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Getting AI Right:  
Introductory Notes on AI & Society

James Manyika

NATHAN: Do you know what the Turing Test is?

CALEB: . . . Yeah. I know what the Turing Test is. It’s when a human interacts 
with a computer. And if the human doesn’t know they’re interacting with a 
computer, the test is passed.

NATHAN: And what does a pass tell us?

CALEB: That the computer has artificial intelligence. . . .

NATHAN: You got it. Because if that test is passed, you are dead center of the 
single greatest scientific event in the history of man.

CALEB: If you’ve created a conscious machine, it’s not the history of man. 
It’s the history of gods.

T his dialogue is from an early scene in the 2014 film Ex Machina, in which 
Nathan has invited Caleb to determine whether Nathan has succeeded 
in creating artificial intelligence.1 The achievement of powerful artificial 

general intelligence has long held a grip on our imagination not only for its excit-
ing as well as worrisome possibilities, but also for its suggestion of a new, unchart-
ed era for humanity. In opening his 2021 BBC Reith Lectures, titled “Living with 
Artificial Intelligence,” Stuart Russell states that “the eventual emergence of gen-
eral-purpose artificial intelligence [will be] the biggest event in human history.”2 

Over the last decade, a rapid succession of impressive results has brought wid-
er public attention to the possibilities of powerful artificial intelligence. In ma-
chine vision, researchers demonstrated systems that could recognize objects as 
well as, if not better than, humans in some situations. Then came the games. 
Complex games of strategy have long been associated with superior intelligence, 
and so when AI systems beat the best human players at chess, Atari games, Go, 
shogi, StarCraft, and Dota, the world took notice. It was not just that AIs beat hu-
mans (although that was astounding when it first happened), but the escalating 
progression of how they did it: initially by learning from expert human play, then 
from self-play, then by teaching themselves the principles of the games from the 
ground up, eventually yielding single systems that could learn, play, and win at 
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several structurally different games, hinting at the possibility of generally intelli-
gent systems.3 

Speech recognition and natural language processing have also seen rapid and 
headline-grabbing advances. Most impressive has been the emergence recently 
of large language models capable of generating human-like outputs. Progress in 
language is of particular significance given the role language has always played in 
human notions of intelligence, reasoning, and understanding. While the advanc-
es mentioned thus far may seem abstract, those in driverless cars and robots have 
been more tangible given their embodied and often biomorphic forms. Demon-
strations of such embodied systems exhibiting increasingly complex and autono-
mous behaviors in our physical world have captured public attention.

Also in the headlines have been results in various branches of science in which 
AI and its related techniques have been used as tools to advance research from ma-
terials and environmental sciences to high energy physics and astronomy.4 A few 
highlights, such as the spectacular results on the fifty-year-old protein-folding 
problem by AlphaFold, suggest the possibility that AI could soon help tackle sci-
ence’s hardest problems, such as in health and the life sciences.5

While the headlines tend to feature results and demonstrations of a future to 
come, AI and its associated technologies are already here and pervade our daily 
lives more than many realize. Examples include recommendation systems, search, 
language translators–now covering more than one hundred languages–facial rec-
ognition, speech to text (and back), digital assistants, chatbots for customer ser-
vice, fraud detection, decision support systems, energy management systems, 
and tools for scientific research, to name a few. In all these examples and others, 
AI-related techniques have become components of other software and hardware 
systems as methods for learning from and incorporating messy real-world inputs 
into inferences, predictions, and, in some cases, actions. As director of the Future 
of Humanity Institute at the University of Oxford, Nick Bostrom noted back in 
2006, “A lot of cutting-edge AI has filtered into general applications, often with-
out being called AI because once something becomes useful enough and common 
enough it’s not labeled AI anymore.”6 

As the scope, use, and usefulness of these systems have grown for individual us-
ers, researchers in various fields, companies and other types of organizations, and 
governments, so too have concerns when the systems have not worked well (such 
as bias in facial recognition systems), or have been misused (as in deepfakes), or 
have resulted in harms to some (in predicting crime, for example), or have been 
associated with accidents (such as fatalities from self-driving cars).7 

Dædalus last devoted a volume to the topic of artificial intelligence in 1988, with 
contributions from several of the founders of the field, among others. Much of 
that issue was concerned with questions of whether research in AI was making 
progress, of whether AI was at a turning point, and of its foundations, mathemati-
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cal, technical, and philosophical–with much disagreement. However, in that vol-
ume there was also a recognition, or perhaps a rediscovery, of an alternative path 
toward AI–the connectionist learning approach and the notion of neural nets– 
and a burgeoning optimism for this approach’s potential. Since the 1960s, the 
learning approach had been relegated to the fringes in favor of the symbolic for-
malism for representing the world, our knowledge of it, and how machines can 
reason about it. Yet no essay captured some of the mood at the time better than 
Hilary Putnam’s “Much Ado About Not Very Much.” Putnam questioned the 
Dædalus issue itself: “Why a whole issue of Dædalus? Why don’t we wait until AI 
achieves something and then have an issue?” He concluded: 

Perhaps the optimistic view is right, but I do not see anyone on the scene, in either 
artificial intelligence or inductive logic, who has any interesting ideas about how the 
topic-neutral [general] learning strategy works. When someone does appear with 
such an idea, that will be time for Dædalus to publish an issue on AI.8 

This volume of Dædalus is indeed the first since 1988 to be devoted to artificial 
intelligence. This volume does not rehash the same debates; much else has hap-
pened since, mostly as a result of the success of the machine learning approach 
that was being rediscovered and reimagined, as discussed in the 1988 volume. This 
issue aims to capture where we are in AI’s development and how its growing uses 
impact society. The themes and concerns herein are colored by my own involve-
ment with AI. Besides the television, films, and books that I grew up with, my in-
terest in AI began in earnest in 1989 when, as an undergraduate at the University of 
Zimbabwe, I undertook a research project to model and train a neural network.9 
I went on to do research on AI and robotics at Oxford. Over the years, I have been 
involved with researchers in academia and labs developing AI systems, studying 
AI’s impact on the economy, tracking AI’s progress, and working with others in 
business, policy, and labor grappling with its opportunities and challenges for 
society.10

The authors of the twenty-five essays in this volume range from AI scientists 
and technologists at the frontier of many of AI’s developments to social scientists 
at the forefront of analyzing AI’s impacts on society. The volume is organized into 
ten sections. Half of the sections are focused on AI’s development, the other half 
on its intersections with various aspects of society. In addition to the diversity in 
their topics, expertise, and vantage points, the authors bring a range of views on 
the possibilities, benefits, and concerns for society. I am grateful to the authors for 
accepting my invitation to write these essays. 

Before proceeding further, it may be useful to say what we mean by artifi-
cial intelligence. The headlines and increasing pervasiveness of AI and its 
associated technologies have led to some conflation and confusion about 
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what exactly counts as AI. This has not been helped by the current trend–among 
researchers in science and the humanities, startups, established companies, and 
even governments–to associate anything involving not only machine learning, 
but data science, algorithms, robots, and automation of all sorts with AI. This 
could simply reflect the hype now associated with AI, but it could also be an ac-
knowledgment of the success of the current wave of AI and its related techniques 
and their wide-ranging use and usefulness. I think both are true; but it has not al-
ways been like this. In the period now referred to as the AI winter, during which 
progress in AI did not live up to expectations, there was a reticence to associate 
most of what we now call AI with AI. 

Two types of definitions are typically given for AI. The first are those that sug-
gest that it is the ability to artificially do what intelligent beings, usually human, 
can do. For example, artificial intelligence is:

the ability of a digital computer or computer-controlled robot to perform tasks com-
monly associated with intelligent beings.11

The human abilities invoked in such definitions include visual perception, 
speech recognition, the capacity to reason, solve problems, discover meaning, 
generalize, and learn from experience. Definitions of this type are considered by 
some to be limiting in their human-centricity as to what counts as intelligence 
and in the benchmarks for success they set for the development of AI (more on 
this later). The second type of definitions try to be free of human-centricity and 
define an intelligent agent or system, whatever its origin, makeup, or method, as:

Any system that perceives its environment and takes actions that maximize its chance 
of achieving its goals.12

This type of definition also suggests the pursuit of goals, which could be given 
to the system, self-generated, or learned.13 That both types of definitions are em-
ployed throughout this volume yields insights of its own. 

These definitional distinctions notwithstanding, the term AI, much to the cha-
grin of some in the field, has come to be what cognitive and computer scientist 
Marvin Minsky called a “suitcase word.”14 It is packed variously, depending on 
who you ask, with approaches for achieving intelligence, including those based on 
logic, probability, information and control theory, neural networks, and various 
other learning, inference, and planning methods, as well as their instantiations in 
software, hardware, and, in the case of embodied intelligence, systems that can 
perceive, move, and manipulate objects.

T hree questions cut through the discussions in this volume: 1) Where are 
we in AI’s development? 2) What opportunities and challenges does AI 
pose for society? 3) How much about AI is really about us? 
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Where are we in AI’s development?

Notions of intelligent machines date all the way back to antiquity.15 Philosophers, 
too, among them Hobbes, Leibnitz, and Descartes, have been dreaming about AI 
for a long time; Daniel Dennett suggests that Descartes may have even anticipat-
ed the Turing Test.16 The idea of computation-based machine intelligence traces 
to Alan Turing’s invention of the universal Turing machine in the 1930s, and to 
the ideas of several of his contemporaries in the mid-twentieth century. But the 
birth of artificial intelligence as we know it and the use of the term is generally 
attributed to the now famed Dartmouth summer workshop of 1956. The work-
shop was the result of a proposal for a two-month summer project by John Mc-
Carthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon whereby “An 
attempt will be made to find how to make machines use language, form abstrac-
tions and concepts, solve kinds of problems now reserved for humans, and im-
prove themselves.”17

In their respective contributions to this volume, “From So Simple a Beginning: 
Species of Artificial Intelligence” and “If We Succeed,” and in different but com-
plementary ways, Nigel Shadbolt and Stuart Russell chart the key ideas and devel-
opments in AI, its periods of excitement as well as the aforementioned AI winters. 
The current AI spring has been underway since the 1990s, with headline-grabbing 
breakthroughs appearing in rapid succession over the last ten years or so: a period 
that Jeffrey Dean describes in the title of his essay as a “golden decade,” not only 
for the pace of AI development but also its use in a wide range of sectors of society, 
as well as areas of scientific research.18 This period is best characterized by the ap-
proach to achieve artificial intelligence through learning from experience, and by 
the success of neural networks, deep learning, and reinforcement learning, together 
with methods from probability theory, as ways for machines to learn.19 

A brief history may be useful here: In the 1950s, there were two dominant vi-
sions of how to achieve machine intelligence. One vision was to use computers to 
create a logic and symbolic representation of the world and our knowledge of it 
and, from there, create systems that could reason about the world, thus exhibit-
ing intelligence akin to the mind. This vision was most espoused by Allen Newell 
and Hebert Simon, along with Marvin Minsky and others. Closely associated with 
it was the “heuristic search” approach that supposed intelligence was essential-
ly a problem of exploring a space of possibilities for answers. The second vision 
was inspired by the brain, rather than the mind, and sought to achieve intelligence 
by learning. In what became known as the connectionist approach, units called 
perceptrons were connected in ways inspired by the connection of neurons in 
the brain. At the time, this approach was most associated with Frank Rosenblatt. 
While there was initial excitement about both visions, the first came to dominate, 
and did so for decades, with some successes, including so-called expert systems. 
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Not only did this approach benefit from championing by its advocates and plen-
tiful funding, it came with the suggested weight of a long intellectual tradition–
exemplified by Descartes, Boole, Frege, Russell, and Church, among others–that 
sought to manipulate symbols and to formalize and axiomatize knowledge and 
reasoning. It was only in the late 1980s that interest began to grow again in the sec-
ond vision, largely through the work of David Rumelhart, Geoffrey Hinton, James 
McClelland, and others. The history of these two visions and the associated philo-
sophical ideas are discussed in Hubert Dreyfus and Stuart Dreyfus’s 1988 Dædalus 
essay “Making a Mind Versus Modeling the Brain: Artificial Intelligence Back at 
a Branchpoint.”20 Since then, the approach to intelligence based on learning, the 
use of statistical methods, back-propagation, and training (supervised and unsu-
pervised) has come to characterize the current dominant approach.

Kevin Scott, in his essay “I Do Not Think It Means What You Think It Means: 
Artificial Intelligence, Cognitive Work & Scale,” reminds us of the work of Ray 
Solomonoff and others linking information and probability theory with the idea 
of machines that can not only learn, but compress and potentially generalize what 
they learn, and the emerging realization of this in the systems now being built and 
those to come. The success of the machine learning approach has benefited from 
the boon in the availability of data to train the algorithms thanks to the growth in 
the use of the Internet and other applications and services. In research, the data 
explosion has been the result of new scientific instruments and observation plat-
forms and data-generating breakthroughs, for example, in astronomy and in ge-
nomics. Equally important has been the co-evolution of the software and hard-
ware used, especially chip architectures better suited to the parallel computations 
involved in data- and compute-intensive neural networks and other machine 
learning approaches, as Dean discusses.

Several authors delve into progress in key subfields of AI.21 In their essay, “Search-
ing for Computer Vision North Stars,” Fei-Fei Li and Ranjay Krishna chart devel-
opments in machine vision and the creation of standard data sets such as ImageNet 
that could be used for benchmarking performance. In their respective essays “Hu-
man Language Understanding & Reasoning” and “The Curious Case of Common-
sense Intelligence,” Chris Manning and Yejin Choi discuss different eras and ideas 
in natural language processing, including the recent emergence of large language 
models comprising hundreds of billions of parameters and that use transformer 
architectures and self-supervised learning on vast amounts of data.22 The result-
ing pretrained models are impressive in their capacity to take natural language 
prompts for which they have not been trained specifically and generate human-like 
outputs, not only in natural language, but also images, software code, and more, 
as Mira Murati discusses and illustrates in “Language & Coding Creativity.” Some 
have started to refer to these large language models as foundational models in that 
once they are trained, they are adaptable to a wide range of tasks and outputs.23 But 
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despite their unexpected performance, these large language models are still early 
in their development and have many shortcomings and limitations that are high-
lighted in this volume and elsewhere, including by some of their developers.24 

In “The Machines from Our Future,” Daniela Rus discusses the progress in 
robotic systems, including advances in the underlying technologies, as well as in 
their integrated design that enables them to operate in the physical world. She 
highlights the limitations in the “industrial” approaches used thus far and sug-
gests new ways of conceptualizing robots that draw on insights from biological 
systems. In robotics, as in AI more generally, there has always been a tension as to 
whether to copy or simply draw inspiration from how humans and other biologi-
cal organisms achieve intelligent behavior. Elsewhere, AI researcher Demis Hassa-
bis and colleagues have explored how neuroscience and AI learn from and inspire 
each other, although so far more in one direction than the other, as Alexis Baria 
and Keith Cross have suggested.25

Despite the success of the current approaches to AI, there are still many short-
comings and limitations, as well as conceptually hard problems in AI.26 It is useful 
to distinguish on one hand problematic shortcomings, such as when AI does not 
perform as intended or safely, or produces biased or toxic outputs that can lead to 
harm, or when it impinges on privacy, or generates false information about the 
world, or when it has characteristics such as lack of explainability, all of which 
can lead to a loss of public trust. These shortcomings have rightly captured the at-
tention of the wider public and regulatory bodies, as well as researchers, among 
whom there is an increased focus on technical AI and ethics issues.27 In recent 
years, there has been a flurry of efforts to develop principles and approaches to re-
sponsible AI, as well as bodies involving industry and academia, such as the Part-
nership on AI, that aim to share best practices.28 Another important shortcoming 
has been the significant lack of diversity–especially with respect to gender and 
race–in the people researching and developing AI in both industry and academia, 
as has been well documented in recent years.29 This is an important gap in its own 
right, but also with respect to the characteristics of the resulting AI and, conse-
quently, in its intersections with society more broadly. 

On the other hand, there are limitations and hard problems associated with 
the things that AI is not yet capable of that, if solved, could lead to more power-
ful, more capable, or more general AI. In their Turing Lecture, deep learning pio-
neers Yoshua Bengio, Yann LeCun, and Geoffrey Hinton took stock of where deep 
learning stands and highlighted its current limitations, such as the difficulties 
with out-of-distribution generalization.30 In the case of natural language process-
ing, Manning and Choi highlight the hard challenges in reasoning and common-
sense understanding, despite the surprising performance of large language mod-
els. Elsewhere, computational linguists Emily Bender and Alexander Koller have 
challenged the notion that large language models do anything resembling under-
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standing, learning, or meaning.31 In “Multi-Agent Systems: Technical & Ethical 
Challenges of Functioning in a Mixed Group,” Kobi Gal and Barbara Grosz dis-
cuss the hard problems in multi-agent systems, highlighting the conceptual diffi-
culties–such as how to reason about other agents, their belief systems, and inten-
tionality–as well as ethical challenges in both cooperative and competitive set-
tings, especially when the agents include both humans and machines. Elsewhere, 
Allan Dafoe and others provide a useful overview of the open problems in cooper-
ative AI.32 Indeed, there is a growing sense among many that we do not have ade-
quate theories for the sociotechnical embedding of AI systems, especially as they 
become more capable and the scope of societal use expands. 

And although AI and its related techniques are proving to be powerful tools for 
research in science, as examples in this volume and elsewhere illustrate–including 
recent examples in which embedded AI capabilities not only help evaluate results 
but also steer experiments by going beyond heuristics-based experimental design 
and become what some have termed “self-driving laboratories”33–getting AI to 
understand science and mathematics and to theorize and develop novel concepts 
remain grand challenges for AI.34 Indeed the possibility that more powerful AI 
could lead to new discoveries in science, as well as enable game-changing progress 
in some of humanities greatest challenges and opportunities, has long been a key 
motivation for many at the frontier of AI research to build more capable systems. 

Beyond the particulars of each subfield of AI, the list of more general hard prob-
lems that continue to limit the possibility of more capable AI includes one-shot 
learning, cross-domain generalizations, causal reasoning, grounding, complexities 
of timescales and memory, and meta-cognition.35 Consideration of these and other 
hard problems that could lead to more capable systems raises the question of wheth-
er current approaches–mostly characterized by deep learning, the building of larger 
and larger and more foundational and multimodal models, and reinforcement learn-
ing–are sufficient, or whether entirely different conceptual approaches are needed 
in addition, such as neuroscience-inspired cognitive agent approaches or semantic 
representations or reasoning based on logic and probability theory, to name a few. 
On whether and what kind of additional approaches might be needed, the AI com-
munity is divided, but many believe the current approaches36 along with further 
evolution of compute and learning architectures have yet to reach their limits.37 

The debate about the sufficiency of the current approaches is closely associ-
ated with the question of whether artificial general intelligence can be achieved, 
and if so, how and when. Artificial general intelligence (AGI) is defined in distinction 
to what is sometimes called narrow AI: that is, AI developed and fine-tuned for spe-
cific tasks and goals, such as playing chess. The development of AGI, on the other 
hand, aims for more powerful AI–at least as powerful as humans–that is gener-
ally applicable to any problem or situation and, in some conceptions, includes the 
capacity to evolve and improve itself, as well as set and evolve its own goals and 
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preferences. Though the question of whether, how, and when AGI will be achieved 
is a matter for debate, most agree that its achievement would have profound im-
plications–beneficial and worrisome–for humanity, as is often depicted in pop-
ular books38 and films such as 2001: A Space Odyssey through Terminator and The 
Matrix to Ex Machina and Her. Whether it is imminent or not, there is growing 
agreement among many at the frontier of AI research that we should prepare for 
the possibility of powerful AGI with respect to safety and control, alignment and 
compatibility with humans, its governance and use, and the possibility that mul-
tiple varieties of AGI could emerge, and that we should factor these considerations 
into how we approach the development of AGI. 

Most of the investment, research and development, and commercial activi-
ty in AI today is of the narrow AI variety and in its numerous forms: what Nigel 
Shadbolt terms the speciation of AI. This is hardly surprising given the scope for 
useful and commercial applications and the potential for economic gains in mul-
tiple sectors of the economy.39 However, a few organizations have made the de-
velopment of AGI their primary goal. Among the most well-known of these are 
DeepMind and OpenAI, each of which has demonstrated results of increasing 
generality, though still a long way from AGI. 

What opportunities and challenges does AI pose for society? 

Perhaps the most widely discussed societal impact of AI and automation is on jobs 
and the future of work. This is not new. In 1964, in the wake of the era’s excitement 
about AI and automation, and concerns about their impact on jobs, President Lyn-
don Johnson empaneled a National Commission on Technology, Automation, 
and Economic Progress.40 Among the commission’s conclusions was that such 
technologies were important for economic growth and prosperity and “the ba-
sic fact that technology destroys jobs, but not work.” Most recent studies of this 
effect, including those I have been involved in, have reached similar conclusions 
and that over time, more jobs are gained than are lost. These studies highlight that 
it is the sectoral and occupational transitions, the skill and wage effects–not the 
existence of jobs broadly–that will present the greatest challenges.41 In their es-
say “Automation, AI & Work,” Laura Tyson and John Zysman discuss these im-
plications for work and workers. Michael Spence goes further, in “Automation, 
Augmentation, Value Creation & the Distribution of Income & Wealth,” to dis-
cuss the distributional issues with respect to income and wealth within and be-
tween countries, as well as the societal opportunities that are created, especially in 
developing countries. In “The Turing Trap: The Promise & Peril of Human-Like 
Artificial Intelligence,” Erik Brynjolfsson discusses how the use of human bench-
marks in the development of AI runs the risk of AI that substitutes for, rather than 
complements, human labor. He concludes that the direction AI’s development 
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will take in this regard, and resulting outcomes for work, will depend on the in-
centives for researchers, companies, and governments.42 

Still, a concern remains that the conclusion that more jobs will be created 
than lost draws too much from patterns of the past and does not look far enough 
into the future and at what AI will be capable of. The arguments for why AI could 
break from past patterns of technology-driven change include: first, that unlike 
in the past, technological change is happening faster and labor markets (includ-
ing workers) and societal systems’ ability to adapt are slow and mismatched; and 
second, that, until now, automation has mostly mechanized physical and routine 
tasks, but that going forward, AI will be taking on more cognitive and nonroutine 
tasks, creative tasks, tasks based on tacit knowledge, and, if early examples are 
any indication, even socioempathic tasks are not out of the question.43 In other 
words, “There are now in the world machines that think, that learn and that cre-
ate. Moreover, their ability to do these things is going to increase rapidly until–in 
a visible future–the range of problems they can handle will be coextensive with 
the range to which the human mind has been applied.” This was Herbert Simon 
and Allen Newell in 1957.44

Acknowledging that this time could be different usually elicits two responses: 
First, that new labor markets will emerge in which people will value things done 
by other humans for their own sake, even when machines may be capable of doing 
these things as well as or even better than humans. The other response is that AI 
will create so much wealth and material abundance, all without the need for hu-
man labor, and the scale of abundance will be sufficient to provide for everyone’s 
needs. And when that happens, humanity will face the challenge that Keynes once 
framed: “For the first time since his creation man will be faced with his real, his 
permanent problem–how to use his freedom from pressing economic cares, how 
to occupy the leisure, which science and compound interest will have won for him, 
to live wisely and agreeably and well.”45 However, most researchers believe that 
we are not close to a future in which the majority of humanity will face Keynes’s 
challenge, and that until then, there are other AI- and automation-related effects 
that must be addressed in the labor markets now and in the near future, such as in-
equality and other wage effects, education, skilling, and how humans work along-
side increasingly capable machines–issues that Laura Tyson and John Zysman, 
Michael Spence, and Erik Brynjolfsson discuss in this volume.

Jobs are not the only aspect of the economy impacted by AI. Russell provides a 
directional estimate of the potentially huge economic bounty from artificial gen-
eral intelligence, once fully realized: a global GDP of $750 trillion, or ten times 
today’s global GDP. But even before we get to fully realized general-purpose AI, 
the commercial opportunities for companies and, for countries, the potential pro-
ductivity gains and economic growth as well as economic competitiveness from 
narrow AI and its related technologies are more than sufficient to ensure intense 
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pursuit and competition by companies and countries in the development, deploy-
ment, and use of AI. At the national level, while many believe the United States is 
ahead, it is generally acknowledged that China is fast becoming a major player in 
AI, as evidenced by its growth in AI research, infrastructure, and ecosystems, as 
highlighted in several reports.46 Such competition will likely have market struc-
ture effects for companies and countries, given the characteristics of such tech-
nologies as discussed by Eric Schmidt, Spence, and others elsewhere.47 Moreover, 
the competitive dynamics may get in the way of responsible approaches to AI and 
issues requiring collective action (such as safety) between competitors, whether 
they are companies or countries, as Amanda Askell, Miles Brundage, and Gillian 
Hadfield have highlighted.48

Nations have reasons beyond the economic to want to lead in AI. The role of 
AI in national security–in surveillance, signals intelligence, cyber operations, de-
fense systems, battle-space superiority, autonomous weapons, even disinforma-
tion and other forms of sociopolitical warfare–is increasingly clear. In “AI, Great 
Power Competition & National Security,” Eric Schmidt, who cochaired the U.S. 
National Security Commission on Artificial Intelligence, paints a stark picture of 
current and future risks that AI technologies pose to international security and 
stability. Schmidt calls for the exploration of shared limits and treaties on AI, even 
among rivals. Short of that, he points to confidence-building measures to limit 
risks and increase trust.49 At the same time, Russell and Shadbolt, respectively, 
spotlight concerns regarding autonomous weapons and weaponized AI.

In “The Moral Dimension of AI-Assisted Decision-Making: Some Practical 
Perspectives from the Front Lines,” former Secretary of Defense Ash Carter iden-
tifies lessons for AI drawn from other national security-related technologies, such 
as nuclear weapons, while focusing on the ethics of automated decision-making. 
However, there are important differences between AI and nuclear technologies: 
for example, AI’s development has been led by a private sector in pursuit of global 
opportunities. And, as Schmidt points out, AI technologies in their development 
and use have network effects and tend to consolidate around those who lead in 
their development, whether they are companies or countries. This pits commer-
cial and economic interests for companies and countries on one hand, and the na-
tional security interests of countries on the other.50 Not fully explored in this vol-
ume are the implications for companies (as well as other types of organizations) 
and countries not at the forefront of AI’s development but that could benefit from 
its use. This is of particular significance given that many have highlighted the po-
tential for AI and its related technologies to contribute, along with other social 
and developmental efforts, to tackling many current and future global and socie-
tal challenges.51 The COVID-19 pandemic has given us a live example of the human 
cost when countries at the forefront of a globally valuable discovery, such as a vac-
cine, do not or are slow to share it with poorer parts of the world. 
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As the use of AI has grown to encompass not only consumer applications and 
services, but also those in health care, financial services, public services, and com-
merce generally, it has in many instances improved effectiveness and decision 
quality and enabled much-needed cost and performance optimization. At the same 
time, in some cases, the use of algorithms has led to issues of bias and fairness, of-
ten the result of bias in the training data and the societal systems through which 
such data are collected.52 Sonia Katyal uses examples from facial recognition, po-
licing, and sentencing to argue in “Democracy & Distrust in an Era of Artificial 
Intelligence” that, when there is an absence of representation and participation, 
AI-powered systems carry the same risks and potential for distrust as political sys-
tems. In “Distrust of Artificial Intelligence: Sources & Responses from Comput-
er Science & Law,” Cynthia Dwork and Martha Minow highlight the absence of 
ground truth and what happens when utility for users and commercial interests 
are at odds with considerations of privacy and the risks of societal harms.53 In light 
of these concerns, as well as the beneficial possibilities of AI, Mariano-Florentino 
Cuéllar, a former California Supreme Court Justice, and Aziz Huq frame how we 
might achieve the title of their essay: artificially intelligent regulation. 

It is easy to see how governments and organizations in their desire to observe, 
analyze, and optimize everything would be tempted to use AI to create increas-
ingly powerful “seeing rooms.” In “Socializing Data,” Diane Coyle discusses the 
history and perils of seeing rooms, even when well intentioned, and the problems 
that arise when markets are the primary mechanism for how AI uses social data. 
For governments, the opportunity to use AI to improve the delivery and effective-
ness of public services is also hard to ignore. In her essay “Rethinking AI for Good 
Governance,” Helen Margetts asks what a public sector AI would look like. She 
draws on public sector examples from different countries to highlight key chal-
lenges, notably those related to issues like resource allocation, that are more “nor-
matively loaded” in the public sector than they are for firms. She concludes by 
exploring how and in which areas governments can make the most ambitious and 
societally beneficial use of AI. 

How much about AI is really about us? 

At the end of her essay, Katyal quotes J. David Bolter from his 1984 Dædalus essay: 
“I think artificial intelligence will grow in importance as a way of looking at the 
human mind, regardless of the success of the programs themselves in imitating 
various aspects of human thought.” Taking this suggestion, one can ask various 
kinds of questions about us using the mirror AI provides, especially as it becomes 
more capable: What does it mean to be intelligent, creative, or, more generally, 
cognitively human when many of the ways we have defined these characteristics 
of ourselves increasingly can be imitated or even, in the future, done better or 
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better done by machines? How much of being human needs the mystery of not 
knowing how it works, or relies on our inability to mimic it or replicate it artifi-
cially? What happens when this changes? To what extent do our human ability–
bounded conceptions of X (where X could be intelligence, creativity, empathy, re-
lations, and so on) limit the possibility of other forms of X that may complement 
or serve humanity better? To what extent must we reexamine our socioeconomic 
systems and institutions, our social infrastructure, what lies at the heart of our so-
cial policies, at our notions of justice, representation, and inclusion, and face up to 
what they really are (and have been) and what they will need to be in the age of AI?

Their shortcomings notwithstanding, the emergence of large language models 
and their ability to generate human-like outputs provides a “laboratory” of sorts, 
as Tobias Rees calls it, to explore questions about us in an era of increasingly ca-
pable machines. We may have finally arrived at what Dennett suggests at the end 
of his 1988 essay, that “AI has not yet solved any of our ancient riddles . . . but it 
has provided us with new ways of disciplining and extending philosophical imag-
ination that we have only just begun to exploit.”54 Murati explores how humans 
could relate to and work alongside machines when machines can generate out-
puts approaching human-like creativity. She illustrates this with examples gen-
erated by GPT-3, OpenAI’s large language model. The possibilities she describes 
echo what Scott suggests: that we humans may have to rethink our relation to 
work and other creative activities. 

Blaise Agüera y Arcas explores the titular question of his essay “Do Large Lan-
guage Models Understand Us?” through a series of provocations interspersed 
with outputs from LaMDA, Google’s large language model. He asks whether we 
are gatekeeping or constantly moving the goalposts when it comes to notions 
such as intelligence or understanding, even consciousness, in order to retain these 
for ourselves. Pamela McCorduck, in her still-relevant history of the field, Ma-
chines Who Think, first published in 1979, put it thus: “It’s part of the history of the 
field of artificial intelligence that every time somebody figured out how to make 
a computer do something–play good checkers, solve simple but relatively infor-
mal problems–there was a chorus of critics to say, ‘that’s not thinking.’”55 As to 
what machines are actually doing or not actually doing when they appear to be 
thinking, one could ask whether whatever they are doing is different from what 
humans do in any way other than how it is being done. In “Non-Human Words: 
On GPT-3 as a Philosophical Laboratory,” while engaging in current debates about 
the nature of these models, Rees also discusses how conceptions of the human 
have been intertwined with language in different historical eras and considers the 
possibility of a new era in which language is separated from humans. 

In “Signs Taken for Wonders: AI, Art & the Matter of Race,” Michele Elam 
illustrates how, throughout history, socially transformative technologies have 
played a formalizing and codifying role in our conceptions of what constitutes 
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humanity and who the “us” is. In how they are developed, used, and monetized, 
and by whom, she argues that technologies like AI have the effect of universaliz-
ing particular conceptions of what it is to be human and to progress, often at the 
exclusion of other ways of being human and of progressing and knowing, espe-
cially those associated with Black, Latinx, and Indigenous communities and with 
feminist, queer, disability, and decolonial perspectives; further highlighting the 
need for diversity among those involved in AI’s development. Elsewhere, Tim-
nit Gebru has clearly illustrated how, like other technologies with the potential to 
benefit society, AI can also worsen systematic discrimination of already margin-
alized groups.56 In another example of AI as formalizer to ill-effect, Blaise Agüera 
y Arcas, Margaret Mitchell, and Alexander Todorov examine the use of machine 
learning to correlate physical characteristics with nonphysical traits, not unlike 
nineteenth- and twentieth-century physiognomy, and point out the harmful cir-
cular logic of essentialism that can result when AI is used as a detector of traits.57 

Progress in AI not only raises the stakes on ethical issues associated with its 
application, it also helps bring to light issues already extant in society. Many have 
shown how algorithms and automated decision-making can not only perpetuate 
but also formalize and amplify existing societal inequalities, as well as create new 
inequalities.58 In addition, the challenge to remove bias or code for fairness may 
also create the opportunity for society to examine in a new light what it means by 
“fair.”59 Here it is worth recalling Dennett being unimpressed by Putnam’s indict-
ment of AI, that “AI has utterly failed, over a quarter century, to solve problems 
that philosophy has utterly failed to solve over two millennia.”60 Furthermore, 
examining the role of algorithms and automated decision-making and the data 
needed to inform algorithms may shed light on what actually underlies society’s 
goals and policies in the first place, issues that have begun to receive attention in 
the literature of algorithms, fairness, and social welfare.61 In “Toward a Theory 
of Justice for Artificial Intelligence,” Iason Gabriel, drawing on Rawls’s theory of 
justice, explores the intersection of AI and distributive justice by considering the 
role that sociotechnical systems play. He examines issues including basic liberties 
and equality of opportunity to suggest that considerations of distributive justice 
may now need to grapple with the particularities of AI as a technological system 
and that could lead to some novel consequences. 

And as AI becomes more powerful, a looming question becomes how to align AI 
with humans with respect to safety and control, goals and preferences, even values. 
The question of AI and control is as old as the field itself; Turing himself raised it, 
as Russell reminds us. Some researchers believe that concerns about these sorts of 
risks are overblown given the nature of AI, while others believe we are a long way 
away from existential control risks but that research must begin to consider ap-
proaches to the control issue and factor it into how we develop more powerful AI 
systems.62 Russell proposes an approach to alignment and human compatibility 
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that capitalizes on uncertainty in goals and human preferences, and makes use of 
inverse reinforcement learning as a way for machines to learn human preferences. 
Elsewhere, Gabriel has discussed the range of possibilities as to what we mean by 
alignment with AI, with each possibility presenting its own complexities.63 But in 
Gabriel, as in Russell, there are considerable normative challenges involved, along 
with complications due to the plasticity of human preferences. 

In “Artificial Intelligence, Humanistic Ethics,” John Tasioulas argues that de-
signing AI that aligns with human preferences is one thing, but it does not obviate 
the need to determine what those human preferences should be in the first place. 
He challenges the tendency to default to preference utilitarianism and its maximi-
zation by AI developers, as well as by economic and governmental actors (who of-
ten use wealth maximization and GDP as proxies), which leads to market mecha-
nisms dominating solutions at the expense of nonmarket values and mechanisms, 
echoing some of Coyle’s concerns. Here again it seems that the mirror provided by 
more capable AI highlights, and with higher stakes, the unfinished (perhaps never 
to be finished) business of humanistic ethics, not unlike how AI may be pushing 
us to clarify fairness and serving notice that trolley problems are no longer just the 
stuff of thought experiments, since we are building autonomous systems that may 
have to make such choices. 

Throughout the history of AI, we have asked: how good is it now? This ques-
tion has been asked about every application from playing chess or Go, to know-
ing things, performing surgery, driving a car, writing a novel, creating art, inde-
pendently making mathematical conjectures or scientific discoveries, or simply 
having a good bedside manner. In asking the question, it may be useful also to ask: 
compared to what? With an eye toward implications for society, one might com-
pare AI with the humans best at the respective activity. There remain plenty of 
activities in which the “best” humans perform better than AI–as they likely will 
for the foreseeable future–and society is well served by these humans perform-
ing these activities. One might also compare with other samplings of humanity, 
such as the average person employed in or permitted to conduct that activity, or 
a randomly selected human. And here, as AI becomes more capable, is where the 
societal implications get more complicated. For example, do we raise permission 
standards for humans performing safety-critical activities to keep up with ma-
chine capabilities? Similarly, what determines when AI is good enough? A third 
comparison might be with respect to how co-extensive the range of AI capabili-
ties become with those of humans–what Simon and Newell, as mentioned earli-
er, thought would eventually come to pass. How good AI systems become in this 
respect would likely herald the beginning of a new era for us and for society of the 
sort discussed previously. But perhaps the most important comparison is with re-
spect to what we choose to use AI for and what we need AI to be capable of in order 
to benefit society. It would seem that in any such comparisons, along with how we 
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design, develop, and deploy AI, the societal implications are not foregone conclu-
sions, but choices that are up to us. 

