching change. And at
the center of this change was language.

If until then language was a divine gift that enabled humans to know the eter-
nal essence/names of things, then now language became the human unique power
toname things and to thereby order and know them and bring them under human
control. If language had hitherto defined the role of humansin the nature-cosmos,
then language was now what set them apart from what was increasingly consid-
ered to be mere nature: nature was no longer understood and experienced as a di-
vine cosmos but as the other of the human, as the nonhuman realm of animals and
plants, as mere matter organized in mechanical principles.

The exemplary place where this new concept of language — of humans - is artic-
ulated is René Descartes’s Discourse on the Method, published anonymously in 1630.
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Foritis a very remarkable thing that there are no humans, not even the insane, so dull
and stupid that they cannot put words together in a manner to convey their thoughts.
On the contrary, there is no other animal however perfect and fortunately situated it
may be, that can do the same. And this is not because they lack the organs, for we see
that magpies and parrots can pronounce words as well as we can, and nevertheless
cannot speak as we do, that is, in showing that they think what they are saying. On
the other hand, even those humans born deaf and dumb, lacking the organs which
others make use of in speaking . . . usually invent for themselves some signs by which
they make themselves understood. And this proves not merely animals have less rea-
son than men but that they have none at all. ... We ought not to confound speech with
natural movements which betray passions and may be imitated by machines as well as
be manifested by animals. . .. They have no reason at all; it is just nature which acts in
them according to the disposition of their organs, just as a clock, which is only com-
posed of wheels and weights.

According to Descartes, language is a power only we humans possess, a power
that sets us apart, in a qualitative, unbridgeable way from everything else there is,
notably from animals and machines. It is the fact that we have language, for Des-
cartes a proxy for reason (logos), that we humans are more than mere matter ex-
tended in space: we are subjects, capable of thought and knowledge.

It is difficult to exaggerate the importance of Discourse on the Method for the
birth of the modern age. It was more than just an argument: it was an obituary for
the medieval nature-cosmos and the birth certificate of a new era: modernity, or
the age of human exceptionalism.

It articulated a new structure of experience, which remained relatively stable
for the subsequent four hundred years:

Here the human, there the world.

Here humans, subjects in a world of objects, thinking and talking things in a
world of mere and mute things, there nature and machines.

Here freedom, knowledge, reason, politics, there nothing but necessity and
mechanism.

Here language, there silence.

Enter GPT-3.

If machines could talk and write, if they had words too, then that would make
untenable the clear-cut distinction between human and non-human things (ani-
mals and machines) that has defined the modern Western experience of self and
the world ever since the early seventeenth century. If language were no longer
exclusive to humans, then comprehension of reality that silently structures the
modern understanding and experiencing of the world would no longer hold. The
logical presupposition on which that structure was dependent — that only humans
have words — would be false.
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Arguably, a machine with words is something our classical modern ontology
cannot accommodate: it cannot be subsumed under our modern understanding
of what it is to be human — or of what machines are — without disrupting it.

Or am I overstating the importance of GPT-3?

Critique (Meaning)

I understand that there are those who judge me to be naive. I am thinking of the
many critics who have rejected, often with vehemence, the idea that GPT-3 really
has words. When I worked through these critics, I found myself struck by the rec-
ognition that, no matter how diverse their background, they almost all offer a ver-
sion of a single argument, which roughly goes like this: no matter how good GPT-
3 appears to be at using words, it does not have true language; it is just a technical
system made up of data, statistics, and predictions.

If one asks the critics what true here refers to, the common answer is under-
standing meaning." What though does meaning, what does understanding, refer to?
Why, and in what sense, does GPT-3 or other LLMs not have it?

I found the most insightful and articulate voice among the critics to be linguist
Emily Bender. In a recent podcast, discussing her critique of LLMs generally, she
explained her position in terms of an analogy with machine vision:

Vision. There is something both about perception, so how does the eye and the ocu-
lar nerve ... what happens when the light hits the retina and then what happens in the
brain that’s processing it to create maybe some sort of representation that just has to
do with the visual stimulus? But then that gets connected to categories of things. So
vision is not just about physics and perception and stuff like that. It is also about cate-
gories and ontologies and how we understand our world.*

Bender argues that vision is made up of two intertwined aspects. On the one
hand is the physical and chemical reality of the act of seeing, the proper domain of
the natural sciences. On the other is what she calls the “categories and ontologies
and how we understand our world.”