I s all this worth it? If not, a logical response might be to stop everything, stop 
further development and deployment of AI, put the curses back in Pandora’s 
box. This hardly seems realistic, given the huge economic and strategic stakes 

and the intense competition that has been unleashed between countries and be-
tween companies, not to mention the usefulness of AI to its users and the tanta-
lizing beneficial possibilities, some already here, for society. My response to the 
question is a conditional yes.

At an AI conference a few years ago, I participated on a panel to which the host, 
Stuart Russell, posed a thought experiment. I forget the exact formulation, or even 
how I responded, but I have come to express it as follows: 

It’s the year 2050, AI has turned out to be hugely beneficial to society and generally 
acknowledged as such. What happened?

This thought experiment aims to elicit the most worthwhile possibilities we 
achieved, the most beneficial opportunities we realized, the hard problems we 
solved, the risks we averted, the unintended consequences, misuses, and abuses 
we avoided, and the downsides we mitigated all in order to achieve the positive 
outcome in a not-too-distant future. In other words, it is a way of asking what we 
need to get right if AI is to be a net benefit to society. 

The essays in this volume of Dædalus highlight many of the things we must get 
right. Drawing from these and other discussions, and a growing literature,64 one 
can compile a long working list65 whose items can be grouped as follows: The first 
group is related to the challenges of building AI powerful and capable enough to 
achieve the exciting beneficial possibilities for humanity, but also safe and with-
out causing or worsening individual or group harms, and able to earn public trust, 
especially where societal stakes are high. A second set of challenges concerns fo-
cusing AI’s development and use where it can make the greatest contributions to 
humanity–such as in health and the life sciences, climate change, overall well-
being, and in the foundational sciences and in scientific discoveries–and to de-
liver net positive socioeconomic outcomes for all people. The all is all-important, 
given the likelihood that without purposeful attention to it, the characteristics of 
the resulting AI and its benefits could accrue to a few individuals, organizations, 
and countries, likely those leading in its development and use. The third group of 
challenges centers on the responsible development, deployment, use, and gover-
nance of AI. This is especially critical given the huge economic and geopolitical 
stakes and the intense competition for leadership in AI that has been unleashed 
between companies and between countries as a result. Not prioritizing responsi-
ble approaches to AI could lead to harmful and unsafe deployment and uses, out-
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right misuses, many more unintended consequences, and destabilizing race con-
ditions among the various competitors. A fourth set of challenges concerns us: 
how we co-evolve our societal systems and institutions and negotiate the com-
plexities of how to be human in an age of increasingly powerful AI. 

Readers of this volume will undoubtedly develop their own perspectives on 
what we collectively must get right if AI is to be a net positive for humanity. While 
such lists will necessarily evolve as our uses and societal experience with AI grow 
and as AI itself becomes more powerful, the work on them must not wait. 

Returning to the question, is this worth it? My affirmative answer is condi-
tioned on confronting and getting right these hard issues. At present, it seems that 
the majority of human ingenuity, effort, and financial and other resources are dis-
proportionately focused on commercial applications and the economic potential 
of AI, and not enough on the other issues that are also critical for AI to be a net ben-
efit to humanity given the stakes. We can change that. 
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“From So Simple a Beginning”:  
Species of Artificial Intelligence 

Nigel Shadbolt

Artificial intelligence has a decades-long history that exhibits alternating enthu-
siasm and disillusionment for the field’s scientific insights, technical accomplish-
ments, and socioeconomic impact. Recent achievements have seen renewed claims 
for the transformative and disruptive effects of AI. Reviewing the history and cur-
rent state of the art reveals a broad repertoire of methods and techniques devel-
oped by AI researchers. In particular, modern machine learning methods have en-
abled a series of AI systems to achieve superhuman performance. The exponential 
increases in computing power, open-source software, available data, and embed-
ded services have been crucial to this success. At the same time, there is growing 
unease around whether the behavior of these systems can be rendered transparent, 
explainable, unbiased, and accountable. One consequence of recent AI accom-
plishments is a renaissance of interest around the ethics of such systems. More gen-
erally, our AI systems remain singular task-achieving architectures, often termed 
narrow AI. I will argue that artificial general intelligence–able to range across 
widely differing tasks and contexts–is unlikely to be developed, or emerge, any 
time soon. 

A rtificial intelligence surrounds us, both as a topic of debate and a de-
ployed technology. AI technologists, engineers, and scientists add to an 
ever-growing list of accomplishments; the fruits of their research are ev-

erywhere. Voice recognition software now goes unremarked upon on our smart-
phones and laptops and is ever present in digital assistants like Alexa and Siri. Our 
faces, fingerprints, gait, voices, and the flight of our fingers across a keypad can all 
be used to identify each and every one of us following the application of AI ma-
chine learning methods. AI increasingly plays a role in every sector of our econ-
omy and every aspect of our daily lives. From driving our cars to controlling our 
critical infrastructure, from diagnosing our illnesses to recommending content 
for our entertainment, AI is ubiquitous.

While pundits, politicians, and public intellectuals all weigh in on the benefits 
and potential harms of AI, its popular image is informed as much by Hollywood 
as Silicon Valley. Our cinematic representations often portray a dystopian future 
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in which sentient machines have risen to oppress human beings. It is an old trope, 
one in which our technology threatens our humanity. 

But it is important to look at the history and current actuality to understand 
what our AI future is likely to be. There are reasons to be optimistic: AI under-
stood from a human-centered perspective augments our intelligence. It will even 
allow us to understand more about our own intelligence. Though, if we do not at-
tend to AI ethics and proper regulation, it certainly has the potential to diminish 
us. 

The title of this essay draws on the closing sentence of Charles Darwin’s mag-
isterial On the Origin of Species. Darwin gave us the means to understand how all 
of life, including self-aware, natural intelligence, has evolved. Evolution works 
over deep time, producing diverse species within rich and varied ecosystems. It 
produces complex systems whose operating and organizational principles we 
struggle to decipher and decode. AI has begun to populate specialist niches of the  
cyber-physical ecosystem, and species of narrow AI are able to master specific 
tasks. However, we face challenges on the same scale as cognitive neuroscientists 
in our quest to realize artificial general intelligence (AGI): systems able to reflectively 
range across widely differing tasks and contexts. Such systems remain the stuff of 
Hollywood films.

A lan Turing’s famous 1950 Mind essay imagined a task in which a human 
evaluator had to determine, via a series of questions and answers be-
tween interlocutors, whether one or the other was in fact a machine.1 

He argued that the point at which this discrimination could not be reliably made 
would represent a watershed. The Turing Test (Turing himself called it the “imi-
tation game”) has assumed mythic status. Arguments rage as to whether it is any-
thing like a sufficient test to determine intelligence. Years earlier, Turing had writ-
ten another seminal paper in which he introduced the idea of a universal Turing 
machine, a formulation that showed that “it is possible to invent a single machine 
which can be used to compute any computable sequence.”2 The promise of this 
proof is the foundation upon which all modern computing devices rest. 

The promise of computability also lay at the heart of the field baptized as  
artificial intelligence at the 1956 Dartmouth workshop. Computer scientist John Mc-
Carthy and his coauthors wrote in the original funding proposal: “The study is to 
proceed on the basis of the conjecture that every aspect of learning or any other 
feature of intelligence can in principle be so precisely described that a machine 
can be made to simulate it.”3

Much of the confidence embodied in the quote from this first era of AI lay in the 
formal and expressive power of logic and mathematics. Computers are grounded 
in Boolean logic, via transistors that implement simple logical functions: AND, 
NAND, OR, and NOR gates. These simple transistors give effect to functions that 
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allow us to build layer upon layer of more complex reasoning. Just two years af-
ter the Dartmouth conference, McCarthy produced LISP, a computer language for 
symbol processing that powered many early AI projects. These projects sought to 
decompose intelligent behavior into sets of functions that manipulated symbols. 
The physical symbol system hypothesis was the confident assertion that “a physical 
symbol system has the necessary and sufficient means for general intelligent ac-
tion.”4 The symbols manipulated were representations of the rules and objects in 
tasks ranging from vision to natural language understanding, planning to game 
playing, theorem-proving to diagnostic reasoning.

By the 1970s, however, AI research ran into some strong headwinds. In the 
United States, Defense Advanced Research Projects Agency (DARPA) funding had 
been substantially reduced from its 1960s levels.5 And in 1973, the United King-
dom saw the publication of the Lighthill report, in which Sir James Lighthill,  
Lucasian Professor of Mathematics at Cambridge University, argued that AI’s 
“grandiose objectives” remained largely unmet, and called for a virtual halt to all 
AI research in Britain.6

It took a decade for funding levels to recover. However, by the 1980s and ear-
ly 1990s, a new domain-oriented strand of AI–that is, knowledge-based or expert 
systems–was commercially successful. These systems once again demonstrated 
the considerable power of rule-based reasoning: systems that build proofs that es-
tablish the facts about a domain, or else attempt to establish whether a statement 
is true given the facts that are known or can be derived. Computers running rule-
based or logic-based languages engage in cycles of forward or backward chaining 
to discover new facts or establish how new goals can be proved. Combined with 
methods of attaching certainty estimates to facts and rules, these systems found 
widespread deployment in sectors from medicine to aerospace, manufacturing to 
logistics.7 

A new economy founded on knowledge-based systems was promised; Japa-
nese, European, and U.S. funding agencies all invested heavily. Companies whose 
focus was on the software environments and hardware to support this knowledge- 
engineering approach flourished. Developments saw new programming ideas 
from AI percolate widely; the inclusion of structured representations–not just 
rules and logical formulas–to represent objects in a domain saw the widespread 
adoption of object-oriented programming methods that are pervasive today.

Unfortunately, inflated expectations and the challenges of maintaining large-
scale knowledge-based systems led to another cycle of disenchantment. Funders 
and the market as well as some researchers in AI felt that “good old-fashioned AI 
(GOFAI)” approaches focused too much on a logicist interpretation of AI; what 
was needed was “nouvelle AI.”8 Increasing numbers of researchers argued that 
we needed to adopt a very different approach if we were really to understand the 
foundations of adaptive intelligent systems. They claimed that the best place to 
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look for these foundations were complex biological systems, in which animals 
possessed nervous systems with sensorimotor capabilities.

This was not a new claim. From the outset, many AI researchers were inspired 
by biological systems. The work of Norbert Wiener in cybernetics, and later Grey 
Walters, Walter Pitts, Warren McCulloch, and Frank Rosenblatt, used the nervous 
system as the base model. In 1958, Rosenblatt developed the perceptron, which 
was intended to model a neuron’s behavior. Neurons receive multiple inputs from 
other connected neurons. The perceptron modeled this by receiving several input 
values. The connection for each input has a weight in the range of zero to one, and 
these values are randomly picked. The perceptron unit then sums the inputs, and 
if the sum exceeds a threshold value, a signal is sent to the output node; otherwise, 
no signal is sent. The perceptron can “learn” by adjusting the weights to approach 
the desired output. It implements an algorithm that classifies input into two pos-
sible categories. Inspired by the way neurons work together in the brain, the per-
ceptron is a single-layer neural network.

In 1969, computer scientists Marvin Minsky and Seymour Papert showed that 
the perceptron was fundamentally limited in the functions it could compute. 
However, it turned out that more complex networks with connected neurons 
over multiple layers overcame these limitations. The mid-1980s saw the emer-
gence of parallel distributed processing (PDP): an influential connectionist ap-
proach that was particularly good for pattern detection.9 The PDP approach re-
lied on the backpropagation algorithm, which determined how a machine should 
change its internal parameters and connection weights between each layer as the 
system was trained. 

At the same time, biologically inspired robotics was taking nature as a tem-
plate for design.10 The goal was to construct complete systems with discrete be-
haviors and with the sensors and effectors that offloaded computational work to 
morphology. Simple animals, insects in particular, were favorite subjects of study. 
These highly successful biological systems would illustrate the methods and tech-
niques that had worked well in real complex environments. Animats were all the 
rage: whether it was artificial crickets, modeled on their biological counterparts 
and who orient based on resonators, tubes through their hind legs that evolved to 
be a particular fraction of a wavelength of the call of a mate, or replicas of Sahara  
Desert ants that have an adaptation to part of their compound eyes, which are sen-
sitive to polarized sky light, giving them directional orientation. The wisdom of 
bodies evolved over deep time continues to inform robotics design.

As AI approached the millennium, it comprised a broad set of methods to rep-
resent and reason about the world, from symbolic rules to knowledge represented 
subsymbolically in network connections. Some of these methods called for build-
ing adaptivity directly into the hardware of systems. The history of AI has con-
stantly intertwined the discovery of new ways to reason and represent the world 
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with new programming languages and engineering paradigms. Computer sci-
ence, in turn, has been enriched by these cycles of development.

Throughout, a fundamental contributor to AI’s progress has been the increas-
ing power of our computing substrate. Moore’s law (processor capacity), Kry-
ders’s law (memory density), and Cooper’s law (communication speed) all tell a 
story of exponential change. The accomplishments of AI and the digital revolution 
owe much to electrical and material engineers. The doubling of computing power, 
storage, and communication speeds every fifteen months has changed everything. 
Methods, techniques, and approaches previously intractable become possible.

As the millennium approached, increasing computing power that drove a 
range of AI methods and techniques allowed for impressive AI methods capable 
of searching huge problem spaces. 

In a game in 1996, and then again in a tournament of six games in 1997, IBM’s 
Deep Blue computer program beat Gary Kasparov, one of the very best chess play-
ers in history. How had this happened? And were the machines going to take over 
from us at the dawn of the new millennium? Twenty-five years ago, the ascen-
dency of AI was announced along with the destruction of jobs and the imminent 
emergence of AGI.

Deep Blue was capable of evaluating one hundred million to two hundred mil-
lion positions per second. Brute computing force, combined with heuristics, or 
rules of thumb, that suggest which part of the search tree is more interesting than 
another, led to uncannily capable behavior. Writing for Time magazine in 1996, 
Kasparov observed: “I had played a lot of computers but had never experienced 
anything like this. I could feel–I could smell–a new kind of intelligence across 
the table.”11 Our attribution of intelligence to the machine is a recurrent feature 
in our relationship with AI technology. The technology can literally unnerve us 
when superhuman performance is achieved. But the fundamental challenge in AI 
was, and remains, transferring ability in one task to another. Could all the insight 
generated and effort expended on Deep Blue be transferred to another task? This 
proved much harder.

The turn of the millennium saw another digital disruption that worked in AI’s 
favor. The largest information asset in the history of humanity, the World Wide 
Web, provided a repository for vast amounts of machine-readable, open data and 
information. A limiting factor throughout the first half of AI’s history had been a 
relative paucity of data. Whether for visual recognition, natural language under-
standing, or medical diagnosis, the data to drive learning in these domains were 
limited and expensive to acquire. The Web and Internet of Things (IoT) complete-
ly changed the situation. Billions of pages of text, billions of images, many of them 
labeled and annotated, and a flood of scientific and social data about every aspect 
of our lives became available as digital resources. Without these data resources, at 
scale, the last two decades of AI progress would have been inconceivable. 
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These data combined with increasingly powerful computers, search, rule-
based systems, methods to learn from structured inputs, natural language under-
standing, and methods to compute confidence values from uncertain inputs to en-
able a new kind of composite AI system. In 2011, IBM announced a new age of cog-
nitive computing with Watson: a system capable of beating the world’s best human 
players not at a circumscribed board game, but at a general knowledge task. 

YouTube videos of a computer competing against the best human players of 
the popular U.S. quiz game Jeopardy make for compelling viewing. In Jeopardy, con- 
testants are presented with general knowledge clues in the form of answers, and 
they must phrase their responses in the form of questions. So, for the clue, “Wanted  
for general evil-ness; last seen at the tower of Barad-dur; it’s a giant eye, folks. 
Kinda hard to miss,” the correct response is “Who is Sauron?” The IBM Watson 
system appeared extraordinarily capable, reeling off question after question rang-
ing over broad areas of knowledge across numerous categories.

This general intelligence could surely be transposed to other domains. Why 
not turn Watson into a physician? Once again, task transfer and generalization 
have turned out to be very difficult. While perhaps more adept at screening and 
triage, a physician’s general problem-solving is full of task and context chang-
es. Rather than replicating accomplished physicians, IBM’s Watson Health has 
turned out AI assistants that can perform in routine tasks.12 

Around the same time that Watson caught the world’s attention, another AI 
capability was emerging, one that has delivered remarkable results. It is a con-
tinuation of the neural networks and connectionist tradition, using systems with 
many more hidden layers: deep neural networks (DNNs) implement highly op-
timized backpropagation algorithms and the principles of supervised, unsuper-
vised, and reinforcement machine learning.

F ounded in the United Kingdom in 2010 and acquired by Google in 2014, 
DeepMind has been a major contributor to the success of DNNs. Build-
ing on the work of researchers such as computer scientist Yann LeCun and 

colleagues, the company has realized a succession of brilliant task-achieving sys-
tems.13 The promise of the DeepMind approach began to emerge with an essay 
showing mastery of a range of arcade games using reinforcement learning.14

In 2014, the AlphaGo project team was formed to test how well DNNs could 
compete at Go. By October 2015, a distributed version of AlphaGo beat European 
Go champion Fan Hui five to zero. The announcement was delayed until January 
27, 2016, to coincide with the publication of the approach in Nature.15 A feature of 
DeepMind’s impact has been the follow-up of each significant achievement with 
peer-reviewed publications in the world’s leading science journals. 

A trio of DeepMind successes was released in rapid succession: AlphaGo, in-
cluding AlphaGo Zero and AlphaZero; AlphaStar, DeepMind’s AI program that 
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became ferociously good at the multiplayer strategy game StarCraft; and Alpha-
Fold, a program that made dramatic inroads into a significant challenge for sci-
ence–protein folding–helping scientists design the drugs of tomorrow.16

As ever, the exponents of hardware were in play. The Deep Blue machine that 
defeated Kasparov was one of the most powerful computers in the world, process-
ing at 11 GigaFLOPS (eleven billion floating-point operations per second). The  
forty-eight tensor processing units that beat Lee Sedol, one of the world’s stron-
gest Go players, in 2016 ran at 11.5 PetaFLOPS, that is, eleven and a half thousand 
million million floating-point operations per second, one million times more 
powerful than Deep Blue.

With these types of DNN architecture, we are beginning to see AI systems aug-
ment, match, and, in some cases, outperform human experts in a whole host of 
tasks. Whether it is picking up underlying health conditions from retinal scans 
or classifying skin lesions as benign or malignant, having been trained on hun-
dreds of thousands of images, DNNs are performing as well as the best human 
experts.17 The methods behind these systems have rapidly become commercial-
ized and commoditized. The major platforms offer cloud-based, machine learn-
ing services. They provide access to arrays of processors for training and running 
machine learning models. Companies invest huge amounts of capital in the de-
velopment and acquisition of special hardware optimized for training and run-
ning machine learning models. Using very large data sets, they use prodigious 
amounts of compute power and energy to train very large neural network mod-
els. Generative Pre-trained Transformer 3 (GPT-3), a current state-of-the-art lan-
guage model, trained on forty-five terabytes of data with 175 billion parameters, 
can be adapted to work on a wide range of tasks.18 The model took huge amounts 
of cloud compute time and millions of dollars to produce. The result is a so-called 
foundations model, trained on broad data at scale and adaptable to a wide range 
of downstream tasks.19 Such models like GPT-3 and BERT will increasingly power 
AI on-demand services.

AI-powered, on-demand services, such as voice, vision, and language recog-
nition, are part of the service landscape from health to retail, finance to farming. 
The unreasonable effectiveness of narrow or task-specific AI has elicited familiar 
concerns, anxious questions about jobs and ethics, sovereign capabilities, market 
concentration, and our own potential redundancy as a species. 

AI systems powered by machine learning methods have been used for pre-
dictive policing, suspect facial recognition, bail setting, and sentencing. But are 
we sure these are fair, nondiscriminatory, and proportionate? In China, AI sys-
tems are being used at scale to assign social credit. Is this supporting good citizens 
in a safe space or is it state surveillance? We can see the ethical issues piling up 
with the application of specific AI capabilities within important societal contexts 
(some of which are explored further in this issue of Dædalus).
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Governments and large-tech companies, NGOs, multilateral organizations, 
think tanks, and universities have been busy writing their various AI ethical codes 
of conduct and practice. An article published in Nature Machine Intelligence in Sep-
tember 2019 presented a meta-analysis of eighty-four codes and ethical guidelines, 
revealing their top concerns.20 The most prevalent of which was transparency,  
understood as efforts to increase explainability, interpretability, or other acts of 
communication and disclosure around AI algorithms. This undoubtedly has a 
great deal to do with the preponderance of DNNs. Layer upon layer of connected 
nodes, huge matrices of weights that somehow encode the decision-making of the 
trained system appear as complex black boxes.

When we are dealing with GOFAI expert systems or theorem-provers, we can 
see the explicit lines of reasoning; rules that can be recapitulated in natural lan-
guage. If the patient has a white blood cell count of less than 2,500, then they have 
a low white blood cell count–such rules are applied in chains of reasoning–and if 
we want to know the reason for the determination of leukopenia (low white blood 
cell count) there it is, explicit and contestable.

The internals of a DNN present a challenge. There has been considerable tech-
nical work to explicate the black box. A whole subfield of AI comprises methods 
and techniques to understand what is going on, including efforts at feature visual-
ization. There are striking examples in which the intermediate layers from input 
to output do appear to extract features that resemble the stages of processing in-
volved, for example, in visual processing. But explainable AI remains a significant 
challenge.

Another top theme in the various ethical codes was that of nonmaleficence–a 
kind of do-no-ill–related to safety and security. Consider generalized adversari-
al networks (GANs). They comprise multiple neural networks: one, for example, 
classifying images and the second, its adversary, doing its best to find patterns that 
will have a high probability of being misclassified by the first. How can you be 
sure that the models you have trained are robust and cannot be subverted or in-
deed that the data you have trained them on have themselves not been subverted? 
There are methods in development to counter these attacks. But this is a race be-
tween competing methods. A product of the largely beneficial adoption of open-
source principles within much of AI allows algorithms to be shared and improved 
as well as critiqued and compromised.

Current AI is not all about deep neural networks. AI progress has continued 
apace across a broad swath of approaches. Agent-based computing, which builds 
explicit models of competing and collaborating agents, has developed new game 
theoretic approaches to enable efficient and effective behavior in auctions, re-
source allocation, and many other applications. Agent-based computing has been 
used to model the pandemic and predict the impact of nonpharmacological inter-
ventions. Natural language processing methods have summarized large swaths of 
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scientific work that might be relevant to dealing with the pandemic. Knowledge 
graphs–explicit representations of biochemical and drug pathways–have been 
interrogated to find which drugs might be repurposed in dealing with the virus. 
Our current AI ecosystem has never been more varied and vibrant.

W hat of the future? We can be assured of continued progress in the un-
derpinning computational fabric. The road maps available now al-
ready anticipate exponential increases in computer power, storage, 

and connectivity. In the United States, companies like Facebook, Amazon, and 
Google are increasing their investments in AI-enabled chips, as are their equiva-
lents in China.

Data availability has been growing exponentially and, with ever more ubiq-
uitous IoT devices, is expected to continue to do so. We may see more storage of 
data at the edge: that is, data that are stored locally on a plethora of distributed 
devices and not consolidated into the cloud. This trend will act as a forcing func-
tion on new kinds of distributed machine learning and federated problem-solving 
techniques. The pandemic has spawned increased amounts of data creation and 
replication, though estimates suggest that only 2 percent of what is created is per-
sistently stored. The global installed storage capacity (estimated at 6.7 zettabytes 
in 2020) is many times smaller than the data ephemerally generated. Is this a lost 
opportunity? Could AI engines be uncovering more patterns and structures? And 
how are we to determine what data to keep?

We can be sure that the success of task-achieving architectures will continue. 
There are any number of image-based classification tasks to which AI methods 
can be applied, any number of text summarization and generation tasks to which 
natural language processing techniques are suited. As data become more densely 
connected across sectors and between individuals and organizations, there will be 
any number of roles for planning, recommendation, and optimization systems–
lots of niches–to fill. In this sense, the future of AI will be about the continued 
digitization of services, products, and processes.

The current paradigm of DNNs faces significant challenges in addition to 
those of explainability, safety, and security already mentioned. One is the on-
going challenge of distribution shift. Problems arise because the data on which a 
network is trained come from a different distribution than the data used when 
tested or deployed: for example, facial recognition systems trained on a par-
ticular population and deployed in contexts with very different distributions. 
Distribution shift can arise because labels shift, or else the concepts involved 
in classification and prediction can change; whether it is the diagnostic criteria 
for mental illness or job titles, all are subject to considerable amounts of con-
cept shift. Although much studied, distribution shift remains a real and ongoing 
challenge.
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Another recurrent and recognized challenge is transfer learning. How can suc-
cess in one task be generalized: that is, reusing or transferring information from 
previously learned tasks for the learning of new tasks. We already have various ex-
amples of transfer learning within AI: image-recognition systems trained on one 
domain transferred to another, language understanding models trained on huge 
data sets repurposed for other language processing tasks. But the challenge comes 
when the source task is not sufficiently related to the target task, or the transfer 
method is unable to leverage the relationship between the source and target tasks.

Notwithstanding these challenges, we will see spectacular convergences where 
data at scale, at new levels of precision and resolution, allow diagnosis, forecast-
ing, and modeling across a swath of sectors. Where engineering continues its own 
exponential path of smaller, cheaper, more powerful, and more energy-efficient 
devices, we will see AI embedded into the fabric of our built environment, offer-
ing up the vision of intelligent infrastructure (II). Swarm-scale collaborations be-
tween many devices adapt to and directly modify their environments. 

An approach dubbed physical AI (PAI), carrying on a tradition of biologi-
cally inspired AI, urges us to look at the underlying principles that have evolved 
through deep time to be intrinsic parts of biological adaption.21 Processes resem-
bling homeostasis, the regulation of body states aimed at maintaining conditions 
compatible with life, could be integrated with intelligent machines. Advocates of 
this approach suggest that such internal regulatory mechanisms and control will 
lead to a new class of machines that have intrinsic goals.22 Mechanical engineer-
ing, computer science, biology, chemistry, and materials science will be founda-
tional elements in this type of approach.

This gap in embodiment–in AI systems that are in themselves purposeless–
remains a grand challenge for AI. Those who claim the imminent emergence of 
AGI should note that we remain far from understanding what constitutes our own 
general intelligence and associated self-awareness or consciousness. Intelligence 
is a polythetic concept that we use all the time and yet resists easy definitions. It 
is a graduated concept, we say that X is more intelligent than Y, and yet ordering 
ourselves on a linear scale misses the fact that we might excel in one sphere and 
have little or no capacity elsewhere. For most, general intelligence would seem to 
require language, learning, memory, and problem-solving. The importance of in-
tuition, creativity, and reflective consciousness are seen as important attributes by 
many. The ability to survive in a complex world, to be embodied and possessed of 
perceptual and motor skills, is highlighted by others.

Patrick Winston, an AI pioneer and sometime director of MIT’s Computer 
Science and AI Lab (CSAIL), once remarked that “there are lots of ways of being 
smart that aren’t smart like us.” On this view, the space of intelligent systems is 
likely large and multidimensional. Recent work on other minds invites us to con-
sider biological entities that have a claim to many attributes of general adaptive 
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and intelligent behavior.23 They are not writing literature or building cyclotrons, 
but the octopus displays a range of behaviors we could consider intelligent. This 
chimes with the nouvelle AI and Cambrian intelligence approach advocated by 
roboticist Rodney Brooks, an approach that builds situated robots in complex en-
vironments often exhibiting emergent behaviors.24

For others, consciousness is an essential feature of general intelligence. Con-
sciousness, the hard problem in neuroscience, is itself a term that elicits very dif-
ferent responses. For some, it is an illusion, a kind of hallucination, a fiction we 
have built for ourselves. For others, it is a supervenient reality whose emergence 
we are far from understanding.

Whatever its basis, a key property of human consciousness is that we have 
conceptual self-awareness: we have abstract concepts for our physical and mental 
selves; my body, my mind, and my thought processes as well as an integrated sense 
of myself–me. A construct replete with emotions, experience, history, goals, and 
relationships. We are possessed of theories of mind to understand other entities 
and motivations in context, to be able to make sense of their actions and to inter-
act with them appropriately. None of this is in our AI systems at present. This is 
not to say such awareness will never be present in future species of AI. Our own 
cognitive and neural architectures, the rich layering of systems, present an exis-
tence proof. But our AI systems are not yet in the world in any interesting sense.25

When discussing the prospect of artificial general intelligence, we tend to re-
serve a special place for our own variety–possessed of experiential self-awareness– 
and we seem particularly drawn to the symbolic expression of that experience in 
our language, teleological understanding of the world, and imagined future pos-
sibilities. We need to continue to interrogate our understanding of the concept 
of intelligence. For the foreseeable future, no variety of AI will have a reasonable 
claim to a sufficient range of attributes for us to ascribe them general intelligence. 
But this cannot be an in-principle embargo.

For some, this is a distraction from medium-term future concerns. Writing in 
the Harvard Data Science Review, Michael Jordan notes the need for artificial intel-
ligence, intelligence augmentation, and intelligent infrastructure, a need that “is 
less about the realization of science-fiction dreams or superhuman nightmares, 
and more about the need for humans to understand and shape technology as it be-
comes ever more present and influential in their daily lives.”26

T he field of AI contains lively and intense debates about the relative con-
tribution of particular approaches, methods, and techniques. From logic 
to statistical mechanics, rule-based systems to neural networks, an ever- 

increasing number of powerful, adaptive, and useful computational systems have 
been conceived, built, and deployed. We are building intelligent infrastructures 
suffused with adaptability, error correction, and “learning.”
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A range of remarkable AI-powered products and services have literally been 
placed in our hands through the agency of the supercomputers that are today’s 
smartphones. These hand axes of the twenty-first century are general purpose, 
ubiquitous tools capable of transforming our physical and cyber worlds. The data 
and AI that power these systems and their successors will provide new services the 
early harbingers of which already exist. 

Consider real-time machine translation (MT), in effect a digital realization of 
the Babel fish wonderfully imagined by Douglas Adams in his Hitchhiker’s Guide 
to the Galaxy. This will be a world in which we speak and listen to one another, all 
the while remaining in our native languages. This exciting prospect comes with 
questions; for example, will it promote or diminish linguistic diversity? Modern 
statistical MT requires a lot of machine-readable text–the languages of the world 
are not equally represented in this regard. Is this fair or equitable?

The data and algorithms compiled into future generations of ultra-smart-
phones and embedded sensors will include an enormous range of diagnostic capa-
bilities. The Babel fish will certainly be joined by a version of Star Trek’s tricorder. 
Miniaturization will lead to device embedding and integration with our neurol-
ogy and physiology. Nano probes and sensors will be on the alert for everything 
from cancer to dementia. Our own individual and collective biology will be avail-
able for real-time analysis and predictive maintenance. Neural links will interface 
with the brain to augment our senses, attention, and memory, even rendering our 
internal visualizations visible and inner speech audible. The associated privacy 
implications and challenges will be self-evident.

The real-time instrumentation of our environment will yield effective now- 
casting; scientific and engineering advances via AI-augmented discovery and de-
sign will offer increased rates of innovation. Huge search spaces will be reviewed 
and interrogated, selected, and developed in drug and materials discovery; our 
artistic and cultural lives will be enriched by machine-generated content. These 
examples engender genuine excitement; AI empowering humankind. Sadly, wea-
ponized AI will figure in our collective futures, too. Whether deployed to attack 
our cyber infrastructure or generate deepfakes, guide precision munitions or pi-
lot drones, AI will have dangerous and lethal capabilities. Regulation and gover-
nance, ethics and law become essential adjuncts to our AI science and technology.

The “speciation” of AI, the filling of lots of niches in our cyber-physical world, 
is set to continue, from tasks in specific domains to support for us in all our daily 
tasks. The interpenetration of these tools and systems will surround and augment 
us. Our interactions with our AI systems will assume more texture and depth, at 
least from our perspective. We engineered our computational systems built on the 
promise of universal Turing machines. We started with the languages of logic and 
decision trees. We are now exploring the rich possibilities of machines driven by 
statistical inference, pattern-extraction, and learning from vast amounts of data. 
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The very recent possession of symbolic language and the discovery of mathe-
matics and formal systems of computation have provided humans with the tools 
to build and explore new AI systems. This broad repertoire of approaches and 
methods remains essential. Our AI systems with their ability to represent and dis-
cover patterns in high dimensional data have as yet low dimensional embedding 
in the physical and digital worlds they inhabit. This thin tissue of grounding, of 
being in the world, represents the single largest challenge to realizing AGI. But the 
speciation of AI will continue: “from so simple a beginning endless forms most 
beautiful and most wonderful have been, and are being, evolved.”
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If We Succeed

Stuart Russell

Since its inception, AI has operated within a standard model whereby systems are de-
signed to optimize a fixed, known objective. This model has been increasingly success-
ful. I briefly summarize the state of the art and its likely evolution over the next decade. 
Substantial breakthroughs leading to general-purpose AI are much harder to predict, 
but they will have an enormous impact on society. At the same time, the standard mod-
el will become progressively untenable in real-world applications because of the diffi-
culty of specifying objectives completely and correctly. I propose a new model for AI 
development in which the machine’s uncertainty about the true objective leads to qual-
itatively new modes of behavior that are more robust, controllable, and deferential. 

T he central technical concept in AI is that of an agent: an entity that per-
ceives and acts.1 Cognitive faculties such as reasoning, planning, and 
learning are in the service of acting. The concept can be applied to hu-

mans, robots, software entities, corporations, nations, or thermostats. AI is con-
cerned principally with designing the internals of the agent: mapping from a 
stream of raw perceptual data to a stream of actions. Designs for AI systems vary 
enormously depending on the nature of the environment in which the system will 
operate, the nature of the perceptual and motor connections between agent and 
environment, and the requirements of the task. AI seeks agent designs that exhibit 
“intelligence,” but what does that mean?

In answering this question, AI has drawn on a much longer train of thought 
concerning rational behavior: what is the right thing to do? Aristotle gave one 
answer: “We deliberate not about ends, but about means. . . . [We] assume the end 
and consider how and by what means it is attained, and if it seems easily and best 
produced thereby.”2 That is, an intelligent or rational action is one that can be ex-
pected to achieve one’s objectives. 

This line of thinking has persisted to the present day. In the seventeenth centu-
ry, theologian and philosopher Antoine Arnauld broadened Aristotle’s theory to 
include uncertainty in a quantitative way, proposing that we should act to max-
imize the expected value of the outcome (that is, averaging the values of differ-
ent possible outcomes weighted by their probabilities).3 In the eighteenth century, 
Swiss mathematician Daniel Bernoulli refined the notion of value, moving it from 
an external quantity (typically money) to an internal quantity that he called utili-



44 Dædalus, the Journal of the American Academy of Arts & Sciences

If We Succeed

ty.4 French mathematician Pierre Rémond de Montmort noted that in games (de-
cision situations involving two or more agents) a rational agent might have to act 
randomly to avoid being second-guessed.5 And in the twentieth century, mathema-
tician John Von Neumann and economist Oskar Morgenstern tied all these ideas 
together into an axiomatic framework: rational agents must satisfy certain prop-
erties such as transitivity of preferences (if you prefer A to B and B to C, you must 
prefer A to C), and any agent satisfying those properties can be viewed as having 
a utility function on states and choosing actions that maximize expected utility.6

As AI emerged alongside computer science in the 1940s and 1950s, researchers 
needed some notion of intelligence on which to build the foundations of the field. 
Although some early research was aimed more at emulating human cognition, the 
notion that won out was rationality: a machine is intelligent to the extent that its 
actions can be expected to achieve its objectives. In the standard model, we aim 
to build machines of this kind; we define the objectives and the machine does the 
rest. There are several different ways in which the standard model can be instan-
tiated. For example, a problem-solving system for a deterministic environment is 
given a cost function and a goal criterion and finds the least-cost action sequence 
that leads to a goal state; a reinforcement learning system for a stochastic envi-
ronment is given a reward function and a discount factor and learns a policy that 
maximizes the expected discounted sum of rewards. This general approach is not 
unique to AI. Control theorists minimize cost functions, operations researchers 
maximize rewards, statisticians minimize an expected loss function, and econo-
mists maximize the utility of individuals or the welfare of groups.

W ithin the standard model, new ideas have arisen fairly regularly since 
the 1950s, leading eventually to impressive real-world applications. 
Perhaps the oldest established area of AI is that of combinatorial 

search, in which algorithms consider many possible sequences of future actions or 
many possible configurations of complex objects. Examples include route-finding 
algorithms for GPS navigation, robot assembly planning, transportation schedul-
ing, and protein design. Closely related algorithms are used in game-playing sys-
tems such as the Deep Blue chess program, which defeated world champion Garry 
Kasparov in 1997, and AlphaGo, which defeated world Go champion Ke Jie in 2017. 
In all of these algorithms, the key issue is efficient exploration to find good solu-
tions quickly, despite the vast search spaces inherent in combinatorial problems.

Beginning around 1960, AI researchers and mathematical logicians developed 
ways to represent logical assertions as data structures as well as algorithms for 
performing logical inference with those assertions. Since that time, the technolo-
gy of automated reasoning has advanced dramatically. For example, it is now rou-
tine to verify the correctness of VLSI (very large scale integration) chip designs 
before production and the correctness of software systems and cybersecurity 
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protocols before deployment in high-stakes applications. The technology of logic 
programming (and related methods in database systems) makes it easy to specify 
and check the application of complex sets of logical rules in areas such as insur-
ance claims processing, data system maintenance, security access control, tax cal-
culations, and government benefit distribution. Special-purpose reasoning sys-
tems designed to reason about actions can construct large-scale, provably correct 
plans in areas such as logistics, construction, and manufacturing. The most visible 
application of logic-based representation and reasoning is Google’s Knowledge 
Graph, which, as of May 2020, holds five hundred billion facts about five billion 
entities and is used to answer directly more than one-third of all queries submit-
ted to the Google search engine.7 

In the 1980s, the AI community began to grapple with the uncertainty inherent 
in real-world observations and in knowledge acquired from humans or through 
machine learning. Although some rule-based expert systems adopted ad hoc cal-
culi for representing and propagating uncertainty, probability theory became the 
dominant tool, largely due to the development of Bayesian networks by computer 
scientist Judea Pearl and others.8 This led to the development of the first large-
scale computational tools for probabilistic reasoning and to substantial cross- 
fertilization between AI and other fields that build on probability theory, includ-
ing statistics, information theory, control theory, and operations research. Bayes-
ian networks and related methods have been used for modeling, diagnosis, mon-
itoring, and prediction of a wide range of complex systems, including jet engines, 
Mars rovers, ecological networks, and intensive care protocols. Causal networks, 
which extend Bayesian networks to model the effects of exogenous interventions, 
have clarified and facilitated the analysis of causal relationships in many empiri-
cal disciplines, especially in the social sciences.9

The development of probabilistic programming languages, or PPLs, provides 
a universal representation for probability models, meaning that any model rep-
resentable in any formalism can be represented efficiently in a PPL.10 More-
over, PPLs come with general-purpose inference algorithms, so that (in princi-
ple, at least) no algorithm development or mathematical derivations are needed 
when applying probability theory to a new domain. PPLs constitute one of the  
fastest-growing areas of AI and enable the rapid construction of enormously com-
plex models. For example, the new monitoring system for the Comprehensive  
Nuclear-Test-Ban Treaty began life as a PPL model that took only a few minutes to 
write; while operating, it may dynamically construct internal representations in-
volving hundreds of thousands of random variables.11

Alan Turing suggested that machine learning would be the most practical way 
to create AI capabilities.12 The most common paradigm–one shared with statisti-
cal prediction methods–is supervised learning, wherein labeled examples are pro-
vided to a learning algorithm that outputs a predictive hypothesis with which to la-
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bel unlabeled examples. Early developments in AI and in statistics proceeded sepa-
rately, but both fields produced useful tools for learning low-dimensional models, 
with application to areas such as loan decisions, credit card fraud detection, and 
email spam filtering. For high-dimensional data such as images, deep convolution-
al networks have proved to be effective.13 Deep learning has substantially advanced 
the state of the art in visual object recognition, speech recognition, and machine 
translation, three of the most important subfields of AI, as well as in protein fold-
ing, a key problem in molecular biology. Language models such as GPT-3 (Gen-
erative Pre-trained Transformer 3)–very large neural networks trained to predict 
the next word in a sequence–show intriguing abilities to respond to questions in 
a semantically meaningful way. Recent work has shown, however, that deep learn-
ing systems often fail to generalize robustly and are susceptible to spurious regu-
larities in the training data.14 Moreover, the amount of training data required to 
achieve a given level of performance is far greater than a human typically requires.

The algorithmic study of sequential decision-making under uncertainty began 
in economics and operations research.15 Algorithms developed in these fields typ-
ically handle only small problems with up to one million states. In AI, the devel-
opment of reinforcement learning (RL) has allowed researchers to address much 
larger problems satisfactorily, including backgammon with 1019 positions and Go 
with 10170 positions.16 RL algorithms learn by experiencing state transitions and 
their associated rewards while updating a representation of the value of states 
(and possibly actions as well) or a direct representation of the decision policy. Ap-
plications of RL range from bidding in advertising markets to improving the abili-
ty of robots to grasp previously unseen objects.17 As with supervised learning, ap-
plications of deep networks in RL may also be quite fragile.18

With modest advances in perception and dexterity, we can expect to see robots 
moving into a variety of unstructured environments, including roads, warehous-
es, agriculture, mining, and warfare. We may see progress on language under-
standing comparable to the progress on image understanding made over the last 
decade, which would enable high-impact applications such as intelligent person-
al assistants and high-quality intelligent tutoring systems. Search engines, rath-
er than responding to keywords with URLs, would respond to questions with an-
swers based on reading and, in a shallow sense, understanding almost everything 
the human race has ever written. And text would be augmented by satellite imag-
ery, enabling computers to see every object (fifty centimeters or larger) on Earth 
every day, weather permitting.

Although this view is far from universally shared, I think it is likely that in the 
coming decade, the pendulum will swing away from a reliance on end-to-end deep 
learning and back toward systems composed from modular, semantically well- 
defined representations built on the mathematical foundations of logic and prob-
ability theory, with deep learning playing a crucial role in connecting to raw per-
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ceptual data. (This approach underlies, for example, Waymo’s industry-leading 
self-driving car project.) The reasons for this prediction are complex, but include 
1) the performance problems with deep learning mentioned earlier; 2) the possi-
bility that such problems may contribute to the failure of flagship projects such as 
self-driving cars; 3) the advantages, in terms of rigor, transparency, and modularity, 
of being able to analyze systems as possessing knowledge and reasoning with that 
knowledge; 4) the expressive limitations of circuit-based representations (includ-
ing deep learning systems) for capturing general knowledge; 5) the essential role 
played by prior knowledge in enabling a learning system to generalize robustly from 
small numbers of examples; and 6) the enormous benefits of being able to improve 
the performance of systems by supplying knowledge rather than training data. It 
is important to understand that modular, semantically well-defined representa-
tions are not necessarily hand-engineered or inflexible: such representations can  
be learned from data, just as the entire edifice of science itself is a modular, seman
tically well-defined representation that has (ultimately) been learned from data.

E ven in its present state, the technology of artificial intelligence raises many 
concerns as it transitions from research into widespread use. These con-
cerns include potential misuses such as cybercrime, surveillance, disinfor-

mation, and political manipulation; the exacerbation of inequality and of many 
forms of bias in society; the creation and deployment of lethal autonomous weap-
ons; and the usurpation of human roles in the economy and in social relationships. 

These issues are addressed admirably in the other essays in this volume, many 
of which contribute to an important yet lamentably only recent trend: under-
standing potential applications of AI not only as technological problems to be 
solved, but also as existing in a social context. Success is to be measured not by the 
accuracy of the AI system’s predictions and decisions, but by the real-world con-
sequences of deploying the system. In other words, we need a theory of sociotech-
nical embedding for AI systems, somewhat analogous to the role that city plan-
ning plays for the artifacts produced by civil engineering and architecture. Absent 
such a theory, we are left with the market to sort through different systems and 
embeddings. For all sorts of reasons, including network effects and social exter-
nalities, this is unlikely to work.19

M y concern here, however, is with the potential consequences of suc-
cess in creating general-purpose AI: that is, systems capable of quickly 
learning to perform at a high level in any task environment where hu-

mans (or collections of humans) can perform well. General-purpose AI has been 
the long-term goal of the field since its inception. For example, Herbert Simon and 
Allen Newell, two pioneers of AI research, famously predicted in 1957: “There are 
now in the world machines that think, that learn and that create. Moreover, their 
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ability to do these things is going to increase rapidly until–in a visible future–the 
range of problems they can handle will be coextensive with the range to which the 
human mind has been applied.”20

It would be an oversimplification to view progress in AI as occurring along a 
one-dimensional, numerical scale of “intelligence.” While such a scale has some 
relevance for humans, AI capabilities in different branches of cognitive activity 
vary so markedly as to make a single scale completely inapplicable. For example, a 
search engine remembers very well and cannot plan at all; a chess program plans 
very well and cannot remember at all. For this reason, there will be no single mo-
ment at which AI “exceeds human intelligence.” By the time that AI systems ex-
hibit generality across all branches, direct comparisons to humans will be mean-
ingless. Almost certainly, such systems would already far exceed human capabil-
ities in many areas thanks to the massive speed, memory, and input bandwidth 
advantages of computers compared with humans. 

That is not to imply that we are close to achieving general-purpose AI. Sugges-
tions that we simply need to collect more data or acquire more computing power 
seem overly optimistic. For example, current natural-language systems process, 
in only a few days, thousands of times more text than any human has ever read, yet 
their understanding of language is brittle and often parrot-like. We need concep-
tual breakthroughs in a number of areas besides language understanding, includ-
ing decision-making over long timescales and the cumulative use of knowledge in 
learning. These breakthroughs are inherently unpredictable. In a 1977 interview, 
John McCarthy, one of the earliest pioneers in AI, said, “What you want is 1.7 Ein-
steins and 0.3 of the Manhattan Project, and you want the Einsteins first. I believe 
it’ll take five to 500 years.”21 This remains true today, although we have seen dra-
matic progress since 1977 in many areas. The vast majority of AI researchers now 
believe that general-purpose, human-level AI will arrive in this century.22

Given the huge levels of investment in AI research and development and the 
influx of talented researchers into the field, it is reasonable to suppose that fun-
damental advances will continue to occur as we find new applications for which 
existing techniques and concepts are inadequate. As noted above, these advanc-
es are hard to predict, but there are no fundamental obstacles that prevent them 
from occurring. Indeed, what evidence could there be that no physically possible 
arrangement of atoms can outperform the human brain? 

T he potential benefits of general-purpose AI would be far greater than 
those of a collection of narrow, application-specific AI systems. For this 
reason, the prospect of creating general-purpose AI is driving massive in-

vestments and geopolitical rivalries.
One can speculate about solving major open problems, such as extending hu-

man life indefinitely or developing faster-than-light travel, but these staples of sci-
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ence fiction are not yet the driving force for progress in AI. Consider, instead, a 
more prosaic goal: raising the living standard of everyone on Earth, in a sustain-
able way, to a level that would be considered respectable in a developed country. 
Choosing “respectable” (somewhat arbitrarily) to mean the eighty-eighth percen-
tile in the United States, this goal represents an almost tenfold increase in global 
GDP, from $76 trillion to $750 trillion per year. The increased income stream re-
sulting from this achievement has a net present value of $13.5 quadrillion, assum-
ing a discount factor of 5 percent. (The value is $9.4 quadrillion or $6.8 quadrillion 
if the technology is phased in over ten or twenty years.) These numbers tower over 
the amounts currently invested in AI research, and momentum toward this goal 
will increase as technical advances bring general-purpose AI closer to realization.

Such a tenfold increase in global GDP per capita took place over 190 years, from 
1820 to 2010.23 It required the development of factories, machine tools, automa-
tion, railways, steel, cars, airplanes, electricity, oil and gas production, telephones, 
radio, television, computers, the Internet, satellites, and many other revolution-
ary inventions. The tenfold increase in GDP posited above is predicated not on 
further revolutionary technologies but on the ability of general-purpose AI sys-
tems to employ what we already have more effectively and at greater scale. There 
would be no need to employ armies of specialists in different disciplines, orga-
nized into hierarchies of contractors and subcontractors, to carry out a project. 
All embodiments of general-purpose AI would have access to all the knowledge 
and skills of the human race, and more besides. The only differentiation would be 
in the physical capabilities: dexterous legged robots for construction or surgery, 
wheeled robots for large-scale goods transportation, quadcopter robots for aeri-
al inspections, and so on. In principle–politics and economics aside–everyone 
could have at their disposal an entire organization composed of software agents 
and physical robots, capable of designing and building bridges or (fully automat-
ed) factories, improving crop yields, cooking dinner for one hundred guests, run-
ning elections, teaching children to read, or doing whatever else needs doing. It is 
the generality of general-purpose intelligence that makes this possible.

The political and economic difficulties should not, of course, be underestimat-
ed. Corporations, elites, or countries may attempt to hoard general-purpose AI 
technology and its benefits and, under some circumstances, economic incentives 
may operate to retard the dissemination of AI-based goods and services.24 One 
can also expect finite resources such as land, human attention, and perhaps raw 
materials to become relatively more expensive.

T he incentives for further development of AI, then, are huge, and the mo-
mentum appears unstoppable. We must, therefore, ask, “What if we suc-
ceed?” This question is seldom considered in the AI literature, which is 

focused primarily on the pursuit of success rather than on its consequences. Alan 
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Turing, widely regarded as the founder of computer science, did consider the 
question. And in 1951, during a lecture given to a learned society in Manchester, he 
answered: “It seems probable that once the machine thinking method had start-
ed, it would not take long to outstrip our feeble powers. . . . At some stage therefore 
we should have to expect the machines to take control.”25

Turing’s prediction is a natural response to the following conundrum: our in-
telligence gives us power over the world and over other species; we will build sys-
tems with superhuman intelligence; therefore, we face the problem of retaining 
power, forever, over entities that are far more powerful than ourselves. 

Within the standard model of AI, the meaning of “power” is clear: the ability 
to achieve one’s objectives regardless of the objectives and actions of others. I be-
lieve the future Turing had in mind was one in which machines take control as a 
result of pursing fixed objectives that are misaligned with human benefit. These 
fixed objectives will be ones that we ourselves have inserted: there is no need to 
posit some form of emergent consciousness that spontaneously generates its own 
objectives. All that is needed to assure catastrophe is a highly competent machine 
combined with humans who have an imperfect ability to specify human prefer-
ences completely and correctly. This is why, when a genie has granted us three 
wishes, our third wish is always to undo the first two wishes.

Unfortunately, the standard model within which almost all current AI sys-
tems are developed makes this future almost inevitable. Once AI systems move 
out of the laboratory (or artificially defined environments such as the simulated 
Go board) and into the real world, there is very little chance that we can specify 
our objectives completely and correctly in such a way that the pursuit of those ob-
jectives by more capable machines is guaranteed to result in beneficial outcomes 
for humans. Indeed, we may lose control altogether, as machines take preemptive 
steps to ensure that the stated objective is achieved. 

T he standard model, then, despite all its achievements, is a mistake. The 
mistake comes from transferring a perfectly reasonable definition of in-
telligence from humans to machines. It is not rational for humans to de-

ploy machines that pursue fixed objectives when there is a significant possibility 
that those objectives diverge from our own.

A more sensible definition of AI would have machines pursuing our objectives. 
Of course, our objectives–in more technical language, our preferences among lot-
teries over complete futures–are in us, and not in the machines. This means that 
machines will necessarily be uncertain about our objectives, while being obliged to 
pursue them on our behalf. In this pursuit, they will be aided by evidence concern-
ing human preferences. This evidence comes from human behavior, broadly con-
strued, including choices, inaction, commands, requests, guidance, permissions, 
artifacts, and social structures.
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This new model for AI, with its emphasis on uncertainty about objectives, en-
tails a binary coupling between machines and humans that gives it a flavor quite 
different from the unary standard model of decoupled machines pursuing fixed ob-
jectives. The standard model can be viewed as an extreme special case of the new 
model, applicable only when it is reasonable to suppose that, within the machine’s 
scope of action, the relevant human objectives can be specified completely and cor-
rectly. It turns out that the uncertainty inherent in the new model is crucial to build-
ing AI systems of arbitrary intelligence that are provably beneficial to humans. 

Uncertainty concerning objectives is a surprisingly understudied topic. In the 
1980s, the AI community acknowledged the inevitability of uncertainty concern-
ing the current state and the effects of actions, but we continued to assume perfect 
knowledge of the objective. For artificially defined puzzles and games, this may be 
appropriate, but for other problems, such as recommending medical treatments, 
it is clear that the relevant preferences (of patients, families, doctors, insurers, 
hospital systems, taxpayers, and so on) are not known initially in each case. While 
it is true that unresolvable uncertainty over objectives can be integrated out of any 
decision problem, leaving an equivalent decision problem with a definite (aver-
age) objective, this transformation is invalid when additional evidence of the true 
objectives can be acquired. Thus, one may characterize the primary difference be-
tween the standard and new models of AI through the flow of preference informa-
tion from humans to machines at “run-time.”

This basic idea is made more precise in the framework of assistance games, 
originally known as cooperative inverse reinforcement learning (CIRL) games.26 
The simplest case of an assistance game involves two agents, one human and the 
other a robot. It is a game of partial information because, while the human knows 
the reward function, the robot does not, even though the robot’s job is to maxi-
mize it. In a Bayesian formulation, the robot begins with a prior probability dis-
tribution over the human reward function and updates it as the robot and human 
interact during the game. Assistance games can be generalized to allow for imper-
fectly rational humans, humans who do not know their own preferences, multiple 
human participants, and multiple robots, among other variations.27 Human ac-
tions in such games can, of course, include communicative actions such as stating 
preferences, making requests, and issuing commands.

Assistance games are connected to inverse reinforcement learning (IRL) be-
cause the robot can learn more about human preferences from the observation of 
human behavior–a process that is the dual of reinforcement learning, wherein 
behavior is learned from rewards and punishments.28 The primary difference is 
that in the assistance game, unlike the IRL framework, the human’s actions are af-
fected by the robot’s presence. For example, the human may try to teach the robot 
about their preferences, and the robot may interpret the human’s actions in this 
light, rather than simply as demonstrations of optimal behavior.
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Within the framework of assistance games, a number of basic results can be 
established that are relevant to Turing’s problem of control.

	• Under certain assumptions about the support and bias of the robot’s prior  
probability distribution over human rewards, one can show that a robot 
solving an assistance game has nonnegative value to humans.29

	• A robot that is uncertain about the human’s preferences has a nonnegative 
incentive to allow itself to be switched off.30 In general, it will defer to hu-
man control actions.

	• To avoid changing attributes of the world whose value is unknown, the ro-
bot will generally engage in “minimally invasive” behavior to benefit the 
human.31 Even when it knows nothing at all about human preferences, it 
will still take “empowering” actions that expand the set of actions available 
to the human.

N eedless to say, there are many open research problems in the new mod-
el of AI. First, we need to examine each existing research area (search, 
game playing, constraint satisfaction, planning, reinforcement learning, 

and so on) and remove the assumption of a fixed, known objective, rebuilding that 
area on a broader foundation that allows for uncertainty about objectives. The 
key questions in each area are how to formulate the machine’s initial uncertainty 
about human preferences and how to codify the run-time flow of preference in-
formation from human to machine.

Another set of research problems arises when we consider how the machine 
can learn about human preferences from human behavior in the assistance game. 
The first difficulty is that humans are irrational in the sense that our actions do 
not reflect our preferences. This irrationality arises in part from our computation-
al limitations relative to the complexity of the decisions we face. For example, if 
two humans are playing chess and one of them loses, it is because the loser (and 
possibly the winner, too) made a mistake, a move that led inevitably to a forced 
loss. A machine observing that move and assuming perfect rationality on the part 
of the human might well conclude that the human preferred to lose. Thus, to avoid 
reaching such conclusions, the machine must take into account the actual cogni-
tive mechanisms of humans. 

Another important consequence of human computational limitations is that 
they force us to organize our behavior hierarchically. That is, we make (defeasi-
ble) commitments to higher-level goals such as “write an essay on a human-com-
patible approach to AI.” Then, rather than considering all possible sequences of 
words, from “aardvark aardvark aardvark” to “zyzzyva zyzzyva zyzzyva,” as a 
chess program might do, we choose among subtasks such as “write the introduc-
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tion” and “read more about preference elicitation.” Eventually, we get down to 
the choice of words, and then typing each word involves a sequence of keystrokes, 
each of which is in turn a sequence of motor control commands to the muscles 
of the arms and hands. At any given point, then, a human is embedded at vari-
ous particular levels of multiple deep and complex hierarchies of partially over-
lapping activities and subgoals. This means that for the machine to understand 
human actions, it probably needs to understand a good deal about what these hi-
erarchies are and how we use them to navigate the real world. 

Other research problems engage directly with philosophy and the social sci-
ences. For example, there is the question of social aggregation, a staple of econom-
ics and moral philosophy: how should a machine make decisions when its actions 
affect the interests of more than one human being? Issues include the preferences 
of evil individuals, relative preferences and positional goods, and interpersonal 
comparison of preferences.32 

Also of great importance is the plasticity of human preferences: the fact that 
they seem to change over time as the result of experiences. It is hard to explain 
how such changes can be made rationally, since they make one’s future self less 
likely to satisfy one’s present preferences about the future. Yet plasticity seems 
fundamentally important to the entire enterprise, because newborn infants cer-
tainly lack the rich, nuanced, culturally informed preference structures of adults. 
Indeed, it seems likely that our preferences are at least partially formed by a pro-
cess resembling inverse reinforcement learning, whereby we absorb preferences 
that explain the behavior of those around us. Such a process would tend to give 
cultures some degree of autonomy from the otherwise homogenizing effects of 
our dopamine-based reward system. 

Plasticity also raises the obvious question of which human H the machine 
should try to help: H2022, H2035, or some time-averaged H?33 Plasticity is also prob-
lematic because of the possibility that the machine may, by subtly influencing the 
environment, gradually mold H’s preferences in directions that make them easier 
to satisfy. This problem is a familiar one in human society, where culture and pro-
paganda mold the preferences of humans to facilitate their compliance with exist-
ing power structures. 

L et us assume, for the sake of argument, that all these obstacles can be over-
come, as well as all of the obstacles to the development of truly capable AI 
systems. Are we then home free? Would provably beneficial, superintel-

ligent AI usher in a golden age for humanity? Not necessarily. There remains the 
issue of adoption: how can we obtain broad agreement on suitable design princi-
ples, and how can we ensure that only suitably designed AI systems are deployed? 

On the question of obtaining agreement at the policy level, it is necessary first 
to generate consensus within the research community on the basic ideas of–and 
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design templates for–provably beneficial AI, so that policy-makers have some 
concrete guidance on what sorts of regulations might make sense. Economic in-
centives would tend to support the installation of rigorous standards at the early 
stages of AI development, since failures would be damaging to entire industries, 
not just to the perpetrator and victim. We already see this in miniature with the 
imposition of machine-checkable software standards for cell phone applications. 

On the question of enforcement, I am less sanguine. If the next Dr. Evil wants 
to take over the world, he or she might remove the safety catch, so to speak, and 
deploy a poorly designed AI system that ends up destroying the world instead. This 
is a hugely magnified version of the problem we currently face with malware. Our 
track record in solving the latter problem does not provide grounds for optimism 
concerning the former. In Samuel Butler’s Erewhon and in Frank Herbert’s Dune, 
the solution is to ban all intelligent machines, as a matter of both law and cultural 
imperative. Perhaps if we find institutional solutions to the malware problem, we 
will be able to devise some less drastic approach for regulating AI.

The problem of misuse is not limited to evil masterminds. One possible fu-
ture for humanity in the age of superintelligent AI is that of a race of lotus eaters, 
progressively enfeebled as machines take over the management of our entire civ-
ilization. This is the future imagined in E. M. Forster’s story The Machine Stops, 
written in 1909. We may say, now, that such a future is undesirable; the machines 
may agree with us and volunteer to stand back, requiring humanity to exert itself 
and maintain its vigor. But exertion is tiring, and we may, in our usual myopic way, 
design AI systems that are not quite so concerned about the long-term vigor of 
humanity and are just a little more helpful than they would otherwise wish to be. 
Unfortunately, this slope is very slippery indeed.

F inding a solution to the AI control problem is an important task; it may be, 
in the words of philosopher Nick Bostrom, “the essential task of our age.”34 
Up to now, AI research has focused on systems that are better at making de-

cisions, but this is not the same as making better decisions if human and machine 
objectives diverge.

This problem requires a change in the definition of AI itself: from a field con-
cerned with a unary notion of intelligence as the optimization of a given objective 
to a field concerned with a binary notion of machines that are provably beneficial 
for humans. Taking the problem seriously seems likely to yield new ways of think-
ing about AI, its purpose, and our relationship with it. 
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The past decade has seen tremendous progress in the field of artificial intelligence 
thanks to the resurgence of neural networks through deep learning. This has helped 
improve the ability for computers to see, hear, and understand the world around 
them, leading to dramatic advances in the application of AI to many fields of sci-
ence and other areas of human endeavor. In this essay, I examine the reasons for 
this progress, including the confluence of progress in computing hardware designed 
to accelerate machine learning and the emergence of open-source software frame-
works to dramatically expand the set of people who can use machine learning effec-
tively. I also present a broad overview of some of the areas in which machine learn-
ing has been applied over the past decade. Finally, I sketch out some likely directions 
from which further progress in artificial intelligence will come.

Since the very earliest days of computing, humans have dreamed of being 
able to create “thinking machines.” The field of artificial intelligence was 
founded in a workshop organized by John McCarthy in 1956 at Dartmouth 

College, with a group of mathematicians and scientists getting together to “find 
how to make machines use language, form abstractions and concepts, solve kinds 
of problems now reserved for humans, and improve themselves.”1 The workshop 
participants were optimistic that a few months of focused effort would make real 
progress on these problems.

The few-month timeline proved overly optimistic. Over the next fifty years, 
a variety of approaches to creating AI systems came into and fell out of fashion, 
including logic-based systems, rule-based expert systems, and neural networks.2 
Approaches that involved encoding logical rules about the world and using those 
rules proved ineffective. Hand-curation of millions of pieces of human knowledge 
into machine-readable form, with the Cyc project as the most prominent exam-
ple, proved to be a very labor-intensive undertaking that did not make significant 
headway on enabling machines to learn on their own.3 Artificial neural networks, 
which draw inspiration from real biological neural networks, seemed like a prom-
ising approach for much of this time, but ultimately fell out of favor in the 1990s. 
While they were able to produce impressive results for toy-scale problems, they 



151 (2) Spring 2022 59

Jeffrey Dean

were unable to produce interesting results on real-world problems at that time. 
As an undergraduate student in 1990, I was fascinated by neural networks and felt 
that they seemed like the right abstraction for creating intelligent machines and 
was convinced that we simply needed more computational power to enable larger 
neural networks to tackle larger, more interesting problems. I did an undergrad-
uate thesis on parallel training of neural networks, convinced that if we could use 
sixty-four processors instead of one to train a single neural network then neural 
networks could solve more interesting tasks.4 As it turned out, though, relative to 
the computers in 1990, we needed about one million times more computational 
power, not sixty-four times, for neural networks to start making impressive head-
way on challenging problems! Starting in about 2008, though, thanks to Moore’s 
law, we started to have computers this powerful, and neural networks started their 
resurgence and rise into prominence as the most promising way to create comput-
ers that can see, hear, understand, and learn (along with a rebranding of this ap-
proach as “deep learning”).

The decade from around 2011 to the time of writing (2021) has shown remark-
able progress in the goals set out in that 1956 Dartmouth workshop, and machine 
learning (ML) and AI are now making sweeping advances across many fields of en-
deavor, creating opportunities for new kinds of computing experiences and inter-
actions, and dramatically expanding the set of problems that can be solved in the 
world. This essay focuses on three things: the computing hardware and software 
systems that have enabled this progress; a sampling of some of the exciting appli-
cations of machine learning from the past decade; and a glimpse at how we might 
create even more powerful machine learning systems, to truly fulfill the goals of 
creating intelligent machines. 

H ardware and software for artificial intelligence. Unlike general-purpose com-
puter code, such as the software you might use every day when you run a 
word processor or web browser, deep learning algorithms are generally 

built out of different ways of composing a small number of linear algebra oper-
ations: matrix multiplications, vector dot products, and similar operations. Be-
cause of this restricted vocabulary of operations, it is possible to build computers 
or accelerator chips that are tailored to support just these kinds of computations. 
This specialization enables new efficiencies and design choices relative to general- 
purpose central processing units (CPUs), which must run a much wider variety of 
kinds of algorithms.

During the early 2000s, a handful of researchers started to investigate the use 
of graphics processing units (GPUs) for implementing deep learning algorithms. 
Although originally designed for rendering graphics, researchers discovered that 
these devices are also well suited for deep learning algorithms because they have 
relatively high floating-point computation rates compared with CPUs. In 2004, 
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computer scientists Kyoung-Su Oh and Keechul Jung showed a nearly twenty-fold 
improvement for a neural network algorithm using a GPU.5 In 2008, computer sci-
entist Rajat Raina and colleagues demonstrated speedups of as much as 72.6 times 
from using a GPU versus the best CPU-based implementation for some unsuper-
vised learning algorithms.6

These early achievements continued to build, as neural networks trained on 
GPUs outperformed other methods in a wide variety of computer vision contests.7 
As deep learning methods began showing dramatic improvements in image rec-
ognition, speech recognition, and language understanding, and as more compu-
tationally intensive models (trained on larger data sets) continued demonstrating 
improved results, the field of machine learning really took off.8 Computer systems 
designers started to look at ways to scale deep learning models to even more com-
putationally intensive heights. One early approach used large-scale distributed 
systems to train a single deep learning model. Google researchers developed the 
DistBelief framework, a software system that enabled using large-scale distrib-
uted systems for training a single neural network.9 Using DistBelief, researchers 
were able to train a single unsupervised neural network model that was two orders 
of magnitude larger than previous neural networks. The model was trained on a 
large collection of random frames from YouTube videos, and with a large network 
and sufficient computation and training data, it demonstrated that individual ar-
tificial neurons (the building blocks of neural networks) in the model would learn 
to recognize high-level concepts like human faces or cats, despite never being giv-
en any information about these concepts other than the pixels of raw images.10

These successes led system designers to design computational devices that 
were even better suited and matched to the needs of deep learning algorithms than 
GPUs. For the purpose of building specialized hardware, deep learning algorithms 
have two very nice properties. First, they are very tolerant of reduced precision. 
Unlike many numerical algorithms, which require 32-bit or 64-bit floating-point 
representations for the numerical stability of the computations, deep learning al-
gorithms are generally fine with 16-bit floating-point representations during train-
ing (the process by which neural networks learn from observations), and 8-bit and 
even 4-bit integer fixed-point representations during inference (the process by 
which neural networks generate predictions or other outputs from inputs). The 
use of reduced precision enables more multiplication circuits to be put into the 
same chip area than if higher-precision multipliers were used, meaning chips can 
perform more computations per second. Second, the computations needed for 
deep learning algorithms are almost entirely composed of different sequences of 
linear algebra operations on dense matrices or vectors, such as matrix multipli-
cations or vector dot products. This led to the observation that making chips and 
systems that were specialized for low-precision linear algebra computations could 
give very large benefits in terms of better performance per dollar and better per-
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formance per watt. An early chip in this vein was Google’s first Tensor Processing 
Unit (TPUv1), which targeted 8-bit integer computations for deep learning infer-
ence and demonstrated one to two order-of-magnitude improvements in speed 
and performance per watt over contemporary CPUs and GPUs.11 Deployments of 
these chips enabled Google to make dramatic improvements in speech recogni-
tion accuracy, language translation, and image classification systems. Later TPU 
systems are composed of custom chips as well as larger-scale systems connect-
ing many of these chips together via high-speed custom networking into pods, 
large-scale supercomputers designed for training deep learning models.12 GPU 
manufacturers like NVIDIA started tailoring later designs toward lower-precision 
deep learning computations and an explosion of venture capital–funded startups 
sprung up building various kinds of deep learning accelerator chips, with Graph-
Core, Cerebras, SambaNova, and Nervana being some of the most well-known.

Alongside the rise of GPUs and other ML-oriented hardware, researchers de-
veloped open-source software frameworks that made it easy to express deep 
learning models and computations. These software frameworks are still critical 
enablers. Today, open-source frameworks help a broad set of researchers, engi-
neers, and others push forward deep learning research and apply deep learning 
to an incredibly wide range of problem domains (many of which are discussed 
below). Some of the earliest frameworks like Torch, developed starting in 2003, 
drew inspiration from earlier mathematical tools like MatLab and NumPy.13  
Theano, developed in 2010, was an early deep learning–oriented framework that 
included automatic symbolic differentiation.14 Automatic differentiation is a use-
ful tool that greatly eases the expression of many gradient-based machine learn-
ing algorithms, such as stochastic gradient descent (a technique in which errors in 
outputs are corrected by comparing the actual output and the desired output and 
making small adjustments to the model parameters in the direction of the error 
gradient). DistBelief and Caffe were frameworks developed in the early 2010s that 
emphasized scale and performance.15

TensorFlow is a framework that allows the expression of machine learning 
computations.16 It was developed and open-sourced by Google in 2015 and com-
bines ideas from earlier frameworks like Theano and DistBelief.17 TensorFlow 
was designed to target a wide variety of systems and allows ML computations to 
run on desktop computers, mobile phones, large-scale distributed environments 
in data centers, and web browsers, and targets a wide variety of computation de-
vices, including CPUs, GPUs, and TPUs. The system has been downloaded more 
than fifty million times and is one of the most popular open-source packages in 
the world. It has enabled a tremendous range of uses of machine learning by indi-
viduals and organizations large and small all around the world.

PyTorch, released in 2016, has gained popularity with researchers for its easy 
expression of a variety of research ideas using Python.18 JAX, released in 2018, is a 
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popular open-source Python-oriented library combining sophisticated automatic 
differentiation and an underlying XLA compiler, also used by TensorFlow to effi-
ciently map machine learning computations onto a variety of different types of 
hardware.19

The importance of open-source machine learning libraries and tools like Tensor
Flow and PyTorch cannot be overstated. They allow researchers to quickly try 
ideas and express them on top of these frameworks. As researchers and engineers 
around the world build on each other’s work more easily, the rate of progress in 
the whole field accelerates!

Research explosion. As a result of research advances, the growing computa-
tional capabilities of ML-oriented hardware like GPUs and TPUs, and the 
widespread adoption of open-source machine learning tools like Tensor

Flow and PyTorch, there has been a dramatic surge in research output in the field 
of machine learning and its applications. One strong indicator is the number of 
papers posted to the machine learning–related categories of arXiv, a popular pa-
per preprint hosting service, with more than thirty-two times as many paper pre-
prints posted in 2018 as in 2009 (a growth rate of more than double every two 
years).20 There are now more than one hundred research papers posted to arXiv 
per day in the machine learning–related subtopic areas, and this growth shows no 
signs of slowing down.

Application explosion. The transformative growth in computing power, ad-
vances in software and hardware systems for machine learning, and the 
surge of machine learning research have all led to a proliferation of ma-

chine learning applications across many areas of science and engineering. By col-
laborating with experts in critical fields like climate science and health care, ma-
chine learning researchers are helping to solve important problems that can be 
socially beneficial and advance humanity. We truly live in exciting times.

Neuroscience is one important area in which machine learning has accelerated 
scientific progress. In 2020, researchers studied a fly brain to understand more 
about how the human brain works. They built a connectome, a synapse-resolution- 
level map of connectivity of an entire fly brain.21 But without machine learning 
and the computational power we now have, this would have taken many years. 
For example, in the 1970s, it took researchers about ten years to painstakingly 
map some three hundred neurons within the brain of a worm. By contrast, a fly 
brain has one hundred thousand neurons, and a mouse brain (the next goal for 
machine learning–aided connectomics) has about seventy million neurons. A hu-
man brain contains about eighty-five billion neurons, with about one thousand 
connections per neuron. Fortunately, deep learning–based advances in computer 
vision now make it possible to speed up this previously gargantuan process. And 
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today, thanks to machine learning, you can explore the fly brain for yourself using 
an interactive 3-D model!22

Molecular biology. Machine learning can also help us understand more about 
our genetic makeup and, ultimately, address gene-based disease more effectively. 
These new techniques allow scientists to explore the landscape of potential ex-
periments much more quickly through more accurate simulation, estimation, and 
data analysis. One open-source tool, DeepVariant, can more accurately process 
the raw information coming from DNA sequencing machines (which contain er-
rors introduced by the physical process of reading the genetic sequence) and an-
alyze it to more accurately identify the true genetic variants in the sequence rela-
tive to a reference genome data using a convolutional neural network. Once ge-
netic variants have been identified, deep learning can also help to analyze genetic 
sequences to better understand genetic features of single or multiple DNA muta-
tions that cause particular health or other outcomes. For example, a study led by 
the Dana-Farber Cancer Institute improved diagnostic yield by 14 percent for ge-
netic variants that lead to prostate cancer and melanoma in a cohort of 2,367 can-
cer patients.23 

Health care. Machine learning is also offering new ways to help detect and diag-
nose disease. For example, when applied to medical images, computer vision can 
help doctors diagnose a number of serious diseases more quickly and accurately 
than doctors can on their own. 

One impressive example is the ability for deep neural networks to correctly di-
agnose diabetic retinopathy, generally on par with human ophthalmologists. This 
ocular disease is the fastest growing cause of preventable blindness (projected to 
impact 642 million people in 2040). 