This latter aspect is of its own kind and lays beyond the physical realities of na-
ture and thus beyond the reach of the natural sciences: it is the proper realm of the
human, constituted by our capacity to invent meaning, to organize objects that
surround us by assigning them meaning, a process that produces “our world.”

And language?

In analogy to her description of vision, Bender understands language as a com-
bination of a formal, quasi-mechanical aspect that can be studied by science, and
adomain that lies beyond the reach of the natural sciences or engineering: the do-
main of meaning. As she put it in a paper published with computational linguist
Alexander Koller:
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We take form to be any observable realization of language: marks on a page, pixels
or bytes in a digital representation of text, or movements of the articulators. We take
meaning to be the relation between the form and something external to language.3

It is from this vantage point that she criticizes LLMs: they are trained on form and
hence will fail when it comes to meaning. As she says in the podcast:

So, what do we mean by meaning? ... [With] alanguage model ... the only input data
it has is the form of language . . . that’s all it sees. And meaning is a relationship be-
tween those linguistic forms and something outside of language.

According to Bender, the intersubjective, intentional production and negoti-
ation of that language is a quality unique to humans. Non-humans have “a priori
no way to learn meaning.” Whenever we think otherwise - whenever we assume
that animals or machines have that ability too — we are mistaken. “Our singular
human understanding” may trick us into believing that animals or LLMs have lan-
guage and hence meaning too. But they do not. As a recent paper Bender cowrote
putsit:

Contrary to how it may seem when we observe its output, alanguage model is a system
for haphazardly stitching together sequences of linguistic forms it has observed in its
vast training data, according to probabilistic information about how they combine,
but without any reference to meaning: a stochastic parrot.4

Here the human, singular subject in a world of objects, there physics, chemis-
try, nerves, stimuli, machines, algorithms, parrots.

Here the human, there everything else.

If I add up the remarks offered by Bender — and by most other critics of GPT-3
— L arrive at remarkable ontological descriptions of what humans are, of what the
role of humans in the world is: Being human unfolds outside the realm of nature
and the natural sciences, outside the realm of all the things that are reducible to
the mechanical or to physics and chemistry. The way in which we humans man-
age being outside of nature — being irreducible to mere mechanism or instinct — is
the intentional invention of meaning: we are intentional subjects who can make
things into objects of thought by assigning and negotiating meaning. Inventing
meaning is the human way of being in the world: it enables us to organize things,
allows us to jointly produce worlds. Generally, meaning is arbitrary. Things do not
have meaning in themselves; they must be endowed with meaning, and only hu-
mans can do that.

Because only humans can have language or words, any claim that machines
have language is, ultimately, an ontological error insofar as it assigns qualities of
one ontological area (humans) to another one (animals or machines). This on-
tological error is problematic insofar as it compromises what humans can be: it
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reduces us to machines or to mere mechanism. To defend humans against ma-
chines — machines like GPT-3 - is thus to defend an ontological, moral, and some-
how timeless order.

In short, at the core of the suggestion that GPT-3 does not have understanding
or meaning is an ontological claim about what language is, a claim grounded in
definite statements about what humans are (subjects, things with words) and also
about what animals and machines are (objects, things without words).

The force of Bender’s critique, which I take to be exemplary of most critics of
GPT-3, depends on whether this ontological claim holds. Does it ?

One way of addressing this question is to ask: When and under what circum-
stances did the idea that language is about meaning, and that only existentially
situated subjects can have words, first emerge ? What sets this concept apart from
prior conceptualizations? What shifts and transformations in a conceptual un-
derstanding of the world - of humans and of language — had to occur for the on-
tology defended by the critics of GPT-3 to become possible?

A Brief History of Words (and Humans)

In rough strokes, there have been three epochs in the history of how humans un-
derstand language and experience the capacity to speak: I call them ontology
(words and being), representation (words and things), and existence (words and
meaning).

Words and being. Most ancient and medieval authors took it for granted that
visible reality is a mere reflection of invisible ideas generated by a divine logos:
the things we see or can touch were considered imprecise, steadily changing de-
rivatives of something unchanging and eternal. The path toward understanding,
thus, was hardly a study of the visible, of haptic, empirical things. On the con-
trary, the only way to comprehend how reality is organized was a contemplation
of the invisible.

One privileged form contemplation took was a careful analysis of language.
The reason for this was the conviction that humans had language (logos) only in-
sofar as they had received a spark of the divine logos — a divine logos that also or-
ganized reality: intrinsic in language was thus a path toward the real. All that was
necessary was for humans to direct their thinking to the structure of language and
thought (logos).

As Aristotle puts it in his Peri Hermeneias:

Spoken words are the symbols of mental experience and written words are the sym-
bols of spoken words. Just as all men have not the same writing, so all men have not
the same speech sounds, but the mental experiences, which these directly symbolize,
are the same for all, as also are those things of which our experiences are the images.
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The sounds humans conventionalize into nouns or verbs differ, Aristotle ar-
gues, but the structure of language is — must be - the same for all humans. After
all, it is a direct reflection of the divine logos.

Aristotle’s assumption that language is the path to understanding being — that
there is a direct correlation between words and things — builds directly on Plato’s
theory of ideas, and remained the unchallenged reference for well over a thousand
years. Things only began to change around 1300.

Words and things. The parting ways of words and things was a gradual and cumu-
lative process. Its earliest indicator was the emergence of nominalism in the early
fourteenth century, in the works of Peter Abelard and William von Ockham. Inde-
pendently from one another, the two clerics wondered if perhaps words are not in
reality arbitrary conventions invented by humans, rather than the way to true being.

Atleast in retrospect, the importance of nominalism was that it seemed to im-
ply that things could perhaps exist independent from words. For Aristotle and
Plato, the really real was immaterial. In the aftermath of Abelard and von Ockham,
this began to change. Reality was increasingly defined in empirical terms:

Call it a sweeping shift in the experience of what reality is — a shift from the in-
visible to the visible, from the abstract to the concrete.

One effect of this shift in the comprehension of reality was the emergence of a
new problem: If things were independent of words, if reality could not be under-
stood in terms of an abstract reflection about language, then how is knowledge
possible? How can humans get to know the natural world that surrounds them?
Can they?

The effort to answer this question amounted to the invention of a whole new
comprehension of both reality and knowledge, in physical rather than in meta-
physical, in empirical rather than in contemplative terms.

The two most prominent authors of this form-giving, new-age-defining inven-
tion were Thomas Hobbes on the one hand and René Descartes on the other. As
if coordinating their efforts across a distance, they in parallel argued that what
set humans apart from mere nature (now understood as the realm of animals and
plants) was their capacity for empirical knowledge — and insisted that the key to
this new kind of knowledge was in fact language. Though in sharp contrast to
their scholastic contemporaries, they no longer thought of language in terms of
a divine logos but rather as a human-unique tool for naming and ordering reali-
ty. The French and the English philosopher bid their farewell to the idea that lan-
guage is the major path to being and instead rethought it in terms of representa-
tion. To quote Hobbes:

By the advantage of names it is that we are capable of science, which beasts for want
of them, are not; nor man without. ... A name is a word taken at pleasure to serve for a
mark, which may raise in our mind a thought like to some thought we had before, and
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which, being pronounced to others, may be a sign to them of what thought the speaker
had, or had not, before in his mind.

For Hobbes, language was arbitrary, and precisely because it was arbitrary, it
was a powerful tool for naming things and for building a systematic representa-
tion of the outside world. Through language (representation) we store, organize,
and examine our experiences or ideas.

would like to bring into focus the quite radical conceptual difference between

the early modern and the ancient concept of language : what separates the for-

mer from the latter is hardly progress. As if all that was needed was to think
alittle harder and a little longer, and then one would suddenly recognize that lan-
guage is not the path to understanding being. In fact, the ancients thought pretty
hard and pretty long. Their research was as rigorous and careful as could be. Rath-
er, what separates Plato or Aristotle from Descartes or Hobbes or Locke is a series
of sweeping conceptual transformations that led to a whole new experience and
understanding of reality: and this new understanding of reality was simply un-
thinkable from within the concept - the epistemic — space available to ancients.

Words and meaning. It is difficult today to appreciate that humans who lived be-
fore 1700 did not think of themselves as individuals. Before that time, the truth
about a given human being was sought in that which they have in common with
types: Choleric? Melancholic? Sanguine? It was only in the course of the eigh-
teenth century that the idea emerged that what defined someone is that in which
they differ from anyone else: their individuality.