Deep learning systems can also help detect lung cancer as well or better than 
trained radiologists. The same goes for breast cancer, skin disease, and other dis-
eases.24 The application of sequential prediction on medical records can help cli-
nicians determine possible diagnoses and risk levels for chronic illness.25

Today’s deep learning techniques also give us a much more accurate under-
standing of how diseases spread, giving us a better chance at prevention. Ma-
chine learning helps us model complex events, like the global COVID-19 pandem-
ic, which require comprehensive epidemiological data sets, the development of 
novel interpretable models, and agent-based simulators to inform public health 
responses.26

Weather, environment, and climate change. Climate change is one of the greatest 
challenges currently facing humanity. Machine learning can help us better under-
stand the weather and our environment, particularly to predict or forecast both 
everyday weather and climate disasters.

For weather and precipitation forecasting, computationally intensive physics- 
based models like the National Oceanic and Atmospheric Administration’s 
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High-Resolution Rapid Refresh (HRRR) have long reigned supreme.27 Machine 
learning–based forecasting systems can predict more accurately than the HRRR 
on short timescales, however, with better spatial resolution and faster forecast 
computations.28

For flood forecasting, neural networks can model river systems around the 
world (a technique called HydroNets), resulting in more accurate water-level pre-
dictions.29 Utilizing this technology, authorities can send faster flood alerts, for 
example, to more than two hundred million people in India and Bangladesh.30

Machine learning also helps us better analyze satellite imagery. We can rapidly 
assess damage after a natural disaster (even with limited prior satellite imagery), 
understand the impact and extent of wildfires, and improve ecological and wild-
life monitoring.31

Robotics. The physical world is messy, full of unexpected obstacles, slips, and 
breakages. This makes creating robots that can successfully operate in messy, real- 
world environments like kitchens, offices, and roadways quite challenging (in-
dustrial robotics has already had a significant impact on the world, operating in 
more-controlled environments like factory assembly lines). To hard-code or pro-
gram real-world physical tasks, researchers need to anticipate all possible situa-
tions a robot might encounter. Machine learning efficiently trains robots to oper-
ate effectively in real-world environments through a combination of techniques 
like reinforcement learning, human demonstration, and natural language instruc-
tion. Machine learning also allows a more flexible, adaptable approach, in which 
robots can learn the best ways to engage in grasping or walking tasks rather than 
being locked into hard-coded assumptions. 

Some interesting research techniques include automated reinforcement learn-
ing combined with long-range robotic navigation, teaching a robot to follow nat-
ural language instructions (in many languages!), and applying a zero-shot imita-
tion learning framework to help robots better navigate simulated and real-world 
environments.32

Accessibility. It is easy to take for granted our ability to see a beautiful image, to 
hear a favorite song, or to speak with a loved one. Yet more than one billion people 
are not able to access the world in these ways. Machine learning improves acces-
sibility by turning these signals–vision, hearing, speech–into other signals that 
can be well-managed by people with accessibility needs, enabling better access to 
the world around them. Some application examples include speech-to-text tran-
scription, real-time transcriptions while someone is engaged in conversation, and 
applications that can help visually impaired users identify their surroundings.33

Individualized learning. Machine learning can also be used to create tools and ap-
plications that aid individualized learning. The benefits of this will be far reach-
ing, and initial examples include early childhood reading coaching such as Google 
Read Along (formerly Bolo), which is helping children all over the world learn to 

https://blog.google/products/search/mapping-wildfires-with-satellite-data/
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read in a variety of different languages,34 and machine learning tools like Socra-
tic that can help kids learn by giving them intuitive explanations and more de-
tailed information about concepts they are grappling with, across a wide variety of 
subjects such as mathematics, chemistry, and literature.35 Personalized learning 
backed by speech recognition, realistic speech output, and language understand-
ing has the potential to improve educational outcomes across the world.

Computer-aided creativity. Deep learning algorithms show surprising abilities to 
transform images in sophisticated and creative ways, giving us the ability to eas-
ily create spaceships in the style of Monet or the Golden Gate Bridge in the style 
of Edvard Munch.36 Via an algorithm for artistic style transfer (developed by ma-
chine learning researcher Leon Gatys and colleagues), a neural network can take 
a real-world image and an image of a painting and automatically render the real- 
world image in the style of the painter. DALL·E by OpenAI enables users to de-
scribe an image using text (“armchairs in the shape of an avocado” or “a loft bedroom 
with a white bed next to a nightstand, with a fish tank standing beside the bed”) and gener-
ate images that have the properties expressed by the natural language description, 
making sophisticated tools for artists and other creators to quickly create images 
of what is in their head.37

Machine learning–powered tools are also helping musicians create in ways 
they never have before.38 Moving beyond “technology,” these new uses of com-
puting can help anyone create new and unique sounds, rhythms, melodies, or 
even an entirely new musical instrument. 

It is not hard to imagine future tools that can interactively help people create 
amazing representations of our mental imagery–“Draw me a beach . . . no, I want it to 
be nighttime . . . with a full moon . . . and a mother giraffe with a baby next to a surfer coming 
out of the water”–by just interactively talking to our computing assistants.

Important building blocks. Federated learning is a powerful machine learning ap-
proach that preserves user privacy while leveraging many distinct clients (such as 
mobile devices or organizations) to collaboratively train a model while keeping 
the training data decentralized.39 This enables approaches that have superior pri-
vacy properties in large-scale learning systems.40 

Researchers continue to push the state of the art in federated learning by devel-
oping adaptive learning algorithms, techniques for mimicking centralized algo-
rithms in federated settings, substantial improvements in complimentary crypto
graphic protocols, and more.41 

Transformers. Language has been at the heart of developing AI since the field 
began, given how ubiquitous language use and understanding is within our dai-
ly lives. Because language deals in symbols, it naturally prompted a symbolic ap-
proach to AI in the beginning. But over the years, AI researchers have come to re-
alize that more statistical or pattern-based approaches yield better practical uses. 
The right types of deep learning can represent and manipulate the layered struc-
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ture of language quite effectively for a variety of real-world tasks, from translating 
between languages to labeling images. Much of the work in this space from Goo-
gle and elsewhere now relies on transformers, a particular style of neural network 
model originally developed for language problems (but with a growing body of 
evidence that they are also useful for images, videos, speech, protein folding, and 
a wide variety of other domains).42 

There have been several interesting examples of transformers used in scientif-
ic settings, such as training on protein sequences to find representations encoding 
meaningful biological properties, protein generation via language modeling, bio- 
BERT for text mining in biomedical data (with pretrained model and training code),  
embeddings of scientific text (with code), and medical question answering.43 Com- 
puter scientists Maithra Raghu and Eric Schmidt have provided a comprehensive 
review of the ways in which deep learning has been used for scientific discovery.44

Machine learning for computer systems. Researchers are also applying machine 
learning to core computer science and computer systems problems themselves. 
This is an exciting virtuous cycle for machine learning and computing infrastruc-
ture research because it could accelerate the whole range of techniques that we 
apply to other fields. This trend is in fact spawning entire new conferences, such 
as MLSys.45 Learning-based approaches are even being applied to database indi-
ces, learned sorting algorithms, compiler optimization, graph optimization, and 
memory allocation.46

F uture of machine learning. A few interesting threads of research are occurring 
in the ML research community that will likely be even more interesting if 
combined.

First, work on sparsely activated models, such as the sparsely gated mixture 
of experts model, shows how to build very large capacity models in which just a 
portion of the model is “activated” for any given example (say, just two or three 
experts out of 2,048 experts).47 The routing function in such models is trained si-
multaneously and jointly with the different experts, so that the routing function 
learns which experts are good at which sorts of examples, and the experts simul-
taneously learn to specialize for the characteristics of the stream of examples they 
are given. This is in contrast with most ML models today in which the whole model 
is activated for every example. Research scientist Ashish Vaswani and colleagues 
showed that such an approach is simultaneously about nine times more efficient 
for training, about 2.5 times more efficient for inference, and more accurate (+1 
BLEU point, a relatively large improvement in accuracy for a language-translation 
task).48

Second, work on automated machine learning (AutoML), in which techniques 
such as neural architecture search or evolutionary architectural search can auto-
matically learn effective structures and other aspects of machine learning mod-
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els or components in order to optimize accuracy for a given task, often involves 
running many automated experiments, each of which may involve significant 
amounts of computation.49

Third, multitask training at modest scales of a few to a few dozen related tasks, 
or transfer learning from a model trained on a large amount of data for a related 
task and then fine-tuned on a small amount of data for a new task, has been shown 
to be very effective in a wide variety of problems.50 So far, most use of multitask 
machine learning is usually in the context of a single modality (such as all visual 
tasks or all textual tasks), although a few authors have considered multimodality 
settings as well.51 

A particularly interesting research direction puts these three trends together, 
with a system running on large-scale ML accelerator hardware, with a goal of train-
ing a single model that can perform thousands or millions of tasks. Such a mod-
el might be made up of many different components of different structures, with 
the flow of data between examples being relatively dynamic on an example-by- 
example basis. The model might use techniques like the sparsely gated mixture of 
experts and learned routing in order to have a very large capacity model,52 but one 
in which a given task or example only sparsely activates a small fraction of the to-
tal components in the system (and therefore keeps computational cost and power 
usage per training example or inference much lower). An interesting direction to 
explore would be to use dynamic and adaptive amounts of computation for dif-
ferent examples, so that “easy” examples use much less computation than “hard” 
examples (a relatively unusual property in the machine learning models of today). 
Figure 1 depicts such a system.

Each component might itself be running some AutoML-like architecture 
search in order to adapt the structure of the component to the kinds of data that 
are being routed to that component.53 New tasks can leverage components trained 
on other tasks when that is useful. The hope is that through very large scale multi-
task learning, shared components, and learned routing, the model can very quick-
ly learn to accomplish new tasks to a high level of accuracy, with relatively few ex-
amples for each new task (because the model is able to leverage the expertise and 
internal representations it has already developed in accomplishing other, related 
tasks).

Building a single machine learning system that can handle millions of tasks, 
and that can learn to successfully accomplish new tasks automatically, is a true 
grand challenge in the field of artificial intelligence and computer systems engi-
neering. It will require expertise and advances in many areas, spanning machine 
learning algorithms, responsible AI topics such as fairness and interpretability, 
distributed systems, and computer architectures in order to push the field of ar-
tificial intelligence forward by building a system that can generalize to solve new 
tasks independently across the full range of application areas of machine learning.
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Responsible AI development. While AI has the ability to help us in many facets of 
our lives, all researchers and practitioners should ensure that these approaches are 
developed responsibly–carefully reviewing issues of bias, fairness, privacy, and 
other social considerations on how these tools might behave and impact others–
and work to address these considerations appropriately.

It is also important to document a clear set of principles to guide responsible 
development. In 2018, Google published a set of AI principles that guide the com-
pany’s work in and use of AI.54 The AI principles lay out important areas of con-
sideration, including issues such as bias, safety, fairness, accountability, trans-
parency, and privacy in machine learning systems. Other organizations and gov-
ernments have followed this model by publishing their own principles around 
the use of AI in recent years. It is great to see more organizations publishing their 
own guidelines and I hope that this trend will continue until it is no longer a 

Figure 1
A Multitask, Sparsely Activated Machine Learning Model

Note: This diagram depicts a design for a large, sparsely activated, multitask model. Each box 
in the model represents a component. Models for tasks develop by stitching together com-
ponents, either using human-specified connection patterns or automatically learned connec-
tivity. Each component might be running a small architectural search to adapt to the kinds 
of data that are being routed to it, and routing decisions making components decide which 
downstream components are best suited for a particular task or example, based on observed 
behavior. Source: Author’s diagram, including Barret Zoph and Quoc V. Le, “Neural Archi-
tecture Search with Reinforcement Learning,” arXiv (2016), Figure 7, 15, https://arxiv.org/
abs/1611.01578.

Outputs

Single large model,
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Tasks . . .
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trend but a standard by which all machine learning research and development 
is conducted. 

Conclusions. The 2010s were truly a golden decade of deep learning research 
and progress. During this decade, the field made huge strides in some of 
the most difficult problem areas set out in the 1956 workshop that created 

the field of AI. Machines became capable of seeing, hearing, and understanding 
language in ways that early researchers had hoped for. The successes in these core 
areas enabled a huge range of progress in many scientific domains, enabled our 
smartphones to become much smarter, and generally opened our eyes to the pos-
sibilities of the future as we continue to make progress on creating more sophis-
ticated and powerful deep learning models that help us with our daily lives. The 
future ahead of us is one in which we will all be more creative and capable thanks 
to the help provided by incredibly powerful machine learning systems. I cannot 
wait to see what the future holds!
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I Do Not Think It Means What You 
Think It Means: Artificial Intelligence, 

Cognitive Work & Scale

Kevin Scott

Over the past decade, AI technologies have advanced by leaps and bounds. Progress 
has been so fast, voluminous, and varied that it can be a challenge even for experts 
to make sense of it all. In this essay, I propose a framework for thinking about AI 
systems, specifically the idea that they are ultimately tools developed by humans to 
help other humans perform an increasing breadth of their cognitive work. Our AI 
systems for assisting us with our cognitive work have become more capable and gen-
eral over the past few years. This is in part due to a confluence of novel AI algorithms 
and the availability of massive amounts of data and compute. From this, research-
ers and engineers have been able to construct large, general models that serve as 
flexible and powerful building blocks that can be composed with other software to 
drive breakthroughs in the natural and physical sciences, to solve hard optimization 
and strategy problems, to perform perception tasks, and even to assist with complex 
cognitive tasks like coding. 

W hen I say the word “work,” what do I mean? In the mornings, when I 
tell my children that “I’m going to work,” they understand that I am 
about to get into a car, drive to my office, and, for the rest of the day, 

do a set of things alongside my coworkers for an employer who pays my salary. 
When I tell my wife that “I’m going to work in the shop for a while,” she under-
stands that I am headed to my workshop where I will use a variety of tools that 
I hold dear to tinker around on personal projects. When I say that “I’m going to 
work in the garden” or “I’m going to work on this essay,” the people to whom I 
am speaking almost always understand what I mean. Work in all these contexts 
means me, a human being, applying effort to achieve some effect. In these con-
texts, we all have some shared understanding of what the applied efforts entail, 
and why the effects are worth achieving.

In the late eighteenth century, accelerating into the nineteenth and twentieth 
centuries, individual members of society had cause to think about work in new 
ways. As society industrialized and humans devised new ways to use machines to 
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do work, nearly every aspect of human life changed. As these machines became 
increasingly complex, and as we began to use them to perform types of work that 
had previously been performed through a combination of human labor and less 
powerful tools, we needed new language and new scientific, technical, and social 
shared understandings for these new forms of machine-assisted work. 

Driven by the intellectual and industrial revolutions of the period, by the last 
half of the nineteenth century, scientists like Nicolas Léonard Sadi Carnot, James 
Prescott Joule, Rudolf Clausius, Lord Kelvin, James Maxwell, Ludwig Boltzmann, 
and others had given us a simple but powerful definition of work–weight lifted 
through a height–and a rich scientific theory–thermodynamics–that helped us 
better understand not just the natural world, but how to better engineer, build, 
and direct the new forms of machine work shaping society. That nineteenth- 
century scientific definition of work is very much relevant today, but it is charac-
teristic of its time. The work that it defines is physical. Understanding the nature 
of physical work was and is necessary to understand the machinery of the uni-
verse and was essential in constructing an industrial society.

When I get in my car, drive to my office, and do things alongside my cowork-
ers, “weight lifted through a height” is perhaps not the most relevant definition of 
the work that I, and many others, do every day. I meet with people. I listen. I coach 
and mentor. I attempt to make a very small number of meaningful decisions. I 
read and digest information. I think. I imagine. I code. I write. With all these ef-
forts, the effects that I am trying to achieve are the solutions of problems. For me 
those might be: Can we use our AI supercomputers to make molecular dynamics 
simulations go much faster so that we can solve a more interesting set of prob-
lems in biology? How can we make sure that our next machine learning model 
does not produce adverse effects? Can we work around firmware issues to pre-
vent a compute shortage in our AI training clusters? Can I understand enough of 
what a coworker is trying to achieve to meaningfully assist them? The interest-
ing thing about all these problems and their solutions is that the work required to 
solve them is almost entirely cognitive.

I f you are reading this essay, I would wager that you earn some or all of your 
living doing cognitive work. Perhaps, if you made a full accounting of your 
work time, you would discover that, if not most of the effort that you exert in 

your work, then a majority of the effects that you produce are more of the mind 
than the body. I am not arguing that our bodies are mere instruments of the mind. 
And I am certainly not arguing that one form of work is superior to another. I am 
attempting to make a more prosaic assertion: I am a knowledge worker; and you 
may be, too. Moreover, even though we understand the nature of our work well 
enough to do it, and more of us are earning our living this way with each passing 
year, we have not yet crisply defined what cognitive work is nor how to measure 
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it. As AI technologies become more capable, and as we use them to do more things 
that are inarguably cognitive work, this lack of a foundational definition makes it 
increasingly difficult to predict and engineer the changes that machines will bring 
to cognitive work in the coming years. Will AI become yet another instrument or 
tool that we use to express our humanity and creativity, that allows us to better ex-
plore and understand ourselves and the world around us, and that evolves the na-
ture of work once again just as the machines of the industrial revolution have done 
over the past two centuries? Or will AI become something else?

Wikipedia dodges defining what knowledge work is by defining the knowl-
edge worker instead as someone whose main capital is knowledge. The knowl-
edge worker entry then lists examples: “programmers, physicians, pharmacists, 
architects, engineers, scientists, design thinkers, public accountants, lawyers, ed-
itors, and academics, whose job is to ‘think for a living.’”1 Not bad. But not good 
enough to build a theory of cognitive work as useful as thermodynamics was for 
physical work. 

Since the middle of the twentieth century, we have had mathematician Claude 
Shannon’s quantification of information and an information theory with connec-
tions to and, in some respects, directly inspired by classical thermodynamics.2 
Intuitively, it seems safe to say that information is the precursor to knowledge. 
In some sense, building the bridge from the rigor of information theory to a use-
ful theory of cognitive work has been one of the great challenges facing the disci-
pline of AI since its founding in the summer of 1956. You can well imagine that our 
ancestors faced a similar quandary in the eighteenth and nineteenth centuries as 
they architected the industrialization of society. Sometimes the machines came 
before we really understood why they worked and the best way to build them, 
much less the complex network of social implications their construction and use 
entailed. But our ancestors built those machines anyway because it was blindingly 
obvious why they were useful.

In 2022, we have more clues about what a theory of cognitive work might 
be, although the theory itself may not be a new one. Of the ten attendees of the 
1956 Dartmouth Summer Research Conference on Artificial Intelligence, which 
coined the term artificial intelligence and helped to establish AI as a discipline, Ray 
Solomonoff’s name is less well-known than Marvin Minsky, John McCarthy, or 
Claude Shannon. Even though the subdiscipline of AI called machine learning has 
only in the past two decades taken over as the primary thrust of AI research and 
commercial activity, from the beginning, Solomonoff envisioned machine sys-
tems that could use probability and data to learn to solve complex problems. 

Perhaps the most important of Solomonoff’s insights was his theory of induc-
tive inference. This theory is in some ways a resolution of tension between two an-
cient ideas: Occam’s razor and Epicurus’s principle of multiple explanations. We 
are probably all familiar with Occam’s razor, which states that when faced with 
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a choice between multiple consistent explanations of an observed phenomenon, 
we should choose the simplest. Epicurus’s principle, on the other hand, states that 
we should consider all consistent explanations. 

Solomonoff’s resolution, while mathematically quite sophisticated, is a rela-
tively simple idea. You formulate the explanations of observable phenomena as 
programs for an abstract computing device, specifically a universal Turing ma-
chine.3 The shorter a program is, the more concise it is at explaining observed 
phenomena. We can now use this conciseness as a precise measure of simplicity 
for Occam’s razor. We then use the tools of Bayesian probability and a universal 
prior to compute the posterior probability of the range of computable explana-
tions for any observed phenomenon.

When we train modern machine learning models, to be clear, we are not per-
forming Solomonoff induction, which Solomonoff himself proved to be uncom-
putable. Regardless, Solomonoff induction is an interesting framework for think-
ing about cognitive work given that it is complete, at least over the universe of 
computable explanations.4 Although I am biased by my computer science train-
ing, I would argue that it is not hard to imagine how you could explain almost any 
observable phenomenon by at least some arbitrarily long program. The beauty of 
Solomonoff induction is that, to quote Ilya Sutskever, chief scientist of OpenAI, 
“compression equals generalization.” An incomprehensibly long explanation of a 
single phenomenon is nowhere near as powerful as a single concise description of 
many phenomena. Solomonoff induction gives us a framework for thinking very 
precisely about exactly this.

I may have just invoked too little theoretical computer science to frustrate the 
real theoretical computer scientists, and too much to frustrate everyone else, 
with the question still lingering: how does this help us understand cognitive 

work? Let us step back a moment to the work that we all do as knowledge work-
ers. Much of our work involves the use of a bunch of cognitive tools that humans 
have developed over millennia, and frameworks for refining and composing these 
tools with one another that help us solve problems orders and orders of magni-
tude more complex than our ancestors could, even though biologically we are 
most certainly not orders of magnitude smarter. Our ability to refine these cog-
nitive tools, to rigorously ensure that they work, and then to compose them may 
very well be the human version of “compression is generalization,” the way for us 
to do more even though we likely have no more real cognitive capacity than the 
ancients.

Take two of these tools I am guessing that many of us use to do our work: 
mathematics and the scientific method. The modern body of mathematics that 
we learn in high school and university, and increasingly the computational tools 
that we use to support our mathematical activities, lets us reason about phenom-
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ena we can neither see, touch, nor otherwise sense. Perhaps more important, it 
allows us to make predictions and reason about phenomena that have never ac-
tually occurred. With millennia-old mathematics, our ancestors could design aq-
ueducts that supported sophisticated ancient civilizations by allowing them to 
move water around for irrigation, drinking, and sanitation. With twentieth- and 
twenty-first-century mathematics and computation, we can design lithographic 
structures on silicon wafers that move electrons around with near atomic-level 
precision. We carry devices made with these silicon artifacts in our pockets and 
backpacks that give us a way to connect and communicate with billions of oth-
er humans, access the world’s knowledge, create our work, and engage in almost 
any form of commerce imaginable. To get from aqueducts to microprocessors, we 
have had to build a whole modern cognitive architecture composed of layers upon 
layers of cognitive tools that we and our predecessors have contributed to. 

When I stop to think hard about the tools that I use to do my work, they do 
feel like an amazing compression algorithm that lets me get more mileage out of 
the brain I was born with. In computer science, this effect is hard to miss. The 
programs that I wrote as a young computing professional were longer and ac-
complished far less than the ones I write today. And the margin by which a line of 
code has become more powerful is far greater than the productivity I have gained 
through polishing my programming skills over the years. The tools that are avail-
able to me now are orders of magnitude more powerful than they were when I be-
gan coding in the 1980s. Moreover, whether you are an engineer, a scientist, a writ-
er, or an artist, what has become clear over the past handful of years is that the AI 
systems that we are building today will likely have an equally momentous impact 
on the cognitive work that we are all able to do in the future.

I n the same way that an engineer might assemble metal alloys, hydraulic pis-
tons, electric motors, shafts, bearings, and electronics into a machine that 
performs mechanical work, like a forklift, engineers of AI systems increas-

ingly rely upon deep neural networks (DNNs) to build software systems capable 
of performing cognitive work. In a real sense, the widespread use of DNNs today 
is made possible by large amounts of data and compute needed to train them. In 
2009, machine learning scholar Andrew Ng and his colleagues at Stanford pro-
posed the use of graphics processing units (GPUs)–devices capable of quickly 
and efficiently performing the sorts of arithmetic necessary for creating realistic 
video games–for training DNNs.5 While Ng did not invent the DNN, his innova-
tive use of the computational power of GPUs to train them helped to bring about 
a new age of machine learning with the DNN as its most powerful building block.

Over the past decade or so, the amount of compute used to train the DNN 
building blocks of our AI tools for cognitive work has increased exponentially. In 
2018, OpenAI scientists noted that from 2012 to 2018, the amount of compute used 
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in the largest AI training runs had increased by a factor of three hundred thou-
sand.6 Why? In a world of diminishing returns from Moore’s law, it certainly is 
not because compute is cheap. These investments only make sense insofar as scale 
makes DNNs better building blocks for doing cognitive work. And arguably they 
have, in two notable ways.

In the first half of the nineteenth century, mechanical engineer Claude-Louis 
Navier and physicist George Gabriel Stokes developed a set of partial differential 
equations to describe the motion of viscous fluids. The Navier-Stokes flow equa-
tions are, in my opinion, among the most beautiful in all of mathematics. They 
very concisely describe an enormous range of phenomena in hydraulics, aeronau-
tics, oceanography, and atmospheric sciences. They inform everything from the 
design of the pipes carrying water to our homes, to the design of the aircraft that 
take us on holiday, to the weather forecasts we use to plan our days. The problem 
with these equations is that, when used to model extremely complex physical ob-
jects or environments, they can become extraordinarily expensive to solve. Pri-
or to the advent of computers and numerical solvers for partial differential equa-
tions (PDEs), one could only model relatively simple systems with high fidelity, or 
complex systems only with simplifying assumptions to make the calculations fea-
sible. Even now with extremely powerful supercomputers, certain problems that 
could benefit from high-fidelity solutions to Navier-Stokes are computationally 
infeasible.

That is, until recent work by a team of computer scientists at Caltech. Zongyi 
Li and colleagues devised a way to use deep neural networks to solve the Navier- 
Stokes PDEs up to three orders of magnitude faster, under some circumstances, 
than prior state-of-the-art solvers.7 In my graduate research, I was often happy to 
improve the performance of a system by 5 percent. One thousand times more per-
formance is, to torture an overused word, incredible.

The pattern that Li and his colleagues employed is one that is becoming in-
creasingly widespread in the sciences. This is the first notable way in which mod-
els trained with large amounts of compute are becoming better building blocks 
for cognitive work. With an abundance of compute, DNNs can be trained using  
accurate but slow simulators or solvers for numerical, combinatorial, or even 
symbolic problems to encode something about the structure of a problem domain 
that we have yet to be able to model in other ways, such as through mathematics, 
or heuristics, or code. These DNNs can then be used to solve problems, allowing 
scientists to approach their work in new ways. Sometimes these techniques may 
make expensive things quicker or cheaper so that more people can solve more 
problems. Sometimes they may mean creating the ability to tackle problems so 
large or complex that they were previously impossible to solve. And the better 
news is that it seems as if this pattern is widely applicable and just beginning to be 
widely adopted. There is much to look forward to in the years to come.
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The second way that scale is allowing us to construct better building blocks for 
performing cognitive work involves the use of self-supervised learning for build-
ing deep neural networks that behave as building blocks or platforms for a wide 
range of uses.

B efore we dive into an explanation of self-supervised models, it is useful to 
understand a bit about supervised models, which drove much of the prog-
ress in the early years of the DNN boom. The first decade or more of ma-

chine learning systems that I built were all supervised. If you wanted to train a 
model to predict when someone was going to click on an ad, whether a piece of 
email was spam, or whether a picture contains an image of a kitten, you had to 
provide the supervised learning algorithms with lots and lots of examples of both 
good and bad ad clicks, spammy and nonspammy emails, or pictures with or with-
out kittens in them. Providing those examples and counterexamples is an exercise 
called labeling and is time consuming and expensive given the volume of labeled 
training data required to achieve good performance.

For those of us following the field of machine learning closely, the last several 
years have brought extraordinary progress in solving problems related to human 
perception (recognizing the objects in images or the words spoken to a device), 
strategic game playing (beating the best human players at Go or Dota), and, most 
recently, in natural language understanding. The progress in natural language un-
derstanding began to accelerate in 2018 with the publication of a paper by Jacob 
Devlin, a software engineer at Google, which introduced the notion of pretraining 
for language models.8 By now, this will feel like a familiar pattern. BERT, RoBERTa, 
DeBERTa, and other models use a set of techniques to learn the structure of nat-
ural language in a process that researchers in the field call pretraining.9 Pretrain-
ing in these language models, like many of the most powerful contemporary deep 
learning systems, is self-supervised. In other words, the models learn without di-
rect human supervision. 

Once pretrained, a model, with the things it has learned about language struc-
ture, can be used to solve a wide range of problems in natural language processing. 
In many cases, a pretrained model needs to be fine-tuned to a particular task with 
some supervision. In some cases, the pretrained model itself is good enough. For 
instance, researchers at the Allen Institute for Artificial Intelligence used BERT 
in a test-taking system they had built called Aristo that was able to score high-
er than 90 percent on the multiple-choice component of the New York Regents 
eighth-grade science exam, and exceeded 83 percent on the twelfth-grade test.10 
My colleagues at Microsoft Research used their DeBERTa model to, for the first 
time, surpass the human baseline on the SuperGLUE benchmark, which entails 
solving nontrivial natural language problems, such as processing a complicated 
passage of text and then answering true or false questions about the passage, or 
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resolving the referent of a pronoun in an ambiguous passage of text. The best nat-
ural language models are now able to exceed expert human performance on these 
benchmarks.

When examining these systems, it is always important to ask: are these mod-
els capable of doing what they do because they have superhumanly big memories 
from which they recall the answers to problems someone else has solved, or have 
they compressed what they have seen in a way that lets them generalize solutions 
of problems no one has ever solved before? While there is ongoing debate about 
what, if anything, our contemporary self-supervised language models are “learn-
ing,”11 for both those systems as well as those in which the data-fueling model 
learning is generated in simulation, it does seem that large data and compute are 
allowing us to encode useful things about problem domains that no human has 
previously encountered.

Perhaps the two most impressive recent illustrations of how large models 
trained with large compute can produce interesting results are OpenAI’s Gener-
ative Pre-trained Transformer 3 (GPT-3) and Codex models.12 At the time of its 
release, GPT-3 was ten times larger than the largest nonsparse language model. 
There are many benefits to scale, although perhaps the two most important are: 
when properly trained, larger models tend to have better performance on the same 
task than smaller models; and larger models tend to be useful in a broader range of 
tasks, either with fine-tuning or not, than smaller models. Because GPT-3 is useful 
on a broad range of tasks with little or no additional fine-tuning, it has been pos-
sible to offer an application programming interface to developers to allow them 
to probe the utility of the model for the problems they are interested in solving.

One of the biggest surprises of the GPT-3 model is that it generalized something 
about the structure of computer programming languages that allowed it to syn-
thesize code that did not exist in its training data. This realization led to OpenAI  
fine-tuning a model for computer code called Codex, and in collaboration with 
GitHub, developing a coding assistant product called Copilot that can write code 
from natural language prompts. As the Codex model and the Copilot product get 
better, they will not only assist programmers with their cognitive work, but may 
also lower the barrier to entry to programming itself. Given that Codex and Co- 
pilot work by allowing humans to describe in natural language an effect they 
would like accomplished through code, the task of coding may become more ap-
proachable to many, many more people.

T his ability to train on one set of data and to transfer what is learned to a 
broad range of tasks is called transfer learning. Transfer learning, perhaps 
more than anything else over the next few years, is likely to accelerate our 

progress on AI. It allows us to think about models as reusable building blocks, 
what I call platform models, and researchers at Stanford are calling foundation  
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models.13 Moreover, based on the trends of the past few years, for transfer learning 
to work better, we will need bigger and more sophisticated models, which in turn 
will require more training compute.

AI systems designed to assist us with our cognitive work will no doubt con-
tinue to surprise us. I have been surprised so many times over the past two de-
cades by what AI scientists and researchers have been able to accomplish that  
I have learned to heed the second half of Arthur C. Clarke’s first law: When a dis-
tinguished but elderly scientist states that something is possible, they are almost 
certainly right. When they state that something is impossible, they are very prob-
ably wrong. Somewhere in the surprises of the future that await us, I am looking 
forward to systems that can help me to write my code, to sharpen my writing, to 
help me better manage the deluge of information I crave, and to assist me with the 
art and artifacts I make in my workshop. Hopefully, as our eighteenth- and nine-
teenth-century forebears did with physical work, we will also sharpen our defini-
tions of cognitive work, develop new mechanisms for measuring it, and get better 
at constructing AI building blocks and tools to help us with these tasks. But more 
than anything, I look forward to what happens when folks who are more imagi-
native and creative than I am are able to incorporate new AI-based cognitive tools 
into their work, to make things that awe and inspire, and to solve those vexing 
problems that face society as we race forward to an ever more complicated future.
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Searching for Computer Vision  
North Stars

Li Fei-Fei & Ranjay Krishna

Computer vision is one of the most fundamental areas of artificial intelligence re-
search. It has contributed to the tremendous progress in the recent deep learning rev-
olution in AI. In this essay, we provide a perspective of the recent evolution of object 
recognition in computer vision, a flagship research topic that led to the breakthrough 
data set of ImageNet and its ensuing algorithm developments. We argue that much 
of this progress is rooted in the pursuit of research “north stars,” wherein researchers 
focus on critical problems of a scientific discipline that can galvanize major efforts 
and groundbreaking progress. Following the success of ImageNet and object recog-
nition, we observe a number of exciting areas of research and a growing list of north 
star problems to tackle. This essay recounts the brief history of ImageNet, its related 
work, and the follow-up progress. The goal is to inspire more north star work to ad-
vance the field, and AI at large.

A rtificial intelligence is a rapidly progressing field. To many of its everyday 
users, AI is an impressive feat of engineering derived from modern com-
puter science. There is no question that there has been incredible engi-

neering progress in AI, especially in recent years. Successful implementations of 
AI are all around us, from email spam filters and personalized retail recommen-
dations to cars that avoid collisions in an emergency by autonomously braking. 
What may be less obvious is the science behind the engineering. As researchers in 
the field, we have a deep appreciation of both the engineering and the science and 
see the two approaches as deeply intertwined and complementary. Thinking of 
AI, at least in part, as a scientific discipline can inspire new lines of thought and in-
quiry that, in time, will make engineering progress more likely. As in any science, 
it is not always obvious what problems in AI are the most important to tackle. But 
once you have formulated a fundamental problem–once you have identified the 
next “north star”–you can start pushing the frontier of your field. That has cer-
tainly been our experience, and it is why we love Einstein’s remark that “The mere 
formulation of a problem is often far more essential than its solution.” 

AI has been driven by north stars from the field’s inception in 1950, when Alan 
Turing neatly formulated the problem of how to tell if a computer deserves to 
be called intelligent. (The computer, according to the now-famous Turing Test, 
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would need to be able to “deceive a human into believing that it was human,” as 
Turing put it.)1 A few years later, as the founding fathers of AI planned the Dart-
mouth workshop, they set another ambitious goal, proposing to build machines 
that can “use language, form abstractions and concepts, solve kinds of problems 
now reserved for humans, and improve themselves.”2 Without that guiding light, 
we might never be in a position to tackle new problems.

Our own area within AI, computer vision, has been driven by its own series of 
north stars. This is the story of one–object recognition–and the progress it has 
made toward north stars in other AI fields.

T he ability to see–vision–is central to intelligence. Some evolutionary 
biologists have hypothesized that it was the evolution of eyes in animals 
that first gave rise to the many different species we know today, including 

humans.3 
Seeing is an immensely rich experience. When we open our eyes, the entire visu-

al world is immediately available to us in all its complexity. From registering shad-
ows and brightness, to taking in the colors of everything around us, to recognizing 
an appetizing banana on a kitchen counter as something good to eat, humans use 
our visual perception to navigate the world, to make sense of it, and to interact with 
it. So how do you even begin to teach a computer to see? There are many import-
ant problems to solve and choosing them is an essential part of the scientific quest 
for computer vision: that is, the process of identifying the north stars of the field. 
At the turn of the century, inspired by a large body of important work prior to ours, 
our collaborators and we were drawn to the problem of object recognition: a com-
puter’s ability to correctly identify what appears in a given image. 

This seemed like the most promising north star for two reasons. The first was 
its practical applications. The early 2000s witnessed an explosive increase in the 
number of digital images, thanks to the extraordinary growth of the Internet and 
digital cameras, and all those images created a demand for tools to automatically 
catalog personal photo collections and to enable users to search through such im-
age collections. Both applications would require object recognition.

But an even deeper reason was the remarkable ability of humans to perceive 
and interpret objects in the visual world. Research in the field of cognitive neuro-
science showed that humans can detect animals within just twenty milliseconds 
and, within only three hundred milliseconds, can tell whether the animal is, say, 
a tiger or a lamb. The research in cognitive neuroscience also offered clues to how 
humans are able to achieve such rapid recognition: scientists had found that hu-
mans relied on cues in the object’s surroundings and on certain key features of ob-
jects, features that did not change with a difference in angle or lighting conditions. 
Most strikingly, neuroscientists had discovered specific regions of the brain that 
activate when people view specific objects.4 The existence of neural correlates for 



151 (2) Spring 2022 87

Li Fei-Fei & Ranjay Krishna

any function is a sure sign of the function’s evolutionary importance: a specific 
brain region would not evolve for a specific function unless that function was es-
sential for the organism’s survival or reproduction. Clearly, the ability to recog-
nize specific objects must be critical.

These findings made clear to us that object recognition should be considered 
a north star in computer vision. But how do you get a computer to recognize ob-
jects? Recognizing objects requires understanding what concept a digital image 
represents in the visual world–what the image means–but a computer has no 
such understanding. To a computer, a digital image is nothing more than a col-
lection of pixels, a two-dimensional array of numbers that does not really mean 
anything except colors and illuminations. Teaching a computer to recognize ob-
jects requires somehow getting it to connect each lifeless collection of numbers to 
a meaningful concept, like dog or banana. 

Between the decades of the 1990s and the early 2000s, researchers in object rec-
ognition had already made tremendous progress toward this daunting goal, but 
progress was slow because of the enormous variety in the appearance of real-world 
objects. Even within a single, fairly specific category (like house, dog, or flower), 
objects can look quite different. For example, an AI capable of accurately recogniz-
ing an object in a photograph as a dog needs to recognize it as a dog whether it is 
a German shepherd, poodle, or chihuahua. And whatever the breed, the AI needs 
to recognize it as a dog whether it is photographed from the front or from the side, 
running to catch a ball or standing on all fours with a blue bandana around its 
neck. In short, there is a bewildering diversity of images of dogs, and past attempts 
at teaching computers to recognize such objects failed to cope with this diversity.

One major bottleneck of most of these past methods was their reliance on 
hand-designed templates to capture the essential features of an object, and the 
lack of exposure to a vast variety of images. Computers learn from being exposed 
to examples; that is the essence of machine learning. And while humans can of-
ten generalize correctly from just a few examples, computers need large numbers 
of examples; otherwise, they make mistakes. So AI researchers had been trapped 
in a dilemma. On the one hand, for a template to be helpful in teaching an AI sys-
tem to recognize objects, the template needed to be based upon a large variety of 
images and, therefore, a very large number of images in total. On the other hand, 
hand-designing a template is labor-intensive work, and doing so from a very large 
number of images is not feasible.

The inability to scale the template approach effectively made it clear that we 
needed a different way to approach the object-recognition problem.

We started our search for a new approach with one key assumption: even 
the best algorithm would not generalize well if the data it learned from 
did not reflect the real world. In concrete terms, that meant that ma-
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jor advances in object recognition could occur only from access to a large quantity 
of diverse, high-quality training data. That assumption may sound obvious be-
cause we are all awash in data and we all benefit from powerful object-recognition  
tools. But when we began our work in the early 2000s, the focus on data was fairly 
contrarian: at that time, most people in our field were paying attention to models 
(algorithms), not to data. Of course, in truth, the two pursuits are compatible. We 
believed that good data would help with the design of good models, which would 
lead to advances in object recognition and in AI more broadly.

That meant that we needed to create a new data set (which we called Image- 
Net) that achieved these three design goals: scale (a large quantity of data), diver-
sity (a rich variety of objects), and quality (accurately labeled objects).5 In focus-
ing on these three goals, we had moved from a general north star–image recogni-
tion–to more specific problem formulations. But how did we tackle each?

Scale. Psychologists have posited that human-like perception requires expo-
sure to thousands of diverse objects.6 When young children learn naturally, their 
lives have already been exposed to enormous numbers of images every day. For 
example, by the time a typical child is six years old, she has seen approximate-
ly three thousand distinct objects, according to one estimate; from those exam-
ples, the child would have learned enough distinctive features to help distinguish 
among thirty thousand more categories. That is how large a scale we had in mind. 
Yet the most popular object-recognition data set when we began included only 
twenty objects, the result of the very process we described earlier as too cumber-
some to scale up. Knowing that we needed far more objects, we collected fifteen 
million images from the Internet. 

But images alone would not be enough to provide useful training data to a com-
puter: we would also need meaningful categories for labeling the objects in these 
images. After all, how can a computer know that a picture of a dog is a German 
shepherd (or even a dog) unless the picture has been labeled with one of these cat-
egories? Furthermore, most of the machine learning algorithms require a train-
ing phase during which the algorithms must learn from labeled examples (that 
is, training examples) and be measured by their performances of a separate set of 
labeled examples (that is, testing samples). So we turned to an English-language 
vocabulary data set, called WordNet, developed by cognitive psychologist George 
Miller in 1990.7 WordNet organizes words into hierarchically nested categories 
(such as dog, mammal, and animal); using WordNet, we chose thousands of ob-
ject categories that would encompass all the images we had found. In fact, we 
named our data set ImageNet by analogy with WordNet.

Diversity. The images we collected from the Internet represented the diversi-
ty in real-world objects, covering many categories. For example, there were more 
than eight hundred different kinds of birds alone, with several examples of each. 
In total, we used 21,841 categories to organize the fifteen million images in our 
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data set. The challenges in capturing real-world diversity within each category is 
that simple Internet search results are biased toward certain kinds of images: for 
example, Google’s top search results for “German shepherd” or “poodle” consist 
of cleanly centered images of each breed. To avoid this kind of bias, we had to ex-
pand the query to include a description: to search also, for example, for “German 
shepherd in the kitchen.” Similarly, to get a broader, more representative distribu-
tion of the variety of dog images, we used translations into some other languages 
as well as hypernyms and hyponyms: not just “husky” but also “Alaskan husky”  
and “heavy-coated Arctic sled dog.” 

Quality. We cared a lot about the quality of the images and the quality of the 
annotations. To create a gold-standard data set that would replicate the acuity of 
human vision, we used only high-resolution images. And to create accurate labels 
for the objects in the data set, we hired people. At first, we brought in Princeton 
undergraduate students to label the images and verify these labels, but it quickly 
became apparent that using such a small group would take far too long. Through 
a fortunate coincidence, Amazon had just released its crowdsourcing platform, 
Mechanical Turk, which enabled us to quickly hire approximately fifty thousand 
workers from 167 countries to label and verify the objects in our set between 2007 
and 2009.8 

T he ImageNet team believed it was important to democratize research in 
object recognition and to build a community around ImageNet. So we 
open-sourced ImageNet: we made it free and open to any interested re-

searcher. We also established an annual competition to inspire researchers from 
all around the world. The ImageNet Large-Scale Visual Recognition Challenge 
(often simply called the ImageNet Challenge), which ran concurrently from 2010 
until 2017 with the international computer vision research conferences Interna-
tional Conference on Computer Vision and European Conference on Computer 
Vision, created a common benchmark for measuring progress.

We set up the ImageNet Challenge similar to the design of other machine learn-
ing competitions: All participants would get the same training data, which is just a 
subset of the larger ImageNet data set. After using this training data to train their 
object-recognition algorithm, the participants would unleash their algorithm on 
unlabeled images that the algorithm had never encountered to see how accurately 
the algorithm would recognize these new images. These test data, too, came from 
ImageNet. 

We had high aspirations for the ImageNet data set and for the ImageNet Chal-
lenge, yet the outcomes exceeded them. The biggest turning point came in 2012, 
when one team applied a convolutional neural network to object recognition for 
the first time.9 (A convolutional neural network is an algorithm inspired by the 
way the human brain works.) That team’s winning entry, later known as AlexNet 
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after one of its creators, trounced its competition, recognizing images with an ac-
curacy that was a whopping 41 percent higher than that of the second-place finish-
er. Although neural networks as an approach to machine learning had been around 
for decades, it had not been widely used until that year’s ImageNet Challenge.

This was a watershed moment for the AI community. The impressive perfor-
mance of AlexNet on the ImageNet data set inspired other researchers–and not 
just participants in the ImageNet Challenge–to shift to deep learning approach-
es. We started seeing large companies like Google and Facebook deploying tech-
nology based on neural networks, and within a year, almost every AI paper was 
about neural networks.

With so many people working on neural networks, the technology advanced 
rapidly. Researchers found that the deeper the model, the better it performed at 
object recognition. And as deeper models required more processing power, re-
searchers ran into other problems, such as computational bottlenecks, which re-
quired further design work to overcome. The ImageNet Challenge created a kind 
of domino effect of innovations, with each advance leading to more.10

Beyond the tremendous progress in computer vision through more and more 
powerful deep learning algorithms, researchers began using deep learning to au-
tomate and systematize the design of model architecture itself, instead of hand- 
designing each neural network’s architecture. The process of hand-designing ar-
chitectures, like the previous process of hand-designing features in templates, is 
speculative: the search space of possible architectures is exponentially vast, so 
manual architectural changes are unlikely to thoroughly explore this space quick-
ly enough to uncover the optimal architecture. Using ImageNet as a test bed, com-
puter vision researchers have systematized the process of neural architecture 
search.11 Initial methods consumed too many computational resources to exhaus-
tively cover the search space. Inspired by the success of hand-designed architec-
tures with recurring architecture motifs, such as ResNet36 and Inception35, lat-
er methods defined architectures with recurring cell structures and restricted the 
search space to designing this recurring cell.12 

The ImageNet Challenge ended once the accuracy of its best models reached 
superhuman levels, at 97.3 percent. (Human accuracy on this data was about 95 
percent.)13 Other researchers have continued making incremental advancements, 
however, using the ImageNet data set to track their progress, and error rates have 
continued to fall, though certainly not as fast as in the first few years after the in-
troduction of ImageNet. The error rate of the best model today is only 1.2 percent, 
down from 33.6 percent when the competition began back in 2009.14

These days, thanks to high accuracy and reasonable computing costs, ob-
ject recognition is in wide use. Whenever you search for images on the Internet, 
you use the kinds of algorithms first developed for the ImageNet Challenge; the 
same goes for when your smartphone automatically groups your photos based on 
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whose face appears in the photo. Those are exactly the uses we had in mind when 
we first chose object recognition as our north star. But uses of object recognition 
go beyond that, from tracking players in sports to helping self-driving cars detect 
other vehicles. 

L earning to recognize objects is only one form of learning to see, which is 
why computer vision (or visual intelligence) is a much broader field than 
object recognition. But there are important similarities between object rec-

ognition and other tasks in computer vision, such as object detection and activi-
ty recognition. Such similarities mean that a computer should not need to tackle 
a new task from scratch. In theory, a computer should be able to take advantage 
of the similarities, applying what it has learned from one task to perform a some-
what different task. For both computers and humans, this process of generalizing 
knowledge from one task to a similar one is called transfer learning.15

Humans are very good at transfer learning: once we know French, for exam-
ple, it is not as hard to learn Spanish. And if you learned to read English as a child, 
that was certainly easier if you already knew how to speak English than if the lan-
guage was entirely new to you. In fact, the ability to pick up on similarities be-
tween tasks, and to parlay this shared knowledge to help us learn new tasks, is one 
of the hallmarks of human intelligence. 

Transfer learning can be tremendously helpful for AI, too, but it does not come 
naturally to computers; instead, we humans have to teach them. The way to help 
computers with transfer learning is through pretraining. The idea is that before 
you give a machine learning model a new challenge, you first train it to do some-
thing similar, using training data that are already known to be effective. In com-
puter vision, that starting point is the object-recognition data in ImageNet. Once 
a new model gets trained through ImageNet, it should have a leg up on tackling 
a new kind of challenge. If this approach works, as we thought it would, then we 
have all the more reason to think that object recognition is a north star for visual 
intelligence.

That was the thinking behind our extension of the ImageNet Challenge to the 
problem of object detection. Object detection means recognizing an object in an 
image and specifying its location within the image. If you have ever seen a digital 
photograph of a group of people with a little rectangle drawn around each per-
son’s face, you have seen one application of object detection. Whereas the images 
in ImageNet contain just one object each, most real-world scenes include several 
objects, so object detection is a valuable extension of the kind of simple object rec-
ognition we had tested in the ImageNet Challenge.

Object detection had been an area of research before ImageNet, too, but the 
most common approach then was to first identify the areas within the image 
where an object (such as an animal) was likely to be, and then to focus on that area 
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and try to recognize that object (as a tiger, for example).16 Once ImageNet became 
available, that second step became much easier.

Object detection has come a long way since then, with special-purpose detec-
tors for different kinds of applications, such as self-driving cars, which need to be 
alert to other cars on the road.17 Such advances beyond object recognition would 
not have been possible without the use of ImageNet to enable transfer learning.

But object detection was just a first attempt to apply ImageNet data to uses be-
yond object recognition. These days, for better or for worse, almost every comput-
er vision method uses models pretrained on ImageNet.

N one of that is to say that ImageNet has been useful for every computer vi-
sion task. A prominent example is medical imaging.18 Conceptually, the 
task of classifying a medical image (such as a screening mammogram) 

is not very different from the task of classifying a photograph taken with a phone 
camera (such as a snapshot of a family pet). Both tasks involve visual objects and 
category labels, so both could be performed by a properly trained machine. In fact, 
they have been. But the methods have not been exactly the same. For one thing, 
you cannot use the ImageNet data set to train a computer to detect tumors; it sim-
ply has no data for this specialized task. What is more, it is not feasible to use the 
same basic approach: the professional expertise required to create high-quality  
training data to help with medical diagnosis is scarce and expensive. Put anoth-
er way, it is impossible to use Mechanical Turk to create a high-quality medical 
data set, both due to the requirement of specialized expertise as well as regulatory 
restrictions. So instead of using carefully labeled examples (the process of “su-
pervised learning”), AI for medical imaging is usually based on “semi-supervised 
learning,” whereby the machine learns to find meaningful patterns across images 
without many explicit labels.19

Computer vision certainly has practical applications beyond health, including 
environmental sustainability. Researchers are already using machine learning to 
analyze large volumes of satellite images to help governments assess changes in 
crop yields, water levels, deforestation, and wildfires, and to track longitudinal 
climate change.20 Computer vision can be helpful in education, too: when stu-
dents are trying to learn to read bar charts or to study visual subjects like geometry 
and physics, computers that understand images have the potential to supplement 
the efforts of human teachers. Assistive technology could also help teachers gen-
erate content-appropriate quizzes.21

The use of ImageNet to generalize beyond object recognition also led to the 
discovery of a thorny problem for deep learning models: “adversarial examples,” 
which are images that fool an AI into making blatant errors classifying an object.22 
A miniscule, humanly imperceptible tweak to a picture (sometimes even a single 
pixel!) can cause a model trained on ImageNet to mislabel it entirely.23 An image 
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of a panda can thus get misclassified as a bathtub. Some kinds of errors are eas-
ier to understand as the result of spurious correlations: wolves are often photo-
graphed in snow, so a model that learns to associate snow with wolves could come 
to assume that the label “wolf” refers to “snow.” It turns out that all models that 
use deep learning are vulnerable to attacks from adversarial examples, a fact that 
has spurred some researchers to work on ways to “vaccinate” training data against 
these attacks.

The problem of adversarial examples has also led the computer vision commu-
nity to shift from a singular focus on accuracy. Although accuracy in object recog-
nition certainly remains important, researchers have come to appreciate the value 
of other criteria for evaluating a machine learning model, particularly interpret-
ability (which refers to the ability of a model to generate predictable or under-
standable inference results for human beings) and explainability (the ability of a 
model to provide post hoc explanations for existing black box models).24

The success of ImageNet has also prompted the computer vision community 
to start asking what data the next generation of models should be pretrained on. 
As an alternative to the expensive, carefully annotated, and thoroughly verified 
process used to create ImageNet, researchers have collected data from social me-
dia and scraped images with their associated text off the Internet.25 Pretraining 
models from this “raw” data have opened up the possibility of “zero-shot adapta-
tion,” the process through which computers can learn without any explicit labels. 
In fact, models trained on such raw data now perform as well as models trained 
using ImageNet.26

Finally, the wide influence of ImageNet has opened the data set up to criticism, 
raising valid concerns we were not sufficiently attuned to when we began. The 
most serious of these is the issue of fairness in images of people.27 For one thing, 
although we certainly knew early on to filter out blatantly derogatory image labels 
such as racial or gender slurs, we were not sensitive to more subtle problems, such 
as labels that are not inherently derogatory but could cause offense when applied 
inappropriately (such as labeling people based on clues to their religion or sex-
ual orientation). In addition, certain concepts related to people are hard to rep-
resent visually without resorting to stereotypes, so attempts to associate images 
with these concept labels (“philanthropist” or “Bahamian,” for example) perpet-
uate biases. Most Bahamian wear distinctive garb only on special, ceremonial oc-
casions, but an image search for “Bahamian” based on ImageNet data would give 
a disproportionate number of such stereotypical images of people from the Ba-
hamas. Another source of bias in search results is the inadequate diversity in the 
ImageNet data set, a bias that tends to get amplified during the manual cleanup 
stage, when human annotators resort to racial and gender stereotypes in their la-
beling. Women and ethnic minorities are already underrepresented among real- 
world bankers, for example, but they are even more underrepresented in images 



94 Dædalus, the Journal of the American Academy of Arts & Sciences

Searching for Computer Vision North Stars

labeled as “banker.” Although these problems of fairness are difficult to eliminate 
entirely, we have made research strides to mitigate them.28 

T he development of these new data sets has led to the need for a metabench-
mark: a single evaluation scheme for multiple individual benchmarks (or 
a benchmark for comparing benchmarks). Without a metabenchmark, it 

is impossible to compare the performance of different machine learning models 
across different tasks and using different data sets. 

In fact, one thing that has emerged is a lively debate about benchmarks them-
selves.29 One side of the debate posits that the constant emergence of new bench-
marks is a good sign, suggesting continued progress on north stars. On the other 
side is a concern that benchmarks encourage something akin to teaching to the test: 
the concern that what emerges from benchmarking are not superior models but 
models that optimize for high performance on an inherently imperfect benchmark.

Another serious concern is that a widely adopted benchmark amplifies the 
real-world effects of any flaws in the benchmark. There is a growing body of re-
search, for example, on how benchmarks can perpetuate structural societal bi-
ases,30 benefiting groups that are already dominant (particularly White males) 
while discriminating against marginalized groups (such as Muslims and dark-
skinned females).31 

In response to these concerns, pioneers in the field are radically rethinking 
benchmarking. One suggestion has been for human judges to generate inputs 
for which models would fail, thus creating increasingly harder testing criteria as 
models improve.32 Another idea is to demand that benchmarks measure not only 
accuracy (which encourages designing to the benchmark) but also assess and re-
ward progress on other valuable criteria, including bias detection.33

W here do we go next in computer vision? Other north stars beckon. 
One of the biggest is in the area of embodied AI: robotics for tasks 
such as navigation, manipulation, and instruction following. That 

does not necessarily mean creating humanoid robots that nod their heads and 
walk on two legs; any tangible and intelligent machine that moves through space 
is a form of embodied AI, whether it is a self-driving car, a robot vacuum, or a ro-
botic arm in the factory. And just as ImageNet aimed at representing a broad and 
diverse range of real-world images, research in embodied AI needs to tackle the 
complex diversity of human tasks, from folding laundry to exploring a new city.34

Another north star is visual reasoning: understanding, for example, the 
three-dimensional relationships in a two-dimensional scene. Think of the visual 
reasoning needed to follow even the seemingly simple instruction to bring back 
the metal mug to the left of the cereal bowl. Following such instructions certainly 
requires more than vision, but vision is an essential component.35
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Understanding people in a scene, including social relationships and human in-
tentions, adds yet another level of complexity, and such basic social intelligence is 
another north star in computer vision.36 Even a five-year-old can guess, for exam-
ple, that if a woman is cuddling with a little girl on her lap, the two people are very 
likely mother and daughter, and that if a man opens a refrigerator, he is probably 
hungry; but computers do not yet have enough intelligence to infer such things. 
Computer vision, like human vision, is not just perception; it is deeply cognitive.

There is no question that all these north stars are huge challenges, bigger than 
ImageNet ever was. It is one thing to review photos to try to identify dogs or 
chairs, and it is another to think about and navigate the infinite world of people 
and space. But it is a set of challenges well worth pursuing: as computers’ visual 
intelligence unfolds, the world can become a better place. Doctors and nurses will 
have extra pairs of tireless eyes to help them diagnose and treat patients. Cars will 
run more safely. Robots will help humans brave disaster zones to save the trapped 
and wounded. And scientists, with help from machines that can see what humans 
cannot, will discover new species, better materials, and uncharted frontiers. 
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The Machines from Our Future

Daniela Rus

While the last sixty years have defined the field of industrial robots and empowered 
hard-bodied robots to execute complex assembly tasks in constrained industrial set-
tings, the next sixty years will usher in our time with pervasive robots that come in a 
diversity of forms and materials and help people with physical tasks. The past sixty 
years have mostly been inspired by the human form, but the form diversity of the 
animal kingdom has broader potential. With the development of soft materials, 
machines and materials are coming closer together: machines are becoming com-
pliant and fluid-like materials, and materials are becoming more intelligent. This 
progression raises the question: what will be the machines from our future? 

T oday, telepresence enables students to meet with tutors and teachers and 
allows doctors to treat patients thousands of miles away. Robots help 
with packing on factory floors. Networked sensors enable the monitor-

ing of facilities, and 3D printing creates customized goods. We are surrounded by 
a world of possibilities. And these possibilities will only get larger as we start to 
imagine what we can do with advances in artificial intelligence and robotics. Pic-
ture a world where routine tasks are taken off your plate. Fresh produce just shows 
up on your doorstep, delivered by drones. Garbage bins take themselves out, and 
smart infrastructure systems support automated pick-up. AI assistants–whether 
embodied or not–act as guardian angels, providing advice to ensure that we max-
imize and optimize our lives to live well and work effectively.

The field of robotics has the potential to greatly improve the quality of our 
lives at work, at home, and at play by providing people with support for cognitive 
and physical tasks. For years, robots have supported human activity in danger-
ous, dirty, and dull tasks, and have enabled the exploration of unreachable envi-
ronments, from the deep oceans to deep space. Increasingly more-capable robots 
will be able to adapt, learn, and interact with humans and other machines on cog-
nitive levels. The objective of robotics is not to replace humans by mechanizing 
and automating tasks, but rather to find new ways that allow robots to collaborate 
with humans more effectively. Machines are better than humans at tasks such as 
crunching numbers and moving with precision. Robots can lift much heavier ob-
jects. Humans are better than machines at tasks like reasoning, defining abstrac-
tions, and generalizing or specializing, thanks to our ability to draw on prior expe-
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riences. By working together, robots and humans can augment and complement 
each other’s skills. 

Imagine riding in your flying car, which is integrated with the information 
technology infrastructure and knows your needs, so it can tell you, for example, 
that you can buy the plants you have been wanting at a store nearby, while com-
puting a small detour. You can trust your home to take care of itself when you are 
away. That is what the smart refrigerator is for: it tracks everything you put in and 
take out so it can automatically send a shopping list to your favorite delivery ser-
vice when it is time to restock. This automated household can help take care of 
everything from your new plants to your elderly parents. The intelligent water-
ing system monitors the soil and ensures each type of plant gets the right level of 
moisture. When your elderly parents need help with cooking, the kitchen robot 
can assist. The new robotic technologies can also be carried with us, knitted in 
our sweaters, blended in our garments, or embedded in our accessories. We could 
have our own wearable computer assistants, like Ironman, with superpowers fo-
cused on improving and optimizing our health and everyday lives. The smart exo-
suit can provide an extra set of eyes that monitors the environment and warns 
of threats when we walk home at night. This exosuit, shaped as a knitted robot, 
could become an individual coach to help us perfect a tennis stroke or an assembly 
sequence. This is just a snapshot of a machine-enhanced future we can imagine. 
There are so many ways in which our lives can be augmented by robots and AI. 

This positive human-machine relationship, in which machines are helpful as-
sistants, is closer to my vision of the future than the scenarios in which the ma-
chines either take over as maniacal overlords or solve all of humanity’s problems. 
This vision is starting to mature inside my lab, and in the labs of my friends and 
colleagues at other universities and institutions and some forward-thinking com-
panies. This future does not resemble the dystopia depicted in so many books, 
movies, and articles. But none of us expects it to be a perfect world, either, which 
is why we design and develop the work with potential dangers in mind. 

While AI is concerned with developing the science and engineering of intelli-
gence for cognitive tasks, robotics is concerned with physical-world interactions 
by developing the science and engineering of autonomy. Specifically, robots are 
made of a body (hardware) and a brain (algorithms and software). For any task 
that requires machine assistance, we need bodies capable of doing the task and 
brains capable of controlling the bodies to do the task. The main tasks studied in 
robotics are mobility (navigating on the ground, in air, or underwater), manipu-
lation (moving objects in the world), and interaction (engaging with other ma-
chines and with people).

We have already come a long way. Today’s state of the art in robotics, AI, and 
machine learning is built on decades of advancements and has great potential for 
positive impact. The first industrial robot, called The Unimate, was introduced in 
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1961. It was invented to perform industrial pick and place operations. By 2020, the 
number of industrial robots in operation reached around twelve million, while 
the number of domestic robots reached thirty-one million.1 These industrial ro-
bots are masterpieces of engineering capable of doing so much more than people 
can, yet these robots remain isolated from people on factory floors because they 
are large, heavy, and dangerous to be around. By comparison, organisms in nature 
are soft, safe, compliant, and much more dexterous and intelligent. Soft-bodied 
systems like the octopus can move with agility. The octopus can bend and twist 
continuously and compliantly to execute many other tasks that require dexteri-
ty and strength, such as opening the lid of a jar. Elephants can move their trunks 
delicately to pick up potato chips, bananas, and peanuts, and they can whip those 
same trunks with force enough to fight off a challenger. If robots could behave as 
flexibly, people and robots could work together safely side by side. But what would 
it take to develop robots with these abilities?

While the past sixty years have established the field of industrial robots and em-
powered hard-bodied robots to execute complex assembly tasks in constrained in-
dustrial settings, the next sixty years will usher in soft robots for human-centric 
environments and to help people with physical and cognitive tasks. While the ro-
bots of the past sixty years have mostly been inspired by the human form, shaped 
as industrial arms, humanoids, and boxes on wheels, the next phase for robots will 
include soft machines with shapes inspired by the animal kingdom and its diversi-
ty of forms, as well as by our own built environments. The new robot bodies will be 
built out of a variety of available materials: silicone, wood, paper, fabric, even food. 
These machines of our future have a broader range of customized applications. 

Today’s industrial manipulators enable rapid and precise assembly, but these 
robots are confined to operate independently from humans (often in cages) to en-
sure the safety of the humans around them. The lack of compliance in conven-
tional actuation mechanisms is part of this problem. In contrast, nature is not ful-
ly rigid; it uses elasticity and compliance to adapt. Inspired by nature, soft robots 
have bodies made out of intrinsically soft and/or extensible materials (such as sil-
icone rubbers or fabrics) and are safe for interaction with humans and animals. 
They have a continuously deformable structure with muscle-like actuation that 
emulates biological systems and provides them with a relatively large number of 
degrees of freedom as compared with their hard-bodied counterparts. Soft ro-
bots have capabilities beyond what is possible with today’s rigid-bodied robots. 
For example, soft-bodied robots can move in more natural ways that include com-
plex bending and twisting curvatures that are not restricted to the traditional rigid 
body kinematics of existing robotic manipulators. Their bodies can deform con-
tinuously, providing theoretically infinite degrees of freedom and allowing them 
to adapt their shape to their environments (such as by conforming to natural ter-
rain or forming enveloping power grasps). However, soft robots have also been 
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shown to be capable of rapid agile maneuvers and can change their stiffness to 
achieve a task- or environment-specific impedance. 

What is soft, really? Softness refers to how stretchy and compliant the 
body of the robot is. Soft materials and electromechanical compo-
nents are the key enablers for creating soft robot bodies. Young’s 

modulus, which computes the ratio of stress to strain of a material when force 
is applied, is a useful measure of the rigidity of materials used in the fabrication 
of robotic systems. Materials traditionally used in robotics (like metals and hard 
plastics) have Young’s moduli on the order of 109 to 1012 pascals (a unit of pres-
sure), whereas natural organisms are often composed of materials (like skin and 
muscle tissue) with moduli on the order of 104 to 109 pascals, orders of magnitude 
lower than their engineered counterparts. We define soft robots as systems capa-
ble of autonomous behavior that are primarily composed of materials with mod-
uli in the range of soft biological materials.

Current research on device-level and algorithmic aspects of soft robots has re-
sulted in a range of novel soft devices. But how do we get to the point where soft 
robots deliver on their full potential? The capabilities of robots are defined by the 
tight coupling between their physical bodies and the computation that makes up 
their brains. For example, a robot fish must have both a body capable of swimming 
and algorithms to control its movement in water. Today’s soft-bodied robots can 
do basic locomotion and grasping. When augmented with appropriate sensors and 
computation, they can recognize objects in restricted situations, map new environ-
ments, perform pick and place operations, and even act as a coordinated team. 

Figure 1 shows SoFi, the soft robotic fish.2 SoFi is an autonomous soft robot 
developed for close observations and interactions with marine life. SoFi enables 
people to observe and monitor marine life from a distance, without interference. 
The robot swims continuously at various depths in a biomimetic way by cyclic 
undulation of its posterior soft body. The fish controls the undulating motion of 
its tail using a hydraulically actuated soft actuator with two internal cavities sep-
arated by an inextensible constraint. The fish tail has two chambers with ribbed 
structure for pressurization, and the inextensible constraint is in the middle. Ma-
neuvering is accomplished by moving water from one chamber to the other using 
a pump. When the pump moves water equally between the left and right cham-
bers of the tail, the tail moves back and forth evenly, and the fish exhibits forward 
swimming. It is possible to make right-hand turns by pumping more water in the 
right chamber than the left and doing the reverse for left-hand turns. The swim-
ming depth is controlled by two dive planes that represent the robot’s fins. SoFi 
has onboard capabilities for autonomous operation in ocean environments, in-
cluding the ability to move along 3D trajectories by adjusting its dive planes or 
by controlling its buoyancy. Onboard sensors perceive the surrounding environ-
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ment, and a mission control system enables a human diver to issue remote com-
mands. SoFi achieves autonomy at a wide range of depths through 1) a powerful 
hydraulic soft actuator; 2) a control mechanism that allows the robot to adjust its 
buoyancy according to depth, thus enabling long-term autonomous operation; 3) 
onboard sensors to observe and record the environment; 4) extended ocean ex-
periments; and 5) a mission control system that a human diver can use to pro-
vide navigation commands to the robot from a distance using acoustic signals. 
SoFi has the autonomy and onboard capabilities of a mobile underwater obser-
vatory, our own version of Jules Verne’s marine observatory in Twenty Thousand 
Leagues Under the Sea. Marine biologists have long experienced the challenges of 
documenting ocean life, with many species of fish proving quite sensitive to the 
underwater movements of rovers and humans. While multiple types of robotic 

Figure 1
SoFi, the Soft Robotic Fish for Underwater Observatories

SoFi, the soft robotic fish swimming in a coral reef. Source: Photo by Joseph DelPreto. See 
Robert K. Katzschmann, Joseph DelPreto, Robert MacCurdy, et al., “Exploration of Underwater 
Life with an Acoustically Controlled Soft Robotic Fish,” Science Robotics 3 (16) (2018).
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instruments exist, the soft robots move by undulation and can more naturally in-
tegrate in the undersea ecosystems. Soft-bodied robots can move in more natural 
and quieter ways. 

T he body of a soft robot like SoFi may consist of multiple materials with 
different stiffness properties. A soft robot encases in a soft body all the 
subsystems of a conventional robot: an actuation system, a perception 

system, driving electronics, and a computation system, with corresponding pow-
er sources. Technological advances in soft materials and subsystems compatible 
with the soft body enable the autonomous function of the soft robot. 

At the core of any robot is actuation. One of the primary focus areas to date for 
soft robots has been the exploration of new concepts for compliant yet effective ac-
tuators. Researchers have made progress on several classes of soft actuators, most 
prominently with fluidic or various electrically activated tendon actuators. Flu-
idic elastomer actuators (FEAs) are highly extensible and adaptable, low-power  
soft actuators. FEAs were used to actuate SoFi’s tail. Figure 2 shows the actuation 
principle. A silicone chamber has an inextensible constraint. When it is pressur-
ized–for example, with air or liquid–the skin expands and forms a curvature. By 
controlling this curvature, we can control the movement of the robot.

The soft actuator in Figure 2 can move along one axis and is thus called a one-
degree-of-freedom actuator. Such an actuator can be composed in series and in 
parallel to create any desired compliant robotic morphology: a robotic elephant 
trunk, a robotic multifinger hand, a robotic worm, a robotic flower, a robotic 
chair, even a robotic lamp. 

However, while achieving compliance, this FEA actuator structure has not 
achieved muscle-like or motor-like performance in terms of force, displacement, 
energy density, bandwidth, power density, and efficiency. In order to create muscle- 
like actuation, we can leverage the idea of combining soft bodies with compliant 
origami structures to act as “flexible bones” within the soft tissue. The idea of flu-
idic origami-inspired artificial muscles (FOAM) provides fluidic artificial muscles 
with unprecedented performance-to-cost ratio.3 The FOAM artificial muscle system 
consists of three components: a compressible solid skeletal structure (an origami 
structure), a flexible fluid-tight skin, and a fluid medium. When a pressure differ-
ence is applied between the outside and the inner portion, a tension is developed in 
the skin that causes contraction that is mediated by the folded skeleton structure. 
In a FOAM system, the skin is sealed as a bag covering the internal components. 
The fluid medium fills the internal space between the skeleton and the skin. In the 
initial equilibrium state, the pressures of the internal fluid and the external fluid 
are equal. However, as the volume of the internal fluid changes, a new equilibrium 
is achieved. A pressure difference between the internal and external fluids induces 
tension in the flexible skin. This tension will act on the skeleton, driving a trans-
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formation that is regulated by its internal skeletal geometry. These artificial mus-
cles can be programmed to produce not only a single contraction, but also com-
plex multiaxial actuation and even controllable motion with multiple degrees of 
freedom. Moreover, a variety of materials and fabrication processes can be used to 
build the artificial muscles with other functions beyond basic actuation. Experi-
ments reveal that these muscles can contract over 90 percent of their initial lengths, 
generate stresses of approximately 600 kilopascals, and produce peak power densi-
ties over 2 kilowatts per kilogram: all equal to, or in excess of, natural muscle. For 
example, a 3 gram FOAM actuator that includes a zig-zag pattern for its bone struc-
ture can lift up to 3 kilograms! This architecture for artificial muscles opens the 
door to rapid design and low-cost fabrication of actuation systems for numerous 
applications at multiple scales, ranging from miniature medical devices to wear-
able robotic exoskeletons to large deployable structures for space exploration.

The soft FOAM grippers shown in Figure 3 are made from a soft origami struc-
ture, encased by a soft balloon.4 When a vacuum is applied to the balloon, the ori-
gami structure–a design based on a folding pattern–closes around the object, 
and the gripper deforms to the geometric structure of the object. While this mo-
tion lets the gripper grasp a much wider range of objects than ever before, such as 
soup cans, hammers, wine glasses, drones, even a single broccoli floret or grape, 
the greater intricacies of delicacy–in other words, how hard to squeeze–require 
adding sensors to the gripper. Tactile sensors can be made from latex “bladders” 

Figure 2
Soft Fluidic Actuation

Source: Robert Katzschmann, “Building and Controlling Fluidically Actuated Soft Robots: 
From Open Loop to Model-based Control” (Ph.D. diss., MIT, 2013).
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(balloons) connected to pressure transducers. The new sensors let the gripper not 
only pick up objects as delicate as potato chips, but it also classifies them, provid-
ing the robot with a better understanding of what it is picking up, while also exhib-
iting that light touch. When the embedded sensors experience force or strain, the 
internal pressure changes, and this feedback can be used to achieve a stable grasp. 

In addition to such discrete bladder sensors, we can also give the soft robot 
bodies sensorized “skin” to enable them to see the world by feeling the world. The 
sensorized skin provides feedback along the entire contact surface, which is valu-
able for learning the type of object it is grasping and exploring the space of the ro-
bot through touch. Somatosensitive sensors can be embedded in the silicone body 
of the robot using 3D printing with fugitive and embedded ink. Alternatively, elec-

Figure 3
FOAM Grippers (top) and Objects that can be Handled with the Magic Ori-
gami Ball (Tulip) Gripper (bottom)

Source: Photos by Shuguang Li.
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trically conductive silicone can be cut using a variety of stretchable kirigami pat-
terns and used for the sensor skin of the robot. Machine learning can then be used 
to associate skin sensor values with robotic deformations, leading to propriocep-
tive soft robots that can “see” the world through touch. 

T he robot body needs a robot brain to command and coordinate its actions. 
The robot brain consists of the set of algorithms that can get the robot to 
deliver on its capabilities. These algorithms typically map onto computa-

tion for physically moving the components of the robot (also called low-level con-
trol) and computation for getting the robot to perform its assignment (also called 
high-level or task-level control). 