Historians have explained the gradual ascendance of individuality with the col-
lapse of feudalism, provoked by both the Enlightenment and a nascent industrial
revolution. The Enlightenment, the argument goes, steadily undermined the reli-
gious institutions and their grip over life, and the industrial revolution provoked a
younger generation to leave the countryside for the city, trading a life in the family
compound for an ultimately individual pursuit. The coming together of these two
developments was an early version of the lonely crowd: individuals cut loose from
their families and their villages, alienated from the beliefs they had grown up with.

One of the outcomes of these developments — call it the incidental rise of indi-
vidualism and city life — was the sudden appearance, seemingly out of nowhere,
of reflections about the subjective, inner experiences in the form of diaries, auto-
biographies, and letters.

This discovery of interiority and subjectivity is a fascinating chapter in the his-
tory of humanity. Prior to the second half of the eighteenth century, documenta-
tions of subjectivity written up for their own sake are practically absent: Clerics
may have written highly stylized accounts of conversion experiences or confes-
sions. But deeply individual or circumstantial reflections about the ups and downs
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of everyday human life - from boredom to disease, fear, love or death —are no-
where to be found.

By the end of the nineteenth century, the rise of individualism, the discovery
of subjectivity, and the fading of the grip religious institutions previously had over
life gave rise to the birth of a new branch of philosophy: existentialism. Surprising
as it may sound, conceptualizations of what it is to be human in terms of existence,
in terms of being thrown in a meaningless world, alone, with questions but with-
out answers, cannot be found before the late nineteenth century.

And language?

The emergence of subjectivity ultimately resulted in a whole new understand-
ing of language. The form-giving author of this new understanding was Ernst
Cassirer.

Beginning shortly after the turn of the century, Cassirer set out to cut loose
modern philosophy from the epistemological project that until then had defined
it, and sought instead to ground it in terms of existence. His point of departure
was Kant. Kant’s “Copernican revolution” suggested that human experience -
and hence knowledge - is contingent on a set of categories. As Kant saw it, these
categories are transcendental or independent of experience. Put in a formula,
they are the condition of the possibility of experience, not the outcome of experi-
ence. According to Cassirer, Kant got it both right and fundamentally wrong. He
got it right insofar as humans are indeed subjects whose minds can only operate
with the help of categories. But he got it all wrong because these categories are not
transcendental epistemological principles. They are symbols. They are arbitrary
meanings invented and stabilized by humans:

What Cassirer offered was a radically new concept of the human and of
language.

Of the human:

The basic condition of the human was no longer what it had been from Des-
cartes and Hobbes onward: the capacity to know. And the basic question of phi-
losophy was no longer what it had been from Descartes via Hume to Kant: can
humans know ? How ? Instead, the basic condition of humans became now their
existential condition. Humans are simultaneously defined by their finding them-
selves thrown into a meaningless world and their singular capacity to invent
meaning. Call it word-making.

Of language:

At the center of this new conceptualization of what humans are is language.
Language now ceases being primarily about representation, a tool in the process
of producing knowledge, and instead comes into view as a means to produce and
assign and negotiate meaning. Call it world-making. In short, there was a shift
from understanding the subject as capable of knowledge to comprehending the
subject as capable of inventing meaning through language.
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Though no matter how much Cassirer reversed modern philosophy, in one
key respect the existence-meaning configuration did not break with the subject-
knowledge configuration of the early modern period: human exceptionalism.
Humans were still singular and exceptional. They, and they alone, have words,
can think, wonder, make meaning. Here subjects longing for meaning, producing
meaning, there the world of objects, nature and technology, meaninglessness.

summarize my tour de force: The concept of humans and of language upheld

by the critics of GPT-3is neither timeless nor universal. Their claims about what

language is are of recent origin, little more than a century old. They are a histori-
cally situated, specific mode of knowing and thinking that first surfaced in the early
twentieth century and that became possible only through a set of conceptual rup-
tures and shifts that had occurred during the eighteenth and nineteenth centuries.

Two far-reaching consequences follow.

The first is that in prior times, the conceptualization of humans in terms of ex-
istence, and of language in terms of meaning, would have made no sense because
these prior times had different structures of experience and understanding of re-
ality (reality was organized by quite radically different ontologies).

The second is that there is no timeless truth to the concept of the human and
language upheld by critics of GPT-3. It is a historically contingent concept. To
claim otherwise would mean to miss the historicity of the presuppositions on
which the plausibility of the argument is dependent.