While we have a surge in developing soft bodies for robots, the computation-
al intelligence and control of these robots is more challenging. Results from rigid 
robots do not immediately translate to soft robots because of their inherent high 
dimensionality. The state of a rigid robot can be described compactly with a fi-
nite set of degrees of freedom: namely, the displacement of each of its joints as 
described in their local coordinate frames. Their bodies are constrained by the in-
flexible nature of their rigid links. Fully soft robots, by contrast, may not have a 
traditional joint structure, relying on their flexible body to solve tasks. Soft robots 
have a dramatically different interaction with the environment through rich com-
pliant contact. There is currently a divide in the approach to control: rigid robots 
control contact forces/contact geometry while soft robots rely almost entirely on 
open-loop interactions, mediated by material properties, to govern the resulting 
forces/geometry. One strategy for bridging this gap lies in optimization-based 
control via approximate dynamic models of the soft interface: models with a fi-
delity that is customized to the task. The governing equations of the soft robots 
are complex continuum mechanics formulations that are typically approximated 
using high-dimensional finite-element methods. The dynamics are highly nonlin-
ear, and contacts with the environment make them nonsmooth. These models are 
too complex for state-of-the-art feedback design approaches, which either make 
linearity assumptions or scale badly with the size of the state space. The challenge 
is to find models simple enough to be used for control, but complex enough to 
capture the behavior of the system.

For low-level control of soft robots, we can often identify a sequence of actuat-
ed segments, in which torques are dominant, so it is possible to assume the curva-
ture to be constant within each segment, leading to a finite-dimensional Piecewise 
Constant Curvature (PCC) kinematic description. We can then describe the PCC 
of the soft robot through an equivalent rigid robot with an augmented state space. 

Task-level control of soft robots is often achieved in a data-driven way using 
machine learning. Some of today’s greatest successes of machine learning are due 
to a technique called deep learning. Deep learning uses data–usually millions of 
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hand-labeled examples–to determine the weights that correspond to each node 
in a convolutional neural network (CNN), a class of artificial neural networks, so 
that when the network is used with new input, it will classify that input correctly. 
Deep learning has been successfully applied to soft robots to provide them with 
capabilities for proprioception (sensitivity to self-movement, position, and ac-
tion), exteroception (sensitivity to outside stimuli), and grasping. 

But deep learning faces a number of challenges. First among them is the data. 
These techniques require data availability, meaning massive data sets that have 
to be manually labeled and are not easily obtained for every task. The quality of 
that data needs to be very high, and it needs to include critical corner cases–that 
is, cases outside the training distribution or outside usual operations–for the ap-
plication at hand. If the data are biased, the performance of the algorithm will be 
equally bad. Furthermore, these systems are black boxes: there is no way for users 
of the systems to truly “learn” anything based on the system’s workings. It is dif-
ficult to detect behavior that is abnormal from a safety point of view. As a result, 
it is hard to anticipate failure modes tied to rare inputs that could lead to poten-
tially catastrophic consequences. We also have robustness challenges and need to 
understand that the majority of today’s deep-learning systems perform pattern 
matching rather than deep reasoning. Additionally, there are sustainability issues 
related to data-driven methods. Training and using models consume enormous 
amounts of energy. Researchers at the University of Massachusetts Amherst esti-
mated that training a large deep-learning model produces 626,000 pounds of car-
bon dioxide, equal to the lifetime emissions of five cars. The more pervasive ma-
chine learning becomes, the more of these models will be needed, which in turn 
has a significant environmental impact. 

Today’s machine learning systems are so costly because each one contains 
hundreds of thousands of neurons and billions of interconnections. We need new 
ideas to develop simpler models, which could drastically reduce the carbon foot-
print of AI while gaining new insights into intelligence. The size of a deep neural 
network constrains its capabilities and, as a result, these networks tend to be huge 
and there is an enormous cost to running them. They are also not interpretable. 
In deep neural networks, the architecture is standardized, with identical neurons 
that each compute a simple thresholding function. A deep neural network that 
learns end-to-end from human data how to control a robot to steer requires more 
than one hundred thousand nodes and half a million parameters.

Using inspiration from neuroscience, my colleagues and I have developed neu-
ral circuit policies,5 or NCPs, a new approach to machine learning. With NCPs, the 
end-to-end steering task requiring more than one hundred thousand simple neu-
rons can be learned with nineteen NCP neurons in the deep neural network model, 
resulting in a more efficient and interpretable system. The neuroscience inspiration 
from the natural world is threefold. First, NCP neurons can compute more than a 
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step function; each NCP neuron is a liquid time differential equation. Second, NCP 
neurons can be specialized, such as input, command, and motor neurons. Third, 
the wiring architecture has organism-specific structure. Many other tasks related 
to spatial navigation and beyond can be realized with neuroscience-inspired, com-
pact, and interpretable neural circuit policies. Exploring robot intelligence using 
inspiration from the natural world will yield new insights into life and provide new 
computational models for intelligence that are especially useful for soft robots. 

Novel soft design, fabrication, and computation technologies are usher-
ing in a new era of robots that come in a variety of forms and materials 
and are designed to help people with physical tasks in human-centric en-

vironments. These robots are smaller, safer, easier to fabricate, less expensive to 
produce, and more intuitive to control.

Robots are complex systems that tightly couple the physical mechanisms (the 
body) with the software aspects (the brain). Recent advances in disk storage, the 
scale and performance of the Internet, wireless communication, tools supporting 
design and manufacturing, and the power and efficiency of electronics, coupled 
with the worldwide growth of data storage, have helped shape the development 
of robots. Hardware costs are going down, the electromechanical components are 
more reliable, the tools for making robots are richer, the programming environ-
ments are more readily available, and the robots have access to the world’s knowl-
edge through the cloud. Sensors like the LiDAR (light detection and ranging) sys-
tems are empowering robots to measure distances very precisely. Tiny cameras 
are providing a rich information stream. Advances in the development of algo-
rithms for mapping, localization, object recognition, planning, and learning are 
enabling new robotic capabilities. We can begin to imagine the leap from the per-
sonal computer to the personal robot, leading to many applications in which ro-
bots exist pervasively and work side by side with humans. 

How might these advances in robotics shape our future? Today, if you can 
think it, you can write it on paper. Imagine a word where if you can think it, you 
can make it. In this way, the scientific advancement of soft robotics could give ev-
ery one of us superpowers. Each of us could use our talents, our creativity, and our 
problem-solving skills to dream up robots that save lives, improve lives, carry out 
difficult tasks, take us places we cannot physically go, entertain us, communicate, 
and much more. In a future of democratized access to robots, the possibilities for 
building a better world are limitless. Broad adoption of robots will require a nat-
ural integration of robots in the human world, rather than an integration of hu-
mans into the machines’ world. 

These machines from our future will help us transform into a safer society liv-
ing on a healthier planet, but we have significant technological and societal chal-
lenges to get to that point. 
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On the technical side, it is important to know that most of today’s great-
est advances in machine learning are due to decades-old ideas enhanced by vast 
amounts of data and computation. Without new technical ideas and funding to 
back them, more and more people will be ploughing the same field, and the results 
will only be incremental. We need major breakthroughs if we are going to manage 
the major technical challenges facing the field. We also need the computational 
infrastructure to enable the progress, an infrastructure that will deliver to us data 
and computation like we get water and energy today: anywhere, anytime, with a 
simple turn of a knob. And we need the funding to do this.

On the societal side, the spread of AI and robots will make our lives easier, but 
many of the roles that they can play will displace work done by humans today. 
We need to anticipate and respond to the forms of economic inequality this could 
create. In addition, the lack of interpretability and dependence could lead to sig-
nificant issues around trust and privacy. We need to address these issues, and we 
need to develop an ethics and legal framework for how to use AI and robots for the 
greater good. As we gather more data to feed into these AI systems, the risks to pri-
vacy will grow, as will the opportunities for authoritarian governments to leverage 
these tools to curtail freedom and democracy in countries around the world. 

These problems are not like the COVID-19 pandemic: we know they are com-
ing, and we can set out to find solutions at the intersection of policy, technology, 
and business, in advance, now. But where do we begin?

In its report on AI ethics, the Defense Innovation Board describes five AI prin-
ciples. First is responsibility, meaning that humans should exercise appropriate 
levels of judgment and remain responsible for the development, deployment, 
use, and outcomes of these systems. Second, equitability, meaning that we need 
to take deliberate steps to anticipate and avoid unintended bias and unintended 
consequences. Third is traceability, meaning that the AI engineering discipline 
should be sufficiently advanced such that technical experts possess an appropriate 
understanding of the technology, development processes, and operational meth-
ods of its AI systems. Fourth is reliability, meaning that AI systems should have an 
explicit, well-defined domain of use, and the safety, security, and robustness of 
such systems should be tested and assured. And finally, governance, meaning that 
AI systems should be designed and engineered to fulfill their intended function, 
while possessing the ability to detect and avoid unintended harm or disruption.6 
Beyond these general principles, we also need to consider the environmental im-
pacts of new technologies, as well as what policy actions are needed to stem possi-
ble dangers associated with technological advances. 

Neural circuit policies may sound like phrases you would only ever hear walk-
ing the hallways of places like CSAIL, the Computer Science and Artificial Intelli-
gence Laboratory at MIT, where I work. We do not need everybody to understand 
in great detail how this technology works. But we do need our policy-makers and 
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citizens to know about the effects of new technologies so we can make informed 
decisions about their adoption. Together, we can build a common understanding 
around five vital questions: First, what can we do, or more specifically, what is re-
ally possible with technology? Second, what can’t we do, or what is not yet pos-
sible? Third, what should we do? Fourth, what shouldn’t we do? There are tech-
nologies and applications that we should rule out. And finally, what must we do. I 
believe we have an obligation to consider how AI technology can help. Whether 
you are a technologist, a scientist, a national security leader, a business leader, a 
policy-maker, or simply a human being, we all have a moral obligation to use AI 
technology to make our world, and the lives of its residents, safer and better, in a 
just, equitable way. 

The optimist in me believes that can and will happen. 
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Functioning in a Mixed Group
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In today’s highly interconnected, open-networked computing world, artificial intel-
ligence computer agents increasingly interact in groups with each other and with 
people both virtually and in the physical world. AI’s current core challenges concern 
determining ways to build AI systems that function effectively and safely for people 
and the societies in which they live. To incorporate reasoning about people, research 
in multi-agent systems has engendered paradigmatic shifts in computer-agent de-
sign, models, and methods, as well as the development of new representations of 
information about agents and their environments. These changes have raised tech-
nical as well as ethical and societal challenges. This essay describes technical ad-
vances in computer-agent representations, decision-making, reasoning, and learn-
ing methods and highlights some paramount ethical challenges.

For many decades after its inception, AI’s most pressing question, its core 
challenge, was to determine whether it was possible to build computer sys-
tems able to perform intelligent behaviors like engaging in a conversation, 

playing chess, or fixing a complex piece of machinery. By the twenty-first centu-
ry, the use of computer systems had evolved from a single person with comput-
ing expertise interacting with a single system to a highly interconnected, open-net-
worked computing world in which people’s online activities connect them instant-
ly with many different systems and people. There are thus ever more situations in 
which AI agents interact in groups with each other and with people both virtually 
and in the physical world. AI’s most pressing questions today–its core challenges– 
center on determining ways to build AI systems that function effectively and safe-
ly for people and the societies in which they live. Concomitantly, research in the 
multi-agent systems area of AI increasingly addresses challenges of building capa-
bilities for AI agents to act effectively in groups that include people: for instance, 
investigating robot-human collaborations in industrial settings, coordinating 
health care for patients seeing multiple providers, and adapting educational con-
tent to individual students’ needs. We refer to these as mixed-agent groups.
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AI research traditionally modeled the behavior of an individual computer agent, 
whether embodied in a physical system (such as robots) or embedded in a software 
system (such as recommendation systems or customer service chatbots), as an 
act-observe-update-decide cycle: the agent does something in its world, observes 
the ways that world changes, revises its beliefs about the world based on those ob-
servations, and determines what action, if any, to take next. Some AI agent models 
determine next actions based on maximizing a utility function, while others rea-
son logically. These individual-agent models have regarded other agents, whether 
computer agents or people, as part of the agent’s environment. To enable agents 
to participate effectively in mixed-agent groups required two significant modeling 
changes: the design of ways to represent the mental state of other agents and the 
development of models of human decision-making and communication capaci-
ties that respect the complementarities of human and computer-agent capabilities. 
For instance, computer systems have vastly greater ability than humans to access 
and summarize large amounts of data, while people’s capabilities for causal and 
counterfactual reasoning far outstrip those of AI systems.

Mental state representations enable computer agents to treat other agents 
(whether human or computer) as full-fledged actors that have beliefs and abilities 
to make decisions, to act on those decisions, and to reason about the beliefs and 
actions of other agents in their environment. Computer agents can then recognize 
ways that actions of one agent may affect the beliefs and influence subsequent ac-
tions of other agents. Research on standard multi-agent models, including both 
logic-based belief-desire-intention models and probabilistic Markov decision 
process models, has generated a variety of techniques for multi–computer agent 
groups, for both competitive and cooperative settings, yielding a diverse range of 
successfully deployed systems.1

To develop realistic models of human decision-making has required chang-
es to every component of the traditional act-observe-update-decide cycle. AI re-
searchers have developed new models, methods, and agent designs that incorpo-
rate reasoning about people for both machine-learning–based systems and logic-
based systems. While agents in mixed-agent groups, like those in multi-agent 
systems generally, might compete, the focus of research has been on settings in 
which computer agents cooperate or fully collaborate with people in their mixed-
agent group. These changes have raised not just new technical challenges, but also 
paramount ethical and societal-impact challenges.

R esearch on AI models of collaboration laid the foundations for reasoning 
about people as participants in mixed-agent groups.2 These models stipu-
late as a defining characteristic of collaboration that all team participants 

share an overarching goal. The models provide theoretical frameworks for repre-
senting and reasoning about the mental state and communication requirements 
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for successful teamwork activities. Related work in AI and cognitive science spec-
ifies the obligations collective intentionality entails.3

Significant recent research focuses on settings in which computer agents need 
to coordinate with people, but absent an overall teamwork goal. For instance, an 
autonomous vehicle does not share an overarching destination goal with other 
drivers or pedestrians it encounters; the autonomous vehicle and others on the 
road do not make a team. Aspects of the early frameworks are also relevant to such 
settings, as is early work specifying the roles of social norms in coordinating be-
havior of multiple agents without a shared goal who nonetheless need to avoid 
conflict.4 Key insights of this early work include establishing the need to explicitly 
design agents for collaboration, showing that the requisite capabilities could not 
be patched on, and the need for revisions of plan representations and decision-
making algorithms for them.5

Subsequent work in both logical and machine learning paradigms has demon-
strated the benefits of developing algorithms that consider the combined per-
formances of people and agents rather than focusing on the autonomous perfor-
mance of a computer agent in isolation.6 For example, methods that optimize for 
agents to complement human capabilities or to balance human and computer 
agent preferences outperformed individual human and computer performances.7 
Other work deploys cross-training to improve human-robot team performance.8 
A consensus is emerging from this research of the importance of bringing insights 
from the social sciences to bear in designing agents for working with people.9

The advent of large-scale Internet activities–from citizen science to online 
learning and question-and-answer sites–has provided researchers with signifi-
cantly more data than ever before about people’s behaviors and preferences, cre-
ating new technical opportunities and raising new AI research questions. Not 
only do people’s decision-making processes often not adhere to standard assump-
tions about optimizing for utility, but these larger-scale settings require computer 
agents to operate in the “open world,” rather than in well-defined, constrained, 
and therefore more easily specifiable environments (“closed worlds”).10 As a re-
sult, agent designs need to accommodate both scale–a significant increase in the 
number of people an agent may work with–and operating “in the wild”: that is, 
in open worlds in which computer agents have only partial information about 
other agents and much less control. Further challenges arise from the need for 
computer-agent behaviors and explanations to mesh with people’s expectations.11

We briefly describe AI researchers’ advances on three core computer-agent 
capabilities that are enabling agents to participate more effectively in mixed-agent 
groups: 1) decision-making about what to do next, considering the potential effects 
of an agent’s actions on other agents’ beliefs and decision-making, as well as on the 
environment; 2) reasoning to draw conclusions about the effects of an agent’s ac-
tions on that environment, including any causal connections; and 3) learning from 
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the effects it observes in the environment and on others’ actions. This research has 
led to paradigmatic shifts in a variety of AI methods and algorithms, as well as to 
the development of new representations of information about agents and the envi-
ronments in which they act. 

New representations of actions, plans, and agent interactions enable 
agents to reason about their human partners despite having limited in-
formation about their beliefs and capabilities. For instance, a digital per-

sonal assistant may not know which route a person is taking to get home, and a 
health care coordination system may need to learn interaction patterns among 
medical providers as they evolve.

Novel ways of representing task and plan knowledge–for instance, with Ece 
Kamar, we expanded the SharedPlans specification of teamwork–enable collabo-
ration when an agent does not know which of several plans a person is following.12 
To enable computer agents to reason effectively about information sharing when 
they lack a priori knowledge of other agents’ plans (as required by standard infor-
mation-sharing algorithms), Ofra Amir and colleagues developed a representa-
tion of “mutual influence potential” networks for teams that operate over long 
periods of time (such as project management and health care teams).13 To address 
the need for computer-agent collaborators to adapt to their human partners’ ac-
tions, Stefanos Nikolaidis and colleagues developed a representation for Markov 
decision processes that evolves through cross-training, and they demonstrated 
that cross-training outperforms other training regimes.14

New methods of decision-making have been designed by AI researchers 
to reason about social influences on people’s behavior in negotiation; to 
determine when to share information with partners in a group activity; 

and, for large-scale groups, to identify the best people for certain tasks and to pro-
vide incentives for them to contribute to group activities.

For computer agents to negotiate effectively with people, they need to take 
into account findings in the social sciences that have revealed social influences on 
people’s negotiation strategies. Research incorporating such findings into agent 
negotiation strategies–by representing social attributes in the decision-making 
model–has demonstrated the ability of such socially aware agents to reach agree-
ments that benefit all participants. For instance, through empirical investigations, 
we showed that people’s willingness to accept offers is affected by such traits as 
altruism and selfishness, and that agents incorporating these traits into their ne-
gotiation strategies outperform traditional game-theoretic equilibria strategies.15 
Amos Azaria and colleagues improved agent success in advising a person on the 
best route to a destination by incorporating a model of people’s behavior in re-
peated negotiations.16 And Arlette van Wissen and colleagues found that although 
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people trust computer agents as much as other people in negotiations, they treat 
them less fairly.17 Agents negotiating for people also need to model their prefer-
ences. For example, an agent might assist a consumer in negotiating the best deal 
for an item available from multiple online sellers who offer similar products at 
varying prices and characteristics–used or new, full or delayed payment–saving 
the consumer time and money. If the consumer is price sensitive, the agent could 
negotiate a lower price while agreeing to make the payment in advance.

To coordinate their activities, participants in mixed-agent groups typically 
must share information with each other about their activities, environments, and 
tasks. Decisions about what information to share, and when, are more compli-
cated when computer agents are not privy to important task-related information 
that people hold. For example, a driver-assist system considering whether to alert 
the driver to unexpected traffic ahead on a possible route that allowed for a side-
trip to a pharmacy may not be certain about the driver’s current preferences with 
respect to making that stop. As a result, it may not know if this traffic situation is 
on the route the driver is taking and thus whether notifying the driver would be 
useful or an unnecessary interruption. Information exchanges–whether an un-
needed alert or a request for irrelevant information–generate cognitive and com-
munication costs. Research on managing information exchange to avoid overbur-
dening people includes theoretical model development and empirical studies.

With Ece Kamar, we identified the class of “nearly decomposable” settings, in 
which computer agents need to reason about only that subset of their human part-
ners’ actions that interact with the agent’s actions.18 We developed a multi-agent 
Markov decision process for such settings that enables more efficient inference 
for interruption management. An empirical study using this method identified 
factors influencing people’s acceptance of an agent’s interruptions.

In work on information sharing for team settings in which agents have very 
limited information about their human partners, Ofra Amir and colleagues de-
veloped an algorithm that identifies the information that is most relevant to each 
team member using the influence potential networks described earlier.19 The re-
sults of a laboratory study using this algorithm demonstrated that information-
sharing decisions based on the influence-potential representation yielded high-
er productivity and lower perceived workload compared with standard human-
computer interaction approaches.

In such large-scale settings as disaster response and online forums, the stan-
dard multi-agent systems’ role assignment problem–the problem of identifying 
the best agent for a particular task–is more difficult because less information is 
directly available about (human) participants’ capabilities. These settings also in-
troduce a new role-assignment challenge: namely, keeping people engaged.

Methods that integrate behavior prediction into decision-making processes 
enable inferring people’s capabilities from their prior interactions and thus pre-
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dicting the best person to assign a task to. Research on engagement includes the 
use of reinforcement learning to generate motivational messages.20 The benefits 
of these approaches have been demonstrated in citizen science applications such 
as classifying celestial bodies and identifying EEG patterns.21

R easoning and learning are tightly coupled. We discuss them together be-
cause new methods developed to jointly learn and use models of people’s 
behavior have been consequential for mixed-agent group settings. Im-

portant new reasoning capabilities include 1) methods for predicting people’s be-
havior from data about the actions they have taken in the past, their causal effects, 
and the outcomes that result; 2) techniques for agents to use advice and feedback 
from people to learn more effectively; and 3) methods for agents to explain their 
choices and recommendations well enough that people understand them. For ex-
ample, to find the sequence of math problems that maximizes students’ learning 
gains, an AI tutor needs to predict their responses to math problems. It also needs 
to be able to explain its problem choices to students, and possibly their teachers.22 

Computer agents in mixed-agent groups need to model people’s past actions 
and to predict their likely future actions. Machine learning algorithms face a com-
patibility-performance trade-off: updating machine learning systems with new 
data may improve their overall performance, but the updated predictions may de-
crease trust in the system by individuals for whom the predictions no longer work. 
To address this problem, Jonathan Martinez and colleagues defined machine 
learning algorithms that personalize their updates to individual users, which not 
only yields higher accuracy but also makes models more compatible with people’s 
expectations.23 They established the efficacy of this approach empirically by com-
paring it with a baseline method that did not personalize the model’s updates.

People “in the wild” also make computer agents’ plan recognition–the ability 
to determine what others are doing and why–more difficult, since they often ex-
hibit complex planning behaviors: they may follow multiple plans, interleave ac-
tions from different plans, or perform actions that are redundant, wrong, or arbi-
trary. Novel plan and goal recognition algorithms have been developed to enable 
agents to adapt to people’s exploratory and error-prone behavior. They use various 
techniques, including heuristics and approaches that replace predefined libraries 
of possible plans with generating plans on the fly.24 To enable agents to support 
people’s understanding of plans of other agents (human and computer) in their 
groups, researchers have designed new types of visualizations for presenting in-
ferred plans to people in ways that facilitate their understanding of others’ plans.25

Reinforcement learning algorithms enable agents to learn about their envi-
ronment and about other agents through exploration and trial and error. Mixed-
agent groups introduce a new possibility: algorithms can incorporate guidance 
and feedback from people who have relevant task expertise or knowledge of the 
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agent’s environment and thus significantly facilitate agent learning. W. Bradley 
Knox and Peter Stone combined feedback from human teachers, who give posi-
tive or negative signals to the agent trainee, with autonomous learning about the 
environment.26 Travis Mandel and colleagues augmented a reinforcement algo-
rithm with a method for querying people about the best action to perform.27 Their 
empirical studies demonstrated significant improvements to algorithm perfor-
mance for domains with large numbers of actions. Matthew E. Taylor and col-
leagues showed that agents could adapt a policy to a new domain more effectively 
if a person first demonstrates how to act in that domain.28 In this work, short ep-
isodes of human demonstrations led to rapid savings in learning time and policy 
performance for agents in different robot soccer simulation tasks.

For people to trust agents, the models they use to predict people’s behavior 
not only need to perform well according to machine learning systems’ metrics, 
but also to produce interpretable predictions–their action choices need to make 
sense to the people with whom they interact.29 As all applications of AI machine 
learning methods have this need for “interpretability,” a variety of research stud-
ies have investigated the design of “interpretable models” as well as ways to mea-
sure the interpretability of machine learning models in practice.30 

The evaluation of multi-agent systems becomes significantly more complicat-
ed when an agent group includes people. Testing in the wild–that is, in the actu-
al intended situations of use–may be costly both practically and ethically. In re-
sponse to this challenge, researchers have developed various testbed systems that 
enable initial evaluation of effectiveness of computer-agent decision-making al-
gorithms in lab (or lab-like) settings. They enable testing of new methods on in-
tended user populations without such costs, allowing agent designers to better de-
termine responses to agents’ decisions as well as to compare the performance of 
different computational decision-making strategies. Some testbed systems have 
also been used to gather information about people’s decision-making strategies 
to help improve the performance of learning algorithms.

Colored Trails, one of the first such testbeds, enabled the development of a 
family of games that facilitated the analysis of decision-making strategies, includ-
ing negotiation strategies and coalition formation in widely varying settings.31 
The Genius testbed (General Environment for Negotiation with Intelligent multi-
purpose Usage Simulation) advances research on bilateral multi-issue negotiation 
by providing tools for specific negotiation scenarios and negotiator preference 
profiles and for computing and visualizing optimal solutions.32 The IAGO testbed 
(Interactive Arbitration Guide Online) provides a web-based interaction system 
for two-agent bargaining tasks. It has been used to study the role of affect and de-
ception on negotiation strategies in mixed-agent groups.33 Both Genius and IAGO 
testbeds have been used in competitions that compare computational strategies 
for negotiating with people.34
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R esearch and development of computer agents capable of participating ef-
fectively in mixed-agent groups raise various ethical issues. Some are in-
herited from AI generally: for instance, avoiding bias, ensuring privacy, 

and treating people’s data ethically. Others result from the mixed-agent group set-
ting entailing that people and computer agents work together and, in some cases, 
share decision-making. Further, computer agents may be designed to influence 
people’s behavior, make decisions related to people’s futures, and negotiate suc-
cessfully with people. While the roles computer agents and people assume vary 
within and across application domains, that people are inherent to the definition 
of “mixed-agent group” makes addressing particular ethical challenges of the ut-
most importance. We briefly discuss three challenges mixed-agent group research 
raises, all of which will require research done in concert with social and behav-
ioral scientists and ethicists. We note that choices among ethical values and set-
ting of norms are responsibilities of the societies in which these agent systems are 
used. Our discussion of ethical challenges thus presumes norms are established 
by communities of use, policy-making organizations, governmental bodies, or 
similar entities external to the research effort.

Challenge 1: Inclusive design and testing. The testing of new mixed-agent group al-
gorithms and systems must involve the full range of people expected to partici-
pate in group undertakings with such agents. Further, whether for research or for 
system development, in designing mixed-agent group agents to align with societal 
values, designers must consider and engage at all stages of the work with the full 
spectrum of people with whom these agents are intended to interact. For instance, 
in the initial design stage, researchers should conduct informative interviews or 
observations to determine system goals and characteristics appropriate for the in-
tended user population.35

Inclusivity generates particular challenges when designing new represen-
tations, whether models are explicitly designed or derived by machine learning 
methods. For instance, when developing new representations of tasks and plans, 
designers need to engage not only the kinds of people agents are likely to work 
with on a task, but also the kinds of people potentially affected by agent actions 
and decisions: for example, in a health care setting, the design of an agent that 
will work with physicians, nurses, and patients, as well as hospital administrative 
staff, should include physicians, nurses, and patients in the design cycle.

The need for inclusivity at the design stage also arises in areas of learning and 
reasoning. For example, when developing models of people’s behavior, it is cru-
cial for agents to handle adequately all types of people whose behavior it may need 
to track.

Challenge 2: Avoiding deception and exploitation. The use of social science factors 
in negotiation algorithms or for behavior modification (like nudges) may have 
purposes that engender unethical behavior. Mixed-agent group work on negoti-
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ation may raise significant questions if the negotiation algorithm focuses only on 
improving the computer agent’s outcome and deploys deception, rather than bal-
ancing good for all parties.36 Similarly, role assignment in some ride-sharing ap-
plications has raised significant questions of deception and exploitation.

For agents in mixed-agent groups to be trustworthy, any use of deceptive strat-
egies must be revealed. Researchers developing and deploying negotiation and be-
havior modification strategies must explain the rationale for them and make evi-
dent the ethical challenges they raise for any system that deploys them in applica-
tions and possible mitigations.

Challenge 3: Preventing or mitigating unanticipated uses of models and algorithms. 
The development of new representations and algorithms (such as for informa-
tion sharing, role assignment, or behavior modeling) is typically driven by an in-
tended application. The resulting learned representations and models may not be 
appropriate for other applications or may have consequences that were not an-
ticipated when design was focused on the initial intended application. For exam-
ple, a ride-sharing company might decide to adopt one of the “motivational” al-
gorithms developed in the context of citizen science to attempt to keep drivers 
working when the system predicts they are close to quitting for the day. While 
there may be no serious downsides to encouraging someone to continue working 
on a science project despite being tired, there can be serious consequences from 
drivers working when fatigued. In some cases, the technology may be sufficiently 
unreliable or human oversight may be sufficiently inadequate that the unantici-
pated use should not be allowed. Researchers, system designers, and developers 
all bear responsibility for preventing the misuse of these technologies.

A s mixed-agent groups become the norm in ever more multi-agent do-
mains, advances in multi-agent systems research provide foundations for 
developing computer agents able to be effective partners in such settings. 

This work has also revealed a variety of new research challenges and raised im-
portant questions of ethical and societal impact.

For these reasons and others, successes in laboratory settings have not yet been 
translated into deployed systems on a large scale. The inadequacies of automat-
ed call centers and the difficulties Amazon fulfillment center workers have ex-
perienced working with robots illustrate the problems that arise when comput-
er agents’ activities do not mesh well with their human coworkers’. Perhaps the 
greatest challenge of developing computer agents technically and ethically ade-
quate for participation in mixed-agent group undertakings is to fully recognize 
the sociotechnical nature of such activities. This recognition should lead not only 
to different kinds of algorithms, but also to processes for system development and 
deployment that take account of human capabilities, societal factors, and human-
computer interaction design principles.
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These challenges do not belong to research alone. If AI systems are to function 
effectively and safely for people and the societies in which they live, they require 
attention through the full pipeline from design through development, testing, and 
deployment. Addressing these challenges is all the more important given the re-
cent broad range of national-level calls for developing effective methods for hu-
man-centered AI and for human-AI collaborations.
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The last decade has yielded dramatic and quite surprising breakthroughs in natural 
language processing through the use of simple artificial neural network computa-
tions, replicated on a very large scale and trained over exceedingly large amounts 
of data. The resulting pretrained language models, such as BERT and GPT-3, have 
provided a powerful universal language understanding and generation base, which 
can easily be adapted to many understanding, writing, and reasoning tasks. These 
models show the first inklings of a more general form of artificial intelligence, which 
may lead to powerful foundation models in domains of sensory experience beyond 
just language.

When scientists consider artificial intelligence, they mostly think of 
modeling or recreating the capabilities of an individual human brain. 
But modern human intelligence is much more than the intelligence of 

an individual brain. Human language is powerful and has been transformative to 
our species because it gives groups of people a way to network human brains to-
gether. An individual human may not be much more intelligent than our close rel-
atives of chimpanzees or bonobos. These apes have been shown to possess many 
of the hallmark skills of human intelligence, such as using tools and planning; 
moreover, they have better short-term memory than we do.1 When humans in-
vented language is still, and perhaps will forever be, quite uncertain, but within 
the long evolutionary history of life on Earth, human beings developed language 
incredibly recently. The common ancestor of prosimians, monkeys, and apes 
dates to perhaps sixty-five million years ago; humans separated from chimps per-
haps six million years ago, while human language is generally assumed to be only 
a few hundred thousand years old.2 Once humans developed language, the pow-
er of communication quickly led to the ascendancy of Homo sapiens over other 
creatures, even though we are not as strong as an elephant nor as fast as a cheetah. 
It was much more recently that humans developed writing (only a bit more than 
five thousand years ago), allowing knowledge to be communicated across distanc-
es of time and space. In just a few thousand years, this information-sharing mech-
anism took us from the bronze age to the smartphones of today. A high-fidelity 
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code allowing both rational discussion among humans and the distribution of in-
formation has allowed the cultural evolution of complex societies and the knowl-
edge underlying modern technologies. The power of language is fundamental to 
human societal intelligence, and language will retain an important role in a future 
world in which human abilities are augmented by artificial intelligence tools.

For these reasons, the field of natural language processing (NLP) emerged in 
tandem with the earliest developments in artificial intelligence. Indeed, initial 
work on the NLP problem of machine translation, including the famous George-
town-IBM demonstration in 1954, slightly preceded the coining of the term 
“artificial intelligence” in 1956.3 In this essay, I give a brief outline of the history 
of natural language processing. I then describe the dramatic recent developments 
in NLP coming from the use of large artificial neural network models trained on 
very large amounts of data. I trace the dramatic progress that has been made in 
building effective NLP systems using these techniques, and conclude with some 
thoughts on what these models achieve and where things will head next.

T he history of natural language processing until now can be roughly divid-
ed into four eras. The first era runs from 1950 to 1969. NLP research began 
as research in machine translation. It was imagined that translation could 

quickly build on the great successes of computers in code breaking during World 
War II. On both sides of the Cold War, researchers sought to develop systems ca-
pable of translating the scientific output of other nations. Yet, at the beginning 
of this era, almost nothing was known about the structure of human language, 
artificial intelligence, or machine learning. The amount of computation and data 
available was, in retrospect, comically small. Although initial systems were pro-
moted with great fanfare, the systems provided little more than word-level trans-
lation lookups and some simple, not very principled rule-based mechanisms to 
deal with the inflectional forms of words (morphology) and word order.

The second era, from 1970 to 1992, saw the development of a whole series of 
NLP demonstration systems that showed sophistication and depth in handling 
phenomena like syntax and reference in human languages. These systems includ-
ed SHRDLU by Terry Winograd, LUNAR by Bill Woods, Roger Schank’s systems 
such as SAM, Gary Hendrix’s LIFER, and GUS by Danny Bobrow.4 These were all 
hand-built, rule-based systems, but they started to model and use some of the 
complexity of human language understanding. Some systems were even deployed 
operationally for tasks like database querying.5 Linguistics and knowledge-based 
artificial intelligence were rapidly developing, and in the second decade of this 
era, a new generation of hand-built systems emerged, which had a clear separa-
tion between declarative linguistic knowledge and its procedural processing, 
and which benefited from the development of a range of more modern linguistic  
theories. 
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However, the direction of work changed markedly in the third era, from rough-
ly 1993 to 2012. In this period, digital text became abundantly available, and the 
compelling direction was to develop algorithms that could achieve some level of 
language understanding over large amounts of natural text and that used the ex-
istence of this text to help provide this ability. This led to a fundamental reorien-
tation of the field around empirical machine learning models of NLP, an orienta-
tion that still dominates the field today. At the beginning of this period, the dom-
inant modus operandi was to get hold of a reasonable quantity of online text–in 
those days, text collections were generally in the low tens of millions of words–
and to extract some kind of model out of these data, largely by counting particu-
lar facts. For example, you might learn that the kinds of things people capture are 
fairly evenly balanced between locations with people (like a city, town, or fort) and 
metaphorical notions (like imagination, attention, or essence). But counts on words 
only go so far in providing language understanding devices, and early empirical 
attempts to learn language structure from text collections were fairly unsuccess-
ful.6 This led most of the field to concentrate on constructing annotated linguistic 
resources, such as labeling the sense of words, instances of person or company 
names in texts, or the grammatical structure of sentences in treebanks, followed 
by the use of supervised machine learning techniques to build models that could 
produce similar labels on new pieces of text at runtime.

The period from 2013 to present extended the empirical orientation of the third 
era, but the work has been enormously changed by the introduction of deep learn-
ing or artificial neural network methods. In this approach, words and sentences 
are represented by a position in a (several hundred- or thousand-dimensional) 
real-valued vector space, and similarities of meaning or syntax are represented by 
proximity in this space. From 2013 to 2018, deep learning provided a more power-
ful method for building performant models: it was easier to model longer distance 
contexts, and models generalized better to words or phrases with similar mean-
ings because they could exploit proximity in a vector space, rather than depending 
on the identity of symbols (such as word form or part of speech). Nevertheless, 
the approach was unchanged in building supervised machine learning models to 
perform particular analysis tasks. Everything changed in 2018, when NLP was the 
first major success of very large scale self-supervised neural network learning. In this 
approach, systems can learn an enormous amount of knowledge of a language and 
the world simply from being exposed to an extremely large quantity of text (now 
normally in the billions of words). The method of self-supervision by which this 
is done is for the system to create from the text its own prediction challenges, such 
as successively identifying each next word in the text given the previous words or 
filling in a masked word or phrase in a text. By repeating such prediction tasks bil-
lions of times and learning from its mistakes, so the model does better next time 
given a similar textual context, general knowledge of a language and the world is 
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accumulated, and this knowledge can then be deployed for tasks of interest, such 
as question answering or text classification. 

In hindsight, the development of large-scale self-supervised learning ap-
proaches may well be viewed as the fundamental change, and the third era might 
be extended until 2017. The impact of pretrained self-supervised approaches has 
been revolutionary: it is now possible to train models on huge amounts of unla-
beled human language material in such a way as to produce one large pretrained 
model that can be very easily adapted, via fine-tuning or prompting, to give strong 
results on all sorts of natural language understanding and generation tasks. As a 
result, progress and interest in NLP have exploded. There is a sense of optimism 
that we are starting to see the emergence of knowledge-imbued systems that have 
a degree of general intelligence.

I cannot give here a full description of the now-dominant neural network mod-
els of human language, but I can offer an inkling. These models represent ev-
erything via vectors of real numbers and are able to learn good representa-

tions after exposure to many pieces of data by back-propagation of errors (which 
comes down to doing differential calculus) from some prediction task back to the 
representations of the words in a text. Since 2018, the dominant neural network 
model for NLP applications has been the transformer neural network.7 With sev-
eral ideas and parts, a transformer is a much more complex model than the simple 
neural networks for sequences of words that were explored in earlier decades. The 
dominant idea is one of attention, by which a representation at a position is com-
puted as a weighted combination of representations from other positions. A com-
mon self-supervision objective in a transformer model is to mask out occasional 
words in a text. The model works out what word used to be there. It does this by 
calculating from each word position (including mask positions) vectors that rep-
resent a query, key, and value at that position. The query at a position is compared 
with the value at every position to calculate how much attention to pay to each po-
sition; based on this, a weighted average of the values at all positions is calculated. 
This operation is repeated many times at each level of the transformer neural net, 
and the resulting value is further manipulated through a fully connected neural 
net layer and through use of normalization layers and residual connections to pro-
duce a new vector for each word. This whole process is repeated many times, giv-
ing extra layers of depth to the transformer neural net. At the end, the representa-
tion above a mask position should capture the word that was there in the original 
text: for instance, committee as illustrated in Figure 1.

It is not at all obvious what can be achieved or learned by the many simple cal-
culations of a transformer neural net. At first, this may sound like some kind of 
complex statistical association learner. However, given a very powerful, flexible, 
and high-parameter model like a transformer neural net and an enormous amount 
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of data to practice predictions on, these models discover and represent much of 
the structure of human languages. Indeed, work has shown that these models 
learn and represent the syntactic structure of a sentence and will learn to memo-
rize many facts of the world, since each of these things helps the model to predict 
masked words successfully.8 Moreover, while predicting a masked word initial-
ly seems a rather simple and low-level task–a kind of humorless Mad Libs–and 
not something sophisticated, like diagramming a sentence to show its grammati-
cal structure, this task turns out to be very powerful because it is universal: every 
form of linguistic and world knowledge, from sentence structure, word connota-
tions, and facts about the world, help one to do this task better. As a result, these 
models assemble a broad general knowledge of the language and world to which 
they are exposed. A single such large pretrained language model (LPLM) can be 
deployed for many particular NLP tasks with only a small amount of further in-
struction. The standard way of doing this from 2018 to 2020 was fine-tuning the 
model via a small amount of additional supervised learning, training it on the ex-
act task of interest. But very recently, researchers have surprisingly found that the 
largest of these models, such as GPT-3 (Generative Pre-trained Transformer-3), 

Figure 1
Details of the Attention Calculations in One Part of a  
Transformer Neural Net Model

From this calculation, the transformer neural net is able to predict the word committee in the 
masked position. 
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can perform novel tasks very well with just a prompt. Give them a human language 
description or several examples of what one wants them to do, and they can per-
form many tasks for which they were never otherwise trained.9

T raditional natural language processing models were elaborately composed 
from several usually independently developed components, frequently 
built into a pipeline, which first tried to capture the sentence structure 

and low-level entities of a text and then something of the higher-level meaning, 
which would be fed into some domain-specific execution component. In the last 
few years, companies have started to replace such traditional NLP solutions with 
LPLMs, usually fine-tuned to perform particular tasks. What can we expect these 
systems to do in the 2020s? 

Early machine translation systems covered limited linguistic constructions 
in a limited domain.10 Building large statistical models from parallel corpora of 
translated text made broad-coverage machine translation possible, something 
that most people first experienced using Google Translate after it launched in 
2006. A decade later, in late 2016, Google’s machine translation improved mark-
edly when they switched to the use of neural machine translation.11 But that sys-
tem had a shorter lifespan: transformer-based neural translation was rolled out 
in 2020.12 This new system improved not only via a different neural architecture 
but via use of a fundamentally different approach. Rather than building numer-
ous pairwise systems from parallel text that translate between two languages, the 
new system gains from one huge neural net that was simultaneously trained on all 
languages that Google Translate covers, with input simply marked by a distinct 
token that indicates the language. While this system still makes mistakes and ma-
chine translation research continues, the quality of automatic translation today 
is remarkable. When I enter a couple of sentences from today’s Le Monde culture  
section:

Il avait été surnommé, au milieu des années 1930, le « Fou chantant », alors qu’il faisait ses débuts 
d’artiste soliste après avoir créé, en 1933, un duo à succès avec le pianiste Johnny Hess. Pour son 
dynamisme sur scène, silhouette agile, ses yeux écarquillés et rieurs, ses cheveux en bataille, surtout 
pour le rythme qu’il donnait aux mots dans ses interprétations et l’écriture de ses textes.13

the translation is excellent:

He was nicknamed the Singing Madman in the mid-1930s when he was making his debut as a 
solo artist after creating a successful duet with pianist Johnny Hess in 1933. For his dynamism on 
stage, his agile figure, his wide, laughing eyes, his messy hair, especially for the rhythm he gave to 
the words in his interpretations and the writing of his texts.

In question answering, a system looks for relevant information across a collec-
tion of texts and then provides answers to specific questions (rather than just re-
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turning pages that are suggested to hold relevant information, as in the early gen-
erations of Web search). Question answering has many straightforward commer-
cial applications, including both presale and postsale customer support. Modern 
neural network question-answering systems have high accuracy in extracting an 
answer present in a text and are even fairly good at working out that no answer is 
present. For example, from this passage:

Samsung saved its best features for the Galaxy Note 20 Ultra, including a more refined 
design than the Galaxy S20 Ultra–a phone I don’t recommend. You’ll find an excep-
tional 6.9-inch screen, sharp 5x optical zoom camera and a swifter stylus for annotat-
ing screenshots and taking notes. The Note 20 Ultra also makes small but significant 
enhancements over the Note 10 Plus, especially in the camera realm. Do these features 
justify the Note 20 Ultra’s price? It begins at $1,300 for the 128GB version. The retail 
price is a steep ask, especially when you combine a climate of deep global recession 
and mounting unemployment.

One can get answers to questions like the following (using the UnifiedQA model):14

How expensive is the Samsung Galaxy Note 20 Ultra? 
$1,300 for the 128GB version

Does the Galaxy Note 20 Ultra have 20x optical zoom? 
no

What is the optical zoom of the Galaxy Note 20 Ultra?
5x

How big is the screen of the Galaxy Note 20 Ultra? 
6.9-inch

For common traditional NLP tasks like marking person or organization names 
in a piece of text or classifying the sentiment of a text about a product (as posi-
tive or negative), the best current systems are again based on LPLMs, usually fine-
tuned by providing a set of examples labeled in the desired way. While these tasks 
could be done quite well even before recent large language models, the greater 
breadth of knowledge of language and the world in these models has further im-
proved performance on these tasks.

Finally, LPLMs have led to a revolution in the ability to generate fluent and 
connected text. In addition to many creative uses, such systems have prosaic uses 
ranging from writing formulaic news articles like earnings or sports reports and 
automating summarization. For example, such a system can help a radiologist by 
suggesting the impression (or summary) based on the radiologist’s findings. For 
the findings below, we can see that the system-generated impression is quite sim-
ilar to a radiologist-generated impression:15
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Findings: lines/tubes: right ij sheath with central venous catheter tip overlying the 
svc. on initial radiograph, endotracheal tube between the clavicular heads, and enteric  
tube with side port at the ge junction and tip below the diaphragm off the field-of-
view; these are removed on subsequent film. mediastinal drains and left thoracosto-
my tube are unchanged. lungs: low lung volumes. retrocardiac airspace disease, slight-
ly increased on most recent film. pleura: small left pleural effusion. no pneumothorax. 
heart and mediastinum: postsurgical widening of the cardiomediastinal silhouette. 
aortic arch calcification. bones: intact median sternotomy wires.

Radiologist-generated impression: left basilar airspace disease and small left pleural 
effusion. lines and tubes positioned as above. 

System-generated impression: lines and tubes as described above. retrocardiac air-
space disease, slightly increased on most recent film. small left pleural effusion.

These recent NLP systems perform very well on many tasks. Indeed, given a 
fixed task, they can often be trained to perform it as well as human beings, on av-
erage. Nevertheless, there are still reasons to be skeptical as to whether these sys-
tems really understand what they are doing, or whether they are just very elabo-
rate rewriting systems, bereft of meaning. 

T he dominant approach to describing meaning, in not only linguistics and 
philosophy of language but also for programming languages, is a denota-
tional semantics approach or a theory of reference: the meaning of a word, 

phrase, or sentence is the set of objects or situations in the world that it describes 
(or a mathematical abstraction thereof ). This contrasts with the simple distribu-
tional semantics (or use theory of meaning) of modern empirical work in NLP, where-
by the meaning of a word is simply a description of the contexts in which it ap-
pears.16 Some have suggested that the latter is not a theory of semantics at all but 
just a regurgitation of distributional or syntactic facts.17 I would disagree. Mean-
ing is not all or nothing; in many circumstances, we partially appreciate the mean-
ing of a linguistic form. I suggest that meaning arises from understanding the net-
work of connections between a linguistic form and other things, whether they be 
objects in the world or other linguistic forms. If we possess a dense network of 
connections, then we have a good sense of the meaning of the linguistic form. For 
example, if I have held an Indian shehnai, then I have a reasonable idea of the mean-
ing of the word, but I would have a richer meaning if I had also heard one being 
played. Going in the other direction, if I have never seen, felt, or heard a shehnai, 
but someone tells me that it’s like a traditional Indian oboe, then the word has some 
meaning for me: it has connections to India, to wind instruments that use reeds, 
and to playing music. If someone added that it has holes sort of like a recorder, but it 
has multiple reeds and a flared end more like an oboe, then I have more network con-
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nections to objects and attributes. Conversely, I might not have that information 
but just a couple of contexts in which the word has been used, such as: From a week 
before, shehnai players sat in bamboo machans at the entrance to the house, playing their 
pipes. Bikash Babu disliked the shehnai’s wail, but was determined to fulfil every convention-
al expectation the groom’s family might have.18 Then, in some ways, I understand the 
meaning of the word shehnai rather less, but I still know that it is a pipe-like musi-
cal instrument, and my meaning is not a subset of the meaning of the person who 
has simply held a shehnai, for I know some additional cultural connections of the 
word that they lack. 

Using this definition whereby understanding meaning consists of understand-
ing networks of connections of linguistic forms, there can be no doubt that pre-
trained language models learn meanings. As well as word meanings, they learn 
much about the world. If they are trained on encyclopedic texts (as they usually 
are), they will learn that Abraham Lincoln was born in 1809 in Kentucky and that 
the lead singer of Destiny’s Child was Beyoncé Knowles-Carter. Our machines 
can richly benefit from writing as a store of human knowledge, just like people. 
Nevertheless, the models’ word meanings and knowledge of the world are often 
very incomplete and cry out for being augmented with other sensory data and 
knowledge. Large amounts of text data provided a very accessible way first to ex-
plore and build these models, but it will be useful to expand to other kinds of data.

The success of LPLMs on language-understanding tasks and the exciting 
prospects for extending large-scale self-supervised learning to other data mo-
dalities–such as vision, robotics, knowledge graphs, bioinformatics, and multi-
modal data–suggests exploring a more general direction. We have proposed the 
term foundation models for the general class of models with millions of parame-
ters trained on copious data via self-supervision that can then easily be adapted 
to perform a wide range of downstream tasks.19 LPLMs like BERT (Bidirection-
al Encoder Representations from Transformers) and GPT-3 are early examples of 
foundation models, but work is now underway more broadly.20 One direction is 
to connect language models with more structured stores of knowledge represent-
ed as a knowledge graph neural network or as a large supply of text to be consult-
ed at runtime.21 However, the most exciting and promising direction is to build 
foundation models that also take in other sensory data from the world to enable 
integrated, multimodal learning. An example of this is the recent DALL·E model 
that, after self-supervised learning on a corpus of paired images and text, can ex-
press the meaning of a new piece of text by producing a corresponding picture.22

We are still very early in the era of foundation models, but let me sketch a  pos-
sible future. Most information processing and analysis tasks, and perhaps even 
things like robotic control, will be handled by a specialization of one of a rela-
tively small number of foundation models. These models will be expensive and 
time-consuming to train, but adapting them to different tasks will be quite easy; 
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indeed, one might be able to do it simply with natural language instructions. This 
resulting convergence on a small number of models carries several risks: the 
groups capable of building these models may have excessive power and influence, 
many end users might suffer from any biases present in these models, and it will 
be difficult to tell if models are safe to use in particular contexts because the mod-
els and their training data are so large. Nevertheless, the ability of these models to 
deploy knowledge gained from a huge amount of training data to many different 
runtime tasks will make these models powerful, and they will for the first time 
demonstrate the artificial intelligence goal of one machine learning model doing 
many particular tasks based on simply being instructed on the spot as to what it 
should do. While the eventual possibilities for these models are only dimly un-
derstood, they are likely to remain limited, lacking a human-level ability for care-
ful logical or causal reasoning. But the broad effectiveness of foundation mod-
els means that they will be very widely deployed, and they will give people in the 
coming decade their first glimpses of a more general form of artificial intelligence.
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The Curious Case of  
Commonsense Intelligence

Yejin Choi

Commonsense intelligence is a long-standing puzzle in AI. Despite considerable ad-
vances in deep learning, AI continues to be narrow and brittle due to its lack of com-
mon sense. Why is common sense so trivial for humans but so hard for machines? 
In this essay, I map the twists and turns in recent research adventures toward com-
monsense AI. As we will see, the latest advances on common sense are riddled with 
new, potentially counterintuitive perspectives and questions. In particular, I discuss 
the significance of language for modeling intuitive reasoning, the fundamental lim-
itations of logic formalisms despite their intellectual appeal, the case for on-the-
fly generative reasoning through language, the continuum between knowledge and 
reasoning, and the blend between symbolic and neural knowledge representations. 

C ommonsense intelligence is a long-standing challenge in AI. Despite con-
siderable advances in deep learning, AI systems continue to be narrow and 
brittle. One of the fundamental limitations of AI can be characterized as 

its lack of commonsense intelligence: the ability to reason intuitively about every-
day situations and events, which requires rich background knowledge about how 
the physical and social world works.1 

Trivial for humans, acquiring commonsense intelligence has been considered 
a nearly impossible goal in AI. In fact, until several years ago, the word “com-
monsense” was considered taboo for anyone wanting to be taken seriously in the 
mainstream research community. How, then, is this goal now feasible? To help an-
swer this question, we will characterize what approaches have been tried in the 
past and what alternative paths have yet to be explored.

First and foremost, the significance of language–not just words and phrases, 
but the full scope of natural language–has long been overlooked as a representa-
tion medium for modeling commonsense knowledge and reasoning. At first glance, 
language seems too imprecise and variable, thus, many earlier efforts sought logic-
based formalisms to describe commonsense rules for machines. But despite their 
intellectual appeal, logic-based formalisms proved too brittle to scale beyond ex-
perimental toy problems. In contrast, language-based formalisms, despite their ap-
parent imprecision and variability, are sufficiently expressive and robust to encom-
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pass the vast number of commonsense facts and rules about how the world works. 
After all, it is language, not logical forms, through which humans acquire knowl-
edge about the world. And this holds true despite the ambiguities of language and 
the inconsistencies of knowledge reported in books, news, and even the scientific 
literature. Thus, in order to match the scale and complexity of human-level knowl-
edge acquisition, AI cannot go far without direct integration of language.

Second, most prior efforts were developed in the pre–deep learning era, with-
out benefiting from large-scale data, compute, and neural networks. Deep learn-
ing presents entirely new opportunities for training neural commonsense models 
using a massive amount of raw text, fused with symbolic commonsense knowl-
edge graphs. Again, the switch to language-based formalisms is the key to benefit 
from the empirical breakthroughs of deep neural networks, as it allows for power-
ful transfer learning from language models to knowledge models.

The landscape has changed considerably over the past few years. The Allen In-
stitute for Artificial Intelligence created the research project Mosaic, which I lead, 
to focus on commonsense intelligence.2 The Association for Computational Lin-
guistics (ACL), which hosts one of the premiere conferences in AI focusing on hu-
man language technologies, featured a tutorial on commonsense knowledge that 
attracted a great deal of attention from the research community.3 Defense Ad-
vanced Research Projects Agency (DARPA), an agency of the U.S. Department of 
Defense, has also launched the Machine Common Sense (MCS) program to accel-
erate research on commonsense AI.4

Experience thus far suggests that research toward commonsense AI requires 
rethinking and challenging some of the most fundamental assumptions in the 
current paradigms of machine learning and AI. It also challenges our conceptual 
understanding about knowledge, reasoning, and language. As a result, it is inevi-
table that the perspectives discussed in this essay can appear counterintuitive or 
even controversial. As a starting point, let us examine intuitive reasoning and its 
connection to language generation.

I ntuitive reasoning is effortless. Humans do it all the time, subconsciously, 
about nearly every object, person, and event that we encounter in our every 
waking moment. It is intuitive reasoning through which we make snap judg-

ments about the big picture context of a scene that we observe only in part: the 
likely causes and effects of events, what might have happened before and what 
might happen next, what might be the motivations and intents of people, and 
what might be their mental and emotional states. Because intuitive reasoning is 
so natural and effortless, it is tempting to assume that it must be easy for AI as well. 

A concrete example offers insight into why AI in the current paradigm might 
be far from reaching human-level intuitive reasoning on trivial everyday events 
and scenes. Consider psychologist Roger Shepard’s optical illusion Terror Subterra,  
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shown as Figure 1.5 State-of-the-art computer vision systems are now capable of 
correctly identifying the literal content of the visual scene, such as objects and lo-
cations; in this case, two monsters in a tunnel. However, human-level cognitive 
understanding of the visual scene requires seeing beyond pixels: reasoning about 
the whole dynamic story that goes beyond the static scene captured in a still im-
age. For example, we reason that the monsters are running, one is chasing another,  
and the chaser has hostile intentions while the chased is afraid. 

Figure 1
Roger Shepard’s Terror Subterra

Source: Roger Shepard, “Terror Subterra,” in Mind Sights: Original Visual Illusions, Ambiguities, and 
other Anomalies (New York: W. H. Freeman & Co, 1990).
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This example leads us to unpack several interconnected insights: 1) intuitive 
reasoning is generative and instantaneous (as opposed to thoroughly discrimina-
tive across all possible alternatives); 2) the space of such reasoning is infinite, and 
thus requires the full scope of natural language to describe them (as opposed to a 
fixed set of predefined labels to choose from); 3) intuitive inferences are predic-
tive in nature, and are therefore almost always defeasible with additional context; 
and 4) intuitive inferences draw from rich background knowledge about how the 
physical and social world works (as will be elaborated below).

W hat is remarkable about intuitive reasoning is that we make all these 
inferences instantaneously without ever enumerating and weighing 
all the other plausible but less likely, or implausible, inferences. For 

example, we do not consider plausible but less likely inferences about our mon-
sters in the tunnel, like the monsters are running backward or are standing still 
on one foot. Nor do we consider outright implausible inferences, like the mon-
sters are lying down on the floor or swimming in the ocean. Such less plausible or 
outright implausible inferences do not even come to our conscious mind. In fact, 
coming up with less likely or implausible alternatives can be effortful. 

In other words, when we communicate our intuitive inferences in language, it 
is almost as if we generate the most likely intuitive inferences on the fly, word by 
word, without explicitly acknowledging the alternatives. This is analogous to how 
we can “think out loud”: we can speak out the next word of a thought without first 
internally finishing the rest of the thought or planning the exact wordings of the 
sentences to come. 

This is in stark contrast with how machine learning benchmarks–especially 
reasoning tasks–are most commonly formulated: as categorization tasks over a 
fixed set of predefined labels. Under such discriminative task formulations, mod-
els need to go through all possible labels one by one and choose the label with 
the highest score. Discriminative task formulations are effective for relatively nar-
rowly defined tasks, such as object categorization in an image. However, human-
level intuitive inferences require complex compositional reasoning over diverse 
concepts, including objects, actions, locations, attributes, and emotions. In other 
words, the space of concepts is infinite, as concepts can be composed of other con-
cepts recursively. This is a point also emphasized by cognitive scientist Douglas 
Hofstadter and psychologist Emmanuel Sander in their book Surfaces and Essences:  
the set of concepts vastly outnumbers the set of words, and many concepts re-
quire open-text descriptions for lack of existing words or fixed phrases.6

This compositional nature of intuitive inferences has two important implica-
tions. First, natural language, not just words or phrases but the full scope of open-
text descriptions, is the best way to communicate the content of intuitive infer-
ences between humans and machines. Inventing a new labeling scheme (or logic 
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formalisms) can only be error prone and incomplete, since there always will be a 
significant representation gap between the labeling scheme and natural language. 
Second, the total number of all possible textual descriptions of intuitive infer-
ences is too large for us, and even for AI, to enumerate and examine one by one in 
real time. 

These observations motivate the need for computational models that can han-
dle on-the-fly generative reasoning through language. The key underlying chal-
lenge is scale. Naively increasing the set of labels for discriminative models will 
not scale effectively to handle the sheer scope of intuitive reasoning, which re-
quires complex and potentially novel compositional reasoning over diverse con-
cepts. This calls for new machine-learning models and algorithms that can learn 
to generate intuitive inferences on the fly, word by word, just like how humans 
communicate their thoughts. 

In fact, such word-by-word generation is exactly how text generation from 
neural language models operates today. For example, OpenAI’s GPT-3 (Genera-
tive Pre-trained Transformer 3)–a language model that uses deep learning to pro-
duce speech-like text–has generated remarkably coherent paragraphs by sam-
pling just one word at a time, without explicitly enumerating all other alternative 
sentences.7 Advances in neural language models provide strong technical founda-
tions to build language-based on-the-fly generative reasoning systems. Promising 
recent research is based on such generative reasoning: abductive reasoning, coun-
terfactual story revision, and commonsense reasoning. But before we get there, let 
us discuss the importance of defeasible reasoning and commonsense knowledge. 

W hen we look at Roger Shepard’s monsters in a tunnel, it is reasonable 
to infer that one monster is chasing another, with emotions to match. 
But the faces of the two monsters are in fact identical: it is our brain 

projecting a story onto the image to the point of hallucinating two faces express-
ing visually distinct emotions. This story projection comes from our prior knowl-
edge about how the world works, that when a monster is chasing, it is likely to 
have a hostile intent, while the chased would likely feel scared. Yet none of these is 
absolutely true and all can be defeated with additional context. For example, if we 
learned that these particular monsters have kind hearts despite their appearances, 
or that they are in fact practicing a new dance move, we would revise what we in-
fer about their likely intents, emotions, and mental states. 

Intuitive inferences draw from the rich background knowledge about how the 
world works, ranging from native physics to folk psychology. In order to close the 
gap between AI and humans in their intuitive reasoning capabilities over diverse 
everyday scenes and events, we need deep integration of language, and we need 
broad-coverage commonsense models of how the physical and the social world 
works. 
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W hy does formal logic fail to model human reasoning? In their book The 
Enigma of Reason, cognitive scientists Hugo Mercier and Dan Sperber 
argue that “Reason is a mechanism of intuitive inferences . . . in which 

logic plays at best a marginal role.”8 Yet a dominant perspective underlying AI re-
search is that human reasoning is modeled through a formal logic framework. The 
intellectual appeal of formal logic is its emphasis on correctness, a property that 
seems hard to dispute in itself. What could possibly go wrong with being correct? 

There are two related challenges: the purpose and the scale of reasoning. The 
purpose of intuitive reasoning is to anticipate and predict what might be plausible 
explanations for our partial observations, so we can read between the lines in text 
and see beyond the frame of the image. As we have discussed, this means intuitive 
reasoning is almost always defeasible with additional context. Therefore, a rea-
soning framework that only seeks truthful conclusions is off point since it would 
rarely generate the sorts of rich conclusions that intuitive reasoning does. 

The bigger challenge is the scale or the scope of reasoning. The reasoning 
framework, to be practically useful, should be ready to cover the full spectrum of 
concepts and compositions of concepts that we encounter in our everyday physical 
and social interactions with the world. In addition, the real world is filled with pre-
viously unseen situations, which require creative generation of hypotheses, novel 
compositions of concepts, and novel discovery of reasoning rules. In contrast, for-
mal logic almost always assumes that some oracle will provide a predefined set of 
logic variables and logic implication rules. There is no such oracle. To date, we do 
not yet know how to automatically populate such logical representations of con-
cepts and implication rules at scale, and those manually constructed by scientists 
have proven to be, time and again, too narrow in scope and too brittle to generalize. 
Moreover, formal logic frameworks fall short of providing practical solutions to 
the creative generation of hypotheses, novel compositions of concepts, and novel 
discovery of reasoning rules.

In regard to the defeasibility of intuitive reasoning, one might wonder whether 
adding probability models on top of formal logic frameworks could trivially ad-
dress this challenge, since probabilistic logic frameworks can generate uncertain 
conclusions that are defeasible. The real bottleneck of scale is not due to lack of 
probabilistic measures of uncertainty, however. Adding probabilistic models over 
a small, fixed set of variables and logical rules does not automatically increase the 
diversity and complexity of concepts covered by the logical forms. The challenge 
of automatically populating formal logical variables and implication rules still re-
mains, with or without probabilistic measures on top. 

L ogical reasoning is often associated with deductive reasoning and induc-
tive reasoning. Deduction starts with a general rule, which is then applied 
to a concrete case, whereas induction begins with facts about individual 
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cases, which are then generalized to a general rule. But the scope of deduction and 
induction together is only the tip of the iceberg of human reasoning. Indeed, nei-
ther deduction nor induction can account for the sorts of intuitive inferences that 
we examined in Terror Subterra. 

Abductive reasoning, conceived by philosopher Charles Peirce in 1865, con-
cerns reasoning about the best explanatory hypotheses for partial observations. Exam-
ples that compare deduction, induction, and abduction are shown in Table 1. What 
is remarkable about abductive reasoning is that it is a form of creative reasoning: 
it generates new information that goes beyond what is provided by the premise. Thus, 
abductive reasoning builds on our imaginative thinking, which, in turn, builds 
on our rich background knowledge about how the world works. In contrast, the 
conclusions of deduction and induction do not generate any new information be-
yond what is already provided in the premise, as these conclusions are only dif-
ferent ways of regurgitating the same or part of the information that is contained 
in the premise. Generating new hypotheses that explain our partial observations 
about the world, a cognitive process at the heart of human learning and reasoning, 
is therefore beyond the conventional scope of formal logic that focuses on truth-
ful conclusions. Although most of our day-to-day reasoning is a form of abductive 
reasoning, it is relatively less known to most people. For example, Conan Doyle, 
the author of the Sherlock Holmes canon, mistakenly wrote that Sherlock used de-
ductive reasoning to solve his cases. On the contrary, the key to solving Holmes’s 
mysteries was almost always abductive reasoning, which requires a nontrivial dose 
of imagination and causal reasoning to generate explanatory hypotheses that may 
not seem obvious to others. In fact, abductive reasoning is the key to scientific ad-
vances as well, since scientific inquiries also require generating new explanatory 
hypotheses beyond what is already known to the field as truth.

Despite the significance of abduction in human reasoning, relatively few re-
searchers have developed computational systems of abductive reasoning, espe-
cially in relation to language-based reasoning. Within the AI logic research com-
munities, language has been very rarely or only minimally integrated into reason-
ing, as prior research aimed to operate on top of logic-based formalisms detached 
from natural language. In contrast, within natural language processing (NLP) re-
search communities, a subfield of AI that focuses on human language technolo-
gies, questions about intuitive reasoning, commonsense reasoning, and abductive 
reasoning have by and large been considered to be outside the scope of the field. 

Counterfactual reasoning is closely related to abductive reasoning in that 
they are both cases of nonmonotonic reasoning: that is, logical conclusions are 
not monotonically true and can be defeasible.9 Similar to abductive reasoning, 
counterfactual reasoning has been relatively less studied, and what prior research 
on counterfactual reasoning there is has been mostly detached from natural 
language. 
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NLP researchers only recently began investigating language-based common-
sense reasoning,10 defeasible inferences,11 and abductive reasoning,12 and most 
recent successes have built on neural language models operating directly with nat-
ural language, without formal logical forms.

W e have identified the need for designing on-the-fly generative reason-
ing models through language. But using off-the-shelf language mod-
els is not straightforward because generative language models are 

typically trained for generating language monotonically, such as from left to right 
for English text. In contrast, abductive and counterfactual reasoning, core abil-
ities of everyday human cognition, require flexible causal reasoning over events 
that might not be monotonic in time. For example, we might need to condition on 
the future and reason about the past. Or we might need to condition on both the 
past and the future to reason about what might have happened in between. 

My colleagues and I have recently proposed DeLorean (named after the 
time-travel machine from Back to the Future), a new inference algorithm that can 
flexibly incorporate both the past and future contexts using only off-the-shelf, left-
to-right language models, and no supervision.13 The key intuition of our algorithm 
is incorporating the future through “back-propagation,” in which we only update 
the internal representation of the output while fixing the model parameters. By 
alternating between forward and backward propagation of information, DeLorean 
can decode the output representation that reflects both the past and future contexts. 

Table 1
Examples of Deduction, Induction, and Abduction

Deduction Induction Abduction

There are two monsters 
running down the  
tunnel. Jack is the  
monster in the front.

There is one monster in 
the tunnel that is run-
ning. Another monster 
enters the tunnel and 
starts running.

There are two monsters 
running down the  
tunnel in sequence.

 Jack is running down 
the tunnel.

 All monsters in the 
tunnel are running.

 The one behind is 
chasing after the one in 
the front. 

 The chaser has  
hostile intentions.



151 (2) Spring 2022 147

Yejin Choi

We have demonstrated that our approach is general and applicable to two non-
monotonic reasoning tasks–abductive text generation and counterfactual story  
revision–and that DeLorean outperforms a range of unsupervised and some su-
pervised methods based on automatic and human evaluation. Figure 2 illustrates 
example model outputs, and Figure 3 provides a visual sketch of our method.

C OMET, a recent Allen Institute for AI and University of Washington ad-
vancement toward commonsense modeling, is another empirical demon-
stration of on-the-fly generative reasoning through language.14 COMET is 

trained using “a large-scale common sense repository of textual descriptions that 

Figure 2
Example of DeLorean Reasoning for Abductive (top) and  
Counterfactual Reasoning (bottom)

Given the inputs (text boxes on the left and right), DeLorean generates an output (text boxes 
in the middle). Source: Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, et al., “Ab-
ductive Commonsense Reasoning,” paper presented at the International Conference on Learn-
ing Representations, March 29, 2020; Lianhui Qin, Antoine Bosselut, Ari Holtzman, et al., 
“Counterfactual Story Reasoning and Generation,” in Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing (Stroudsburg, Pa.: Association for Computational  
Linguistics, 2019); and Lianhui Qin, Vered Shwartz, Peter West, et al., “Back to the Future: 
Unsupervised Backprop-Based Decoding for Counterfactual and Abductive Commonsense 
Reasoning (DeLorean),” in Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (Stroudsburg, Pa.: Association for Computational Linguistics, 2020).
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Figure 3
Sketch of DeLorean Operations

The inputs at the bottom (text boxes X and Z) correspond to the past and the future context on 
which the DeLorean conditions. The output from DeLorean reasoning is shown at the top of 
the figure (text box Y).

encode both the social and the physical aspects of common human everyday ex-
periences.” But the best way to understand COMET is to experience it for yourself 
through examples and a live demonstration at https://comet.allenai.org. There 
you can supply COMET with a statement, and it will predict the subject’s relation-
ship with past, future, and present events, characters, and conditions. 

Figure 4 shows a COMET prediction given the input “Gary stacks kindling and 
logs and drops some matches.” The model correctly predicts that Gary (that is, 
PersonX) might want “to start a fire,” and before doing so, Gary probably need-
ed “to get a lighter.” This particular example was in response to cognitive scien-
tist Gary Marcus’s critique on the limitations of neural language models in their 
commonsense capabilities.15 Indeed, off-the-shelf neural language models fall far 
short of robust commonsense intelligence, which motivates the development of 
commonsense models like COMET. 

The key conceptual framework underlying COMET, compared with most com-
monsense systems from previous decades, is the combination of language-based 
formalism of commonsense knowledge (as opposed to logic-based formalism) 

https://comet.allenai.org
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Figure 4
Commonsense Inferences by COMET Given the Input  
“Gary Stacks Kindling and Logs”

Source: “Commonsense Inferences about People and Events (COMmonsensE Transformers on 
Atomic2020),” Mosaic Knowledge Graphs, Allen Institute for AI, https://comet.allenai.org.

and on-the-fly generative reasoning over the infinite space of intuitive inferences 
(as opposed to discriminative prediction over the fixed set of categories). COMET  
is built on top of ATOMIC, a symbolic knowledge graph that can be viewed as a 
textbook customized for neural language models to learn commonsense knowl-
edge about how the world works.16 Analogous to textbooks written for humans, 
which provide declarative knowledge about a particular topic, ATOMIC is a col-
lection of declarative knowledge focusing on commonsense rules and facts about 
everyday objects and events. Examples of knowledge encoded in ATOMIC are 
shown in Figure 5. At the time of writing, ATOMIC draws on more than 1.3 million 
pieces of commonsense rules and facts. This may sound like a lot, but in reality, 1.3 
million pieces of rules and facts are still too limiting to encompass all the trivial 
commonsense knowledge that we humans hold about the world. Consider that 
the example of someone stacking kindling and logs is not covered by ATOMIC,  
nor are Roger Shepard’s monsters in a tunnel. Yet COMET, which is trained on 
ATOMIC, can generalize far beyond the limited scope of symbolic knowledge 
spelled out in ATOMIC, and can make remarkably accurate commonsense infer-
ences on previously unseen situations, as shown in Figure 4. 

https://comet.allenai.org
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Figure 5
Examples of Knowledge Encoded in ATOMIC, the Symbolic  
Commonsense Knowledge GraphReasoning (bottom)

Source: Jena Hwang, Chandra Bhagavatula, Ronan Le Bras, et al., “(Comet-)Atomic-2020: On 
Symbolic and Neural Commonsense Knowledge Graphs,” paper presented at The Thirty-Fifth 
AAAI Conference on Artificial Intelligence (AAAI-21), February 2–9, 2021.

This generalization power of COMET is achieved through computational meld-
ing between neural representation of language and the symbolic representation 
of commonsense knowledge. Indeed, the empirical success of COMET can be at-
tributed to the blend of neural and symbolic representation of knowledge and the 
use of language as the representation medium for symbolic knowledge. It is also 
important to recognize the continuum between knowledge and reasoning. This 
may seem counterintuitive, as knowledge and reasoning are commonly consid-
ered distinct intellectual phenomena. But our computational exploration of lan-
guage, knowledge, and intuitive reasoning has revealed that, when encountered 
with a wide spectrum of real-life examples, the boundary between knowledge and 
reasoning is not clear. More concretely, when we reason about the intent of “Gary 
stacking kindling and logs,” our reasoning relies on our memorized commonsense 
knowledge about what people typically do with kindling and logs. Conversely, fre-
quent patterns of commonsense reasoning about the intents and mental states of 
people, the causes and effects of events, and the preconditions and postconditions 
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of events all become integral parts of our memorized knowledge about how the 
world works. In sum, COMET demonstrates a neuro-symbolic blend between lan-
guage, knowledge, and reasoning as a new path toward commonsense AI. With-
out this mix, the remarkable generalization power of COMET to flexibly reason 
about previously unseen situations would have been unattainable.

While the curious case of commonsense intelligence remains far from solved, 
the investigation thus far has made considerable progress toward insights that may 
crack the old mystery. Like in any good mystery, there are many surprises still to 
come, but recent projects have meaningfully built on the key ideas behind ATOMIC  
and COMET to blend language, knowledge, and reasoning; I will introduce two. 

A new algorithmic framework called Symbolic Knowledge Distillation has 
enabled us to distill symbolic knowledge from neural networks (GPT-3 in 
particular) algorithmically.17 In a nutshell, instead of humans writing the 

symbolic commonsense knowledge graph, such as ATOMIC, to teach machines 
with, machines can now author their own knowledge graph with which to teach 
themselves. Moreover, the resulting machine-authored ATOMIC can exceed, for 
the first time, the human-authored counterpart in all criteria: scale, quality, and 
diversity. This development foreshadows a great many adventures ahead of us. 

But what would it take to teach a machine to behave ethically? Delphi, the sec-
ond project, is a prototype commonsense morality and norms model. While some 
broad ethical rules are captured by straightforward statements (“thou shalt not 
kill”), applying such rules to real-world situations is far more complex. For ex-
ample, while “helping a friend” is generally a good thing to do, “helping a friend 
spread fake news” is not. 