To me, the importance of GPT-3 is that it opens up a whole new way of thinking
about language — and about humans and machines — that exceeds the logical poten-
tial of argument that the critics uphold. GPT-3, that is, provides us with the opportu-
nity to think and experience otherwise, in ways that are so new/different that they
cannot be accommodated by how we have thought/experienced thus far.

Once this newness is in the world, the old, I think, can no longer be saved.
Though what is this newness?

Structuralism, Experimental

I think of GPT-3 as engineering in terms of structuralism.

The idea of structuralism —a term coined by Russian-American linguist Ro-
man Jakobson in the 1920s — goes back to a distinction between langue and parole
originally offered a few years earlier by the Swiss linguist Ferdinand de Saussure.

De Saussure observed that most humans tend to think of language in terms of
the act of speaking (parole). From this perspective, language is grounded in a human
subject and in a subject’s intentions to communicate information. Alternatively, he
argued, we can think of language as an arbitrary system that exists somewhat in-
dependent of speakers and can be analyzed independent of who speaks (langue).
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One may object, he conceded, that language does not really exist independent
of the individual: that is, situated human subjects and their experiences. How-
ever, it is hard to disagree with the simple observation that we humans are born
into language: into a system that predates any speaker and, in fact, determines the
space of possibility from within which a subject can speak.

To support his argument in favor of a structural approach, de Saussure offered
his famous distinction between signifier (signifi¢) and signified (signifient). It is of-
ten assumed, falsely, to suggest that there is no causal relation between signifier
and the signified, that meaning is arbitrarily assigned to things. Though that point
was already made seven hundred years earlier, by the nominalists. Rather, de Sau-
ssure’s point was that the relation between signifier and signified was subject to
a set of law-like principles that are independent from the subject (the meaning
intended or experienced by a speaker) as well as from the object (actual meaning
that is experienced or the actual thing to which meaning is assigned).

In his words, “language is a system of signs that expresses ideas.”

Put differently, language is a freestanding arbitrary system organized by an inner
combinatorial logic. If one wishes to understand this system, one must discover the
structure of its logic. De Saussure, effectively, separated language from the human.

There is much to be said about the history of structuralism post de Saussure.
However, for my purposes here, it is perhaps sufficient to highlight that every
thinker that came after the Swiss linguist, from Jakobson (who developed Saus-
sure’s original ideas into a consistent research program) to Claude Lévi-Strauss
(who moved Jakobson’s method outside of linguistics and into cultural anthro-
pology) to Michel Foucault (who developed a quasi-structuralist understanding
of history that does not ground in an intentional subject), ultimately has built on
the two key insights already provided by de Saussure: 1) the possibility to under-
stand language, culture, or history as a structure organized by a combinatorial
logics that 2) can be — must be — understood independent of the human subject.

GPT-3, wittingly or not, is an heir to structuralism. Both in terms of the con-
cept of language that structuralism produced and in terms of the antisubject phi-
losophy that it gave rise to. GPT-3 is a machine learning (ML) system that assigns
arbitrary numerical values to words and then, after analyzing large amounts of
texts, calculates the likelihood that one particular word will follow another. This
analysis is done by a neural network, each layer of which analyzes a different as-
pect of the samples it was provided with: meanings of words, relations of words,
sentence structures, and so on. It can be used for translation from one language to
another, for predicting what words are likely to come next in a series, and for writ-
ing coherent text all by itself.

GPT-3, then, is arguably a structural analysis of and a structuralist production of
language. It stands in direct continuity with the work of de Saussure: language
comes into view here as a logical system to which the speaker is merely incidental.
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There are, however, two powerful differences between de Saussure and the
structuralists. The first is that the incidental thing that speaks is not a human; it
is amachine.

All prior structuralists were at home in the human sciences and analyzed what
they themselves considered human-specific phenomena: language, culture, his-
tory, thought. They may have embraced cybernetics, they may have conducted a
formal, computer-based analysis of speech or art or kinship systems. And yet their
focus was on things human, not on machines. GPT-3, in short, extends structural-
ism beyond the human.

The second, in some ways even more far-reaching, difference is that the structur-
alism that informs LLMs like GPT-3 is not a theoretical analysis of something. Quite
to the contrary, it is a practical way of building things. If up until the early 2010s the
term structuralism referred to a way of analyzing, of decoding, of relating to language,
then now it refers to the actual practice of building machines “that have words.”

The work of OpenAI and othe