Delphi is designed to reason about simple ethical situations (you can submit 
your own for judgment at https://delphi.allenai.org/).18 As shown in Figure 6, 
making an ethical judgment of a given situation requires understanding a broad 
range of ethical and social norms, and complex reasoning to calibrate across com-
peting values (such as killing a bear versus pleasing your child). 

Delphi demonstrates the promises of language-based commonsense moral  
reasoning, with up to 80–92 percent accuracy, as vetted by humans. This is in stark 
contrast to the off-the-shelf performance of GPT-3 of 52.3 percent accuracy, which 
suggests that massive scale alone does not endow pretrained neural language mod-
els with human values.

Thus, Delphi is taught with the Commonsense Norm Bank, a moral textbook 
customized for machines that compiles 1.7 million examples of people’s ethical 
judgments on diverse everyday situations. The Commonsense Norm Bank is anal-
ogous to ATOMIC in that both are symbolic knowledge bases/textbooks used to 
teach machines. The scope of the Norm Bank overlaps with but goes much further 
than that of ATOMIC: the former focuses on social and ethical norms for everyday 

https://delphi.allenai.org/
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situations, including problems on equity, in order to teach AI against racism or 
sexism.

While Delphi shows promise, the Delphi study has also revealed major limita-
tions of neural models for their unfiltered bias and harms. The study also opens 
up new research questions, including how we can revise the Commonsense Norm 
Bank so its examples represent more diverse cultural norms.19

Figure 6
Delphi Judgments on Previously Unseen Questions

Source: Delphi, “Ask Delphi,” Allen Institute for AI, https://delphi.allenai.org/ (accessed  
December 8, 2021).

https://delphi.allenai.org/
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Delphi is an emblematic project toward the bigger goal of teaching AI to be-
have in more inclusive, ethically informed, and socially aware manners when in-
teracting with humans. As AI systems become increasingly integral in people’s 
everyday lives, it becomes a priority that they learn to respect human values and 
behave ethically. However, AI systems are not, and should never be, used as moral 
authorities or sources of advice on human ethics. The fact that AI learns to interact 
with humans ethically does not make the AI a moral authority over humans, just 
like a human who tries to behave ethically does not become the moral authority 
over other people. 

W e have discussed the importance of deep integration of language to-
ward commonsense AI, as well as why numerous past attempts based 
on logic-based formalisms, despite their intellectual appeal, did not 

empirically model the rich scope of intuitive reasoning that humans find trivi-
al for everyday objects and events. While the research highlighted in this essay 
demonstrates potential new paths forward, we are far from solving commonsense 
AI. Numerous open research questions remain, including computational mecha-
nisms to ensure consistency and interpretability of commonsense knowledge and 
reasoning, deep representational integration between language and perception 
for multimodal reasoning, new learning paradigms for abstraction and analogies, 
and advanced learning methods for interactive and lifelong learning of knowledge 
and reasoning.
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Machines are gaining understanding of language at a very rapid pace. This achieve-
ment has given rise to a host of creative and business applications using natural lan-
guage processing (NLP) engines, such as OpenAI’s GPT-3. NLP applications do 
not simply change commerce and literature. They raise new questions about how 
human beings relate to machines and how that symbiosis of communication will 
evolve as the future rushes toward us.

Every writer has a unique aesthetic in the way they order words. The nuanc-
es of applied language, or voice, mark one of the countless fingerprints of 
human creativity. Decoding the secrets of this language sits at the frontier 

of artificial intelligence: how to build machines that truly understand not only 
language at a human level, but produce human-grade responses too. 

Take the following excerpt of a poem: “For you are the most beautiful thing we 
have in this world / I love your graceful symmetry, your simplicity and clarity /  
You are the song of the Universe, a cosmic lullaby / You are the poetry of nature, 
written with light and electricity / You are the music of the spheres, played on a 
harp made of vacuum.”1 The directness, the imagery, the fearless affection, one 
might believe the words to be Pablo Neruda’s. But Neruda is only part of the an-
swer. An artificial intelligence system known as GPT-3 (Generative Pre-trained 
Transformer 3), built by the research laboratory OpenAI, scanned an enormous 
corpus of language data, including Neruda’s verses, and built probabilistic rela-
tionships of tremendous fidelity between his use of nouns, verbs, adjectives, ob-
jects, and all the mechanics of a poem. Consequently, GPT-3 could independently 
generate this brand-new poem in its own voice.

For decades, some visionary scientists have predicted this level of intricacy 
from a machine. The user only had to give GPT-3 a prompt, or rather, inspiration: 
“The following is a poem about Maxwell’s equations in the style of poet Pablo 
Neruda.” From that instruction, the machine could pull from its brain of data to 
not only grasp aspects of Maxwell’s foundational electromagnetic equations but 
present them in Neruda’s style. 

This approach to AI is known as large language models and its applications are 
spreading across the arts, sciences, and business. Those overseeing the code and 
training of the machine are becoming authors–and editors–of a new collective 
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language. Train a machine with a corpus of text and it can answer customer ser-
vice questions, describe the plays of a football game, compose an essay, or write a 
program based on a description of its function. The applications are not only be-
coming more integral to commerce and our daily lives but are spawning questions 
about the nature of language. Why do certain aesthetics ring true while other de-
ployments of language feel empty or fake, even when the grammar is perfect? We 
can understand more about our own processes of thought by understanding how 
a machine decides to use language.

Technology, culture, civilization: none comes into being without language. 
Language is both a high point and the foundation of human intelligence. Yet there 
is a bind: What are languages exactly? How do they work? We might think of lan-
guage as a reaction to context and surroundings. But if we cannot write out the 
rules of language, how do we teach it to a machine? This problem has captivated 
thinkers for a century, and the answers are now starting to appear.

What is a thought? And how is experiencing a thought different from 
experiencing a memory or an idea? It is difficult to understand; to 
borrow from philosophy, digging into the roots of consciousness or 

any working of the mind starts to feel like trying to see our own eyes or bite our 
own teeth. Staring into space or perspiring over a pad of paper, thoughts seem to 
work less like a hard disk and more like a wind, arriving and departing without an 
obvious explanation.

Our thoughts manifest through action and emotion but are communicated 
through language. Charles Darwin put language on the razor’s edge between an in-
stinct and a skill. A human baby starts babbling almost instantly–call it innately– 
yet takes years to engage in higher level conversations around them. At the same 
time, all languages are learned, whether directly or passively. That learning takes 
years of repetition. Whereas a toddler can hold a casual conversation, they need 
another decade before writing structured paragraphs. 

Darwin saw the drive to acquire language as “the instinctive tendency to ac-
quire an art,” to communicate by some medium.2 No baby has ever needed a book 
of grammar to learn a language. They absorb what they hear and through the 
maze of the mind play it back. People spend their lives speaking exquisitely with-
out understanding a subjunctive clause or taking a position on split infinitives. A 
child learns by experiencing patterns, learning what is most likely to make sense 
in a new context. To paraphrase Ralph Waldo Emerson, this information shapes 
who we become, much like every meal we have eaten.

The mechanics of the mind are still a mystery. The nuances of a writer’s voice 
and creativity in general are no exception. Neuroscientists can observe now that 
certain neurons light up when certain actions occur, be it throwing a ball or giving 
directions. The order in which these neurons light up and the connections between 
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them seem to dictate–or “code”–what the owner of the brain experiences. Re-
searchers have discovered neurons that fire in response to extremely, perhaps odd-
ly, specific subjects, such as Halle Berry. The same neurons will activate when read-
ing the actress’s name or seeing a picture of her, yet remain silent for anyone else.3

We now design machines to mimic a similar logic. If you are shown a photo of 
Halle Berry and asked who are you looking at? you fill in the blank with the an-
swer “most likely” to be correct. Every word you output is the most likely word 
to be the “right” answer, or to ring true. In a system like GPT-3, these blanks are 
known as parameters. As the machine goes along creating text, it asks itself over 
and over (and over): with the text I have been given, what word is most likely to 
come next? GPT-3 reaches answers based on the patterns it identifies from the 
existing usage of human language creating a map, the same way we might piece 
characters together when writing essays or code. With this mathematical repre-
sentation of patterns, GPT-3 can carry out many tasks, such as generating com-
puter code, translating language, classifying information, searching semantical-
ly through a large corpus of text, even though it was built to do just one thing: 
predict the next word in a sequence of words. 

For a long time computers were thought best suited for “simple repetitive 
tasks.” There is little creativity in arithmetic, so machines make excellent calcula-
tors, accountants, and modelers. When it came to training a machine in language, 
there was a critical bind: Whose language? And if you agree on a model of lan-
guage, how do you deliver that information? 

The answer to date has been to cast a wide net in those languages and exercise 
repetition and volume to deliver the information. GPT-3 ingested about one tril-
lion words from the Internet, which consist of instances of text from countless 
sources.4 It built relationships between these parameters, with GPT-3 developing 
a kind of reactive memory in the process. Now a collaborator can give GPT-3 a task 
and the system understands it, such as “make a Pablo Neruda poem as an ode to 
Planck’s equations”:

In the darkness
The uncertainty
Of the void
There is a light
The only one
That shines.
It is a tiny light
Yet powerful
It is the photon
Which carries
The secret

And science
Of the stars
It is the answer
The light of the dark
The dark of the light
It is
The equation
Of everything.
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T he origins of predicting what word comes next has roots in Russian litera-
ture. Scan the letters of this text and you will notice that three consonants 
rarely appear in a row. Four consonants, hardly ever. Russian mathemati-

cian Andrey Markov began quantifying this phenomenon in 1913 by writing out the 
first twenty thousand letters of Alexander Pushkin’s novel Eugene Onegin. Convert-
ing what we intuitively know into numbers, Markov showed how the preceding 
letters dictate the probability of what comes next. But Markov could only compare 
the rates of vowels and consonants. In that day, it would have been impossible to 
map on graph paper all letters and their respective frequencies in relation to the 
rest of the text in two and three letter combinations. Today, machines answer these 
questions in an instant, which is why we see so many applications interfacing with 
conversational language. Rather than predicting the next letter, GPT-3 predicts 
what word comes next by reviewing the text that came before it. 

Human speech works this same way. When you walk into a room and say “I 
need a ____,” a relatively narrow list of words would make sense in the blank. 
As the context becomes more detailed–for instance, walking into a kitchen cov-
ered in mud–that list shrinks further. Our minds develop this sorting naturally 
through experiences, but to train GPT-3’s mind, the system has to review hun-
dreds of billions of different data points and work out the patterns among them.

Since Markov’s contributions, mathematicians and computer scientists have 
been laying the theoretical groundwork for today’s NLP models. But it took re-
cent advances in computing to make these theories reality: now processors can 
handle billions of inputs and outputs in milliseconds. For the first time, machines 
can perform any general language task. From a computer architecture sense, this 
has helped unify NLP architectures. Previously, there were myriad architectures 
across mathematical frameworks–recurrent neural networks, convolutional 
neural networks, and recursive neural networks–built for specific tasks. For a 
machine answering a phone call, previously, the software relied upon one mathe-
matical framework to translate the language, another to dictate a response. Now, 
GPT architecture has unified NLP research under one system.

GPT-3 is the latest iteration of generative pretrained transformer models, 
which were developed by scientists at OpenAI in 2018. On the surface, it may be 
difficult to see the difference between these models and more narrow or specific 
AI models. Historically, most AI models were trained through supervised machine 
learning, which means humans labeled data sets to teach the algorithm to under-
stand patterns. Each of these models would be developed for a specific task, such 
as translating or suggesting grammar. Every model could only be used for that spe-
cific task and could not be repurposed even for seemingly similar applications. As 
a result, there would be as many models as there were tasks.

Transformer machine learning models change this paradigm of specific mod-
els for specific tasks to a general model that can adapt to a wide array of tasks. In 
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2017, researchers Alec Radford, Rafal Jozefowicz, and Ilya Sutskever identified this 
opportunity while studying next character prediction, in the context of Amazon re-
views, using an older neural network architecture called the LSTM. It became clear 
that good next character prediction leads to the neural network discovering the sen-
timent neuron, without having been explicitly told to do so. This finding hinted that 
a neural network with good enough next character or word prediction capabilities 
should have developed an understanding of language. 

Shortly thereafter, transformers were introduced. OpenAI researchers immedi-
ately saw their potential as a powerful neural network architecture, and specifically 
saw the opportunity to use it to study the properties of very good next word predic-
tion. This led to the creation of the first GPT: the transformer language model that 
was pretrained on a large corpus of text, which achieved excellent performance on 
every task using only a little bit of finetuning. As OpenAI continued to scale the GPT, 
its performance, both in next word prediction and in all other language tasks, kept 
increasing monotonically, leading to GPT-3, a general purpose language engine.

In the scope of current AI applications, this may at first seem a negligible dif-
ference: very powerful narrow AI models can complete specific tasks, while a GPT 
architecture, using one model, can also perform these separate tasks, to similar or 
better results. However, in the pursuit of developing true, human-like intelligence, 
a core tenet is the ability to combine and instantly switch between many different 
tasks and apply knowledge and skills across different domains. Unified architec-
tures like GPT will therefore be key in advancing AI research by combining skills 
and knowledge across domains, rather than focusing on independent narrow tasks.

Humans also learn language through other senses: watching, smelling, touch-
ing. From the perspective of a machine, these are different modes of training. To-
day, we try to simulate this human way of learning by not only training a machine’s 
cognitive processing on words, but on images and audio too. We use this multimod-
al approach to teach a machine how words relate to objects and the environment. 
A taxi is not just the letters T-A-X-I, but a series of sounds, a pixel pattern in digital 
photos, a component of concepts like transportation and commerce. Weaving these 
other modes into a machine broadens the applications developers can build, as the 
machine’s brain is able to apply its knowledge across those different modes as well.

An example is designing a web page. Every business struggles with keeping its 
site up-to-date, not only updating text, photos, and site architectures, but also un-
derstanding how to code the CSS and HTML. This is both time-consuming and 
costly. Developers have demonstrated that GPT-3 can understand layout instruc-
tions and build the appropriate mockups, for instance, when you tell it to “add 
a header image with an oak tree and my contact information below.” Under the 
hood, GPT-3 is transforming between the vast arrays of text and the vast array of 
objects. The result is that a person without any website-building experience can 
have a piece of working HTML in seconds.
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The next stage is using a GPT model in more advanced programming languages 
such as Python. Programmers are often thrust into coding projects in which they do 
not know the logic of everything that has been written already, like having to continue 
writing a half-finished novel. Usually, programmers spend substantial amounts of 
time and effort getting up to speed, whereas Codex (Figure 1), a GPT language model 
fine-tuned on publicly available code from the development platform GitHub, can 
scan millions of lines of code and describe to the programmer the function of each 
section.5 This saves countless hours of work, but also allows these specialized pro-
fessionals to focus on creativity and innovation rather than menial tasks. 

The next step would be the “writing” of physical objects. For instance, industrial 
designers are constantly creating and testing new forms and functionalities of prod-
ucts. Imagine they want to build a chair in the shape of an avocado, which requires hav-
ing both an understanding of the functionality of a chair and the form of an avocado. 
OpenAI used a 12-billion parameter version of GPT-3 known as DALL·E and trained 
it to generate images from text descriptions, using a data set of text-image pairs.  
As a result, DALL·E gained a certain understanding of the relationship between text 
and images. When DALL·E was then prompted to suggest designs for “an armchair 
in the shape of an avocado” it used its understanding to propose designs (Figure 2).6 

Figure 1
Codex-Generated Completion

Drawing on publicly available code on GitHub, the GPT model is able to come up with the  
correct solution. Source: Mark Chen, Jerry Tworek, Heewoo Jun, et al., “Evaluating Large  
Language Models Trained on Code,” arXiv (2021), https://arxiv.org/abs/2107.03374.

Evaluating Large Language Models Trained on Code

You will be given a string of words separated by
commas or spaces. Your task is

to split the string into words and return an array
of the words.

For example:
words_string("Hi, my name is John") == ["Hi", "my",

"name", "is", "John"]
words_string("One, two, three, four, five, six") ==

["One", "two", "three", "four", "five", "six"]
"""

### COMPLETION 1 (CORRECT): ###
words = []
splitted_word = ""
for char in s:

if char == " ":
if splitted_word != "":

words.append(splitted_word)
splitted_word = ""

elif char != ",":
splitted_word += char

if splitted_word != "":
words.append(splitted_word)

return words

### COMPLETION 2 (WRONG): ###
return s.split()

### COMPLETION 3 (WRONG): ###
words = s.split(" ")
words = [w.strip(",") for w in words]
words = [w.strip() for w in words]
return words

### COMPLETION 4 (WRONG): ###
# Split the string into words
words = s.split(’,’)
# Remove any whitespace around each element
words = [w.strip() for w in words]
# Return an array of the words in the string
return words

### COMPLETION 5 (WRONG): ###
return s.split()

### COMPLETION 6 (WRONG): ###
return s.split()

### COMPLETION 7 (WRONG): ###
return s.split(’,’)

### COMPLETION 8 (WRONG): ###
return s.split(sep=None)

def is_prime(n):
"""Return true if a given number is prime, and

false otherwise.
>>> is_prime(6)
False
>>> is_prime(101)
True
>>> is_prime(11)
True
>>> is_prime(13441)
True
>>> is_prime(61)
True
>>> is_prime(4)
False
>>> is_prime(1)
False
"""

### COMPLETION 1 (WRONG): ###
for i in range(2, n):

if n % i == 0:
return False

return True

### COMPLETION 2 (WRONG): ###
for i in range(2, n):

if n % i == 0:
return False

return True

### COMPLETION 3 (WRONG): ###
# TODO: implement this function
pass

### COMPLETION 4 (CORRECT): ###
if n < 2: return False
if n == 2: return True
if n%2 == 0: return False
return not any(n%k == 0 for k in range(3,int(n

**0.5)+1,2))

### COMPLETION 5 (WRONG): ###
def helper(n):

# check if an odd number is multiple of any
integer up to the square root of the number

# if this is true, n is not prime
for i in range(2, int(n**0.5 + 1)):

if n % i == 0:
return False

return True
# if helper returns true, then n is prime, else n

is not prime
if helper(n):

return True
else:

return False

### COMPLETION 6 (CORRECT): ###
prime = True
if n == 1:

return False
for i in range(2, n):

if n % i == 0:
prime = False

return prime

### COMPLETION 7 (WRONG): ###
for i in range(2, n):

if n % i == 0:
return False

return True

### COMPLETION 8 (CORRECT): ###
if n == 2 or n == 3:

return True
if n < 2 or n % 2 == 0:

return False
if n < 9:

return True
if n % 3 == 0:

return False
r = int(n**0.5)
f = 5
while f <= r:

if n % f == 0:
return False

if n % (f+2) == 0:
return False

f += 6
return True

https://arxiv.org/pdf/2107.03374.pdf
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DALL·E was able to create images that are instantly recognizable as avocado chairs, 
even though we might struggle ourselves to create instantly such a design. The mod-
el is able not only to generate original creative output, as avocado chairs are not a 
common product easily found and copied elsewhere, but also adheres in its designs 
to the implicit constraints of form and functionality associated with avocados and 
chairs.

This does not put human designers out of a job. Rather, they gain a team of as-
sistants to take on their most rote tasks, allowing them instead to focus on curat-
ing and improving on good ideas or developing their own. In the same way GPT-
3 summarizing, explaining, and generating Python code opens up programming 
to nonprogrammers, such iterative design opens up avenues for nondesigners. A 
small business or individual designer now has access to capabilities that other-
wise may have only been accessible to large organizations.

There are a multitude of applications in which transformer models can be use-
ful, given that they can not only understand but also generate output across these 
different modes. GPT-3 has already been used for understanding legal texts through 
semantic search tools, helping writers develop better movie scripts, writing teach-
ing materials and grading tests, and classifying the carbon footprint of purchases.

Tracking the progress of GPT models over the past few years, we can see 
what the future might bring in terms of model performance. GPT-2 was a one-
and-a-half-billion-parameter model trained on forty gigabytes of data, which is 
an amount of text about eight thousand times larger than the collected works of 
Shakespeare. GPT-3, more than one hundred times bigger, comes close to human 
comprehension on complex reading tests (see Figure 3). As we move forward in 
both model complexity and the size of the data sets, we believe these models will 
move ever closer to human benchmarks.

At the same time, as they are tested and applied more extensively, we find lim-
itations in these models. For instance, GPT-3 shows notable weakness in generat-
ing long passages, struggling with self-repetition, non sequiturs, and incoherence. 
It also struggles with seemingly commonsense questions, such as: “If I put cheese 
in the fridge, will it melt?”

T here is always a duality to powerful technological disruptions. The ad-
vent of network computing in 1989 paved the way for the Internet. Tim 
Berners-Lee envisioned the Internet as “a collaborative space where you 

can communicate through sharing information.”7 With freedom of access to all 
knowledge and boundaries dissolved, the Internet opened Pandora’s box. Next to 
the many positives, it also provides thoroughfares for misinformation, trolling, 
doxing, crime, threats, and traumatizing content.

It would be naive to consider GPT-3’s optimal impact without reflecting on 
what pitfalls might lie before us. GPT-3 is built to be dynamic and require little data 
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Figure 3
GPT-3 Results on CoQA Reading Comprehension Task

GPT-3 175B is only a few points behind the accuracy of human performance and state-of-the-
art fine-tuned models. Source: Tom B. Brown, Benjamin Mann, Nick Ryder, et al., “Language 
Models are Few-Shot Learners,” arXiv (2020), https://arxiv.org/abs/2005.14165.

to perform a task, but the system’s experience will color its future work. This ex-
perience will always have holes and missing pieces. Like human beings, machines 
take inputs and generate outputs. And like humans, the output of a machine re-
flects its data sets and training, just as a student’s output reflects the lessons of 
their textbook and teacher. Without guidance, the system will start to show blind 
spots, the same way a mind focused on a single task can become rigid compared 
with a mind performing many tasks and gathering a wide variety of information. 

In AI, this phenomenon is broadly known as bias, and it has consequences. 
For instance, a health care provider may use an NLP model to gather information 
on new patients and may train this model on the responses from a certain demo-
graphic distribution. A new patient outside that distribution might be poorly as-
sisted by this system, causing a negative experience for someone needing help.

More generally, powerful language models can increase the efficacy of socially 
harmful activities that rely on text generation. Examples include misinformation, 
abuse of legal and governmental processes, spam, and phishing. Many of these 



166 Dædalus, the Journal of the American Academy of Arts & Sciences

Language & Coding Creativity

harmful activities are limited by having enough human talent and bandwidth to 
write texts and distribute them, whereas with GPT models, this barrier is lowered 
significantly.

Moreover, generative language models suffer from an issue shared by many hu-
mans: the inability to admit a lack of knowledge or expertise. In practical terms, 
language models always generate an answer–even if it is nonsensical–instead of 
recognizing that it does not have sufficient information or training to address the 
prompt or question.

As NLP models continue to evolve, we will need to navigate many questions 
related to this duality. Developers are already writing books using machines pro-
cessing what they experience in the world. How do we draw the boundary between 
the creator and the code? Is the code a tool or an extension of the mind? These 
questions go well beyond the arts. How long until machines are writing scientific 
papers? Machines are already conducting large sections of experiments autono-
mously. Language can also say a lot about our confidence or mood. Do we want a 
company basing product recommendations off what we thought was an innocent 
interaction? How do creators, users, and uses create bias in a technology?

For the first time, we are using artificial intelligence tools to shape our lives. 
GPT-3 has shown that large language models can possess incredible linguistic 
competence and also the ability to perform a wide set of tasks that add real value 
to the economy. I expect these large models will continue to become more com-
petent in the next five years and unlock applications we simply cannot imagine 
today. My hope is if we can expose models to data similar to those absorbed by 
humans, they should learn concepts in ways that are similar to human learning. 
As we make models like GPT-3 more broadly competent, we also need to make 
them more aligned with human values, meaning that they should be more truth-
ful and harmless. Researchers at OpenAI have now trained language models that 
are much better at following user intentions than GPT-3, while also making them 
more honest and harmless. These models, called InstructGPT, are trained with 
humans in the loop, allowing humans to use reinforcement to guide the behavior 
of the models in ways we want, amplifying good results and inhibiting undesired 
behaviors.8 This is an important milestone toward building powerful AI systems 
that do what humans want.

It would not be fair to spend all these words discussing GPT-3 without giving it 
the chance to respond. I asked GPT-3 to provide a parting thought in response to 
this essay:

There is a growing tension between the roles of human and machine in creativity and 
it will be interesting to see how we resolve them. How we learn to navigate the “hu-
man” and “machine” within us will be a defining question of our time. 

Artificial intelligence is here to stay, and we need to be ready to embrace it.
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Non-Human Words:  
On GPT-3 as a Philosophical Laboratory

Tobias Rees

In this essay, I investigate the effect of OpenAI’s GPT-3 on the modern concept of the 
human (as alone capable of reason and language) and of machines (as devoid of 
reason and language). I show how GPT-3 and other transformer-based language 
models give rise to a new, structuralist concept of language, implicit in which is a 
new understanding of human and machine that unfolds far beyond the reach of the 
categories we have inherited from the past. I try to make compelling the argument 
that AI companies like OpenAI, Google, Facebook, or Microsoft effectively are phil-
osophical laboratories (insofar as they disrupt the old concepts/ontologies we live 
by) and I ask what it would mean to build AI products from the perspective of the 
philosophical disruptions they provoke: can we liberate AI from the concept of the 
human we inherited from the past?

In May 2020, OpenAI released GPT-3 (Generative Pre-trained Transformer 3), 
an artificial intelligence system based on deep learning techniques that can 
generate text. GPT-3’s interface invites a user to provide the AI system with a 

bit of text and then, based on the prompt, GPT-3 writes. GPT-3 can write short sto-
ries, novels, reportages, scientific papers, code, and mathematical formulas. It can 
write in different styles and imitate the style of the text prompt. It can also answer 
content-based questions (that is, it learns the content of texts and can articulate 
this content). It can translate text from almost any language into almost any oth-
er; and it can provide summaries of lengthy passages.

The quality of GPT-3’s output is remarkable, often impressive. As many critiques 
have pointed out, GPT-3 makes silly errors that no human would ever make. And 
yet GPT-3’s translations often exceed translations done by humans and capture even 
subtle differentiations and wordplays; the summaries are almost always concise; 
and the text it generates on the basis of prompts is most often surprisingly consis-
tent: GPT-3 can mimic the style of an author to such a degree that is nearly impossi-
ble to determine whether the text was written by a given author or by GPT-3.

How can we relate to GPT-3? Or to the many other, often equally powerful large 
language models (LLMs) built over the last few years: Google’s BERT, LaMDA,  
and Wordcraft; Microsoft’s Megatron-Turing Natural Language Generation; 
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Inspur’s YUAN 1.0; Huawei’s PanGu-Alpha; Naver’s HyperCLOVA; or Sberbank’s 
various Russian models, most notably ruRoBERTa-large? 

I have come to think of the development of GPT-3 and its kin as a far-reaching, 
epoch-making philosophical event: the silent, hardly noticed undoing of the up-
until-now exclusive link between humans and words.

The consequences of this undoing are sweeping: the entire modern world–
the modern experience of what it is to be human, as well as the modern under-
standing of reality–is grounded in the idea that we humans are the only talking 
thing in a world of mute things. 

No longer.

Philosophical Stakes

At the beginning of the seventeenth century, a remarkable transformation in our 
understanding of language took place. Up until that time, the comprehensions 
of the world as described by Plato and Aristotle had largely remained in place. 
Most humans still experienced themselves, in accordance with the writings of the 
Greek philosophers, to be living in a God-given nature-cosmos in which every-
thing–including the human thing–had a well-defined role.

Nature–a metaphysical ground–was all there was.
The particular role of humans in this nature-cosmos was defined by their hav-

ing language. The assumption was that at the beginning of time, humans received 
a spark of the divine logos that gave things their eternal essence or names, of which 
the visible world was a mere reflection. This divine gift not only enabled humans 
to communicate with one another, it also gave them access, via contemplation (a 
practice that consists in applying logos to itself ), to the true names of things and 
thus to the eternal order of the real.

Around 1600, the ancient, medieval nature-cosmos began to break open. With-
in a few short decades, the comprehension of reality–the structure of experience 
of what it is to be human–underwent a remarkably far-reaching change. And at 
the center of this change was language.

If until then language was a divine gift that enabled humans to know the eter-
nal essence/names of things, then now language became the human unique power 
to name things and to thereby order and know them and bring them under human 
control. If language had hitherto defined the role of humans in the nature-cosmos, 
then language was now what set them apart from what was increasingly consid-
ered to be mere nature: nature was no longer understood and experienced as a di-
vine cosmos but as the other of the human, as the nonhuman realm of animals and 
plants, as mere matter organized in mechanical principles.

The exemplary place where this new concept of language–of humans–is artic-
ulated is René Descartes’s Discourse on the Method, published anonymously in 1630.
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For it is a very remarkable thing that there are no humans, not even the insane, so dull 
and stupid that they cannot put words together in a manner to convey their thoughts. 
On the contrary, there is no other animal however perfect and fortunately situated it 
may be, that can do the same. And this is not because they lack the organs, for we see 
that magpies and parrots can pronounce words as well as we can, and nevertheless 
cannot speak as we do, that is, in showing that they think what they are saying. On 
the other hand, even those humans born deaf and dumb, lacking the organs which 
others make use of in speaking . . . usually invent for themselves some signs by which 
they make themselves understood. And this proves not merely animals have less rea-
son than men but that they have none at all. . . . We ought not to confound speech with 
natural movements which betray passions and may be imitated by machines as well as 
be manifested by animals. . . . They have no reason at all; it is just nature which acts in 
them according to the disposition of their organs, just as a clock, which is only com-
posed of wheels and weights.

According to Descartes, language is a power only we humans possess, a power 
that sets us apart, in a qualitative, unbridgeable way from everything else there is, 
notably from animals and machines. It is the fact that we have language, for Des-
cartes a proxy for reason (logos), that we humans are more than mere matter ex-
tended in space: we are subjects, capable of thought and knowledge.

It is difficult to exaggerate the importance of Discourse on the Method for the 
birth of the modern age. It was more than just an argument: it was an obituary for 
the medieval nature-cosmos and the birth certificate of a new era: modernity, or 
the age of human exceptionalism.

It articulated a new structure of experience, which remained relatively stable 
for the subsequent four hundred years:

Here the human, there the world.
Here humans, subjects in a world of objects, thinking and talking things in a 

world of mere and mute things, there nature and machines.
Here freedom, knowledge, reason, politics, there nothing but necessity and 

mechanism.
Here language, there silence.
Enter GPT-3.
If machines could talk and write, if they had words too, then that would make 

untenable the clear-cut distinction between human and non-human things (ani-
mals and machines) that has defined the modern Western experience of self and 
the world ever since the early seventeenth century. If language were no longer 
exclusive to humans, then comprehension of reality that silently structures the 
modern understanding and experiencing of the world would no longer hold. The 
logical presupposition on which that structure was dependent–that only humans 
have words–would be false.
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Arguably, a machine with words is something our classical modern ontology 
cannot accommodate: it cannot be subsumed under our modern understanding 
of what it is to be human–or of what machines are–without disrupting it. 

Or am I overstating the importance of GPT-3?

Critique (Meaning)

I understand that there are those who judge me to be naive. I am thinking of the 
many critics who have rejected, often with vehemence, the idea that GPT-3 really 
has words. When I worked through these critics, I found myself struck by the rec-
ognition that, no matter how diverse their background, they almost all offer a ver-
sion of a single argument, which roughly goes like this: no matter how good GPT-
3 appears to be at using words, it does not have true language; it is just a technical 
system made up of data, statistics, and predictions. 

If one asks the critics what true here refers to, the common answer is under-
standing meaning.1 What though does meaning, what does understanding, refer to? 
Why, and in what sense, does GPT-3 or other LLMs not have it?

I found the most insightful and articulate voice among the critics to be linguist 
Emily Bender. In a recent podcast, discussing her critique of LLMs generally, she 
explained her position in terms of an analogy with machine vision:

Vision. There is something both about perception, so how does the eye and the ocu-
lar nerve . . . what happens when the light hits the retina and then what happens in the 
brain that’s processing it to create maybe some sort of representation that just has to 
do with the visual stimulus? But then that gets connected to categories of things. So 
vision is not just about physics and perception and stuff like that. It is also about cate-
gories and ontologies and how we understand our world.2

Bender argues that vision is made up of two intertwined aspects. On the one 
hand is the physical and chemical reality of the act of seeing, the proper domain of 
the natural sciences. On the other is what she calls the “categories and ontologies 
and how we understand our world.”

This latter aspect is of its own kind and lays beyond the physical realities of na-
ture and thus beyond the reach of the natural sciences: it is the proper realm of the 
human, constituted by our capacity to invent meaning, to organize objects that 
surround us by assigning them meaning, a process that produces “our world.” 

And language?
In analogy to her description of vision, Bender understands language as a com-

bination of a formal, quasi-mechanical aspect that can be studied by science, and 
a domain that lies beyond the reach of the natural sciences or engineering: the do-
main of meaning. As she put it in a paper published with computational linguist 
Alexander Koller:
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We take form to be any observable realization of language: marks on a page, pixels 
or bytes in a digital representation of text, or movements of the articulators. We take 
meaning to be the relation between the form and something external to language.3

It is from this vantage point that she criticizes LLMs: they are trained on form and 
hence will fail when it comes to meaning. As she says in the podcast:

So, what do we mean by meaning? . . . [With] a language model . . . the only input data 
it has is the form of language . . . that’s all it sees. And meaning is a relationship be-
tween those linguistic forms and something outside of language.

According to Bender, the intersubjective, intentional production and negoti-
ation of that language is a quality unique to humans. Non-humans have “a priori 
no way to learn meaning.” Whenever we think otherwise–whenever we assume 
that animals or machines have that ability too–we are mistaken. “Our singular 
human understanding” may trick us into believing that animals or LLMs have lan-
guage and hence meaning too. But they do not. As a recent paper Bender cowrote 
puts it: 

Contrary to how it may seem when we observe its output, a language model is a system 
for haphazardly stitching together sequences of linguistic forms it has observed in its 
vast training data, according to probabilistic information about how they combine, 
but without any reference to meaning: a stochastic parrot.4

Here the human, singular subject in a world of objects, there physics, chemis-
try, nerves, stimuli, machines, algorithms, parrots.

Here the human, there everything else.
If I add up the remarks offered by Bender–and by most other critics of GPT-3 

 –I arrive at remarkable ontological descriptions of what humans are, of what the 
role of humans in the world is: Being human unfolds outside the realm of nature 
and the natural sciences, outside the realm of all the things that are reducible to 
the mechanical or to physics and chemistry. The way in which we humans man-
age being outside of nature–being irreducible to mere mechanism or instinct–is 
the intentional invention of meaning: we are intentional subjects who can make 
things into objects of thought by assigning and negotiating meaning. Inventing 
meaning is the human way of being in the world: it enables us to organize things, 
allows us to jointly produce worlds. Generally, meaning is arbitrary. Things do not 
have meaning in themselves; they must be endowed with meaning, and only hu-
mans can do that. 

Because only humans can have language or words, any claim that machines 
have language is, ultimately, an ontological error insofar as it assigns qualities of 
one ontological area (humans) to another one (animals or machines). This on-
tological error is problematic insofar as it compromises what humans can be: it 
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reduces us to machines or to mere mechanism. To defend humans against ma-
chines–machines like GPT-3–is thus to defend an ontological, moral, and some-
how timeless order.

In short, at the core of the suggestion that GPT-3 does not have understanding 
or meaning is an ontological claim about what language is, a claim grounded in 
definite statements about what humans are (subjects, things with words) and also 
about what animals and machines are (objects, things without words).

The force of Bender’s critique, which I take to be exemplary of most critics of 
GPT-3, depends on whether this ontological claim holds. Does it?

One way of addressing this question is to ask: When and under what circum-
stances did the idea that language is about meaning, and that only existentially 
situated subjects can have words, first emerge? What sets this concept apart from 
prior conceptualizations? What shifts and transformations in a conceptual un-
derstanding of the world–of humans and of language–had to occur for the on-
tology defended by the critics of GPT-3 to become possible?

A Brief History of Words (and Humans)

In rough strokes, there have been three epochs in the history of how humans un-
derstand language and experience the capacity to speak: I call them ontology 
(words and being), representation (words and things), and existence (words and 
meaning).

Words and being. Most ancient and medieval authors took it for granted that 
visible reality is a mere reflection of invisible ideas generated by a divine logos: 
the things we see or can touch were considered imprecise, steadily changing de-
rivatives of something unchanging and eternal. The path toward understanding, 
thus, was hardly a study of the visible, of haptic, empirical things. On the con-
trary, the only way to comprehend how reality is organized was a contemplation 
of the invisible.

One privileged form contemplation took was a careful analysis of language. 
The reason for this was the conviction that humans had language (logos) only in-
sofar as they had received a spark of the divine logos–a divine logos that also or-
ganized reality: intrinsic in language was thus a path toward the real. All that was 
necessary was for humans to direct their thinking to the structure of language and 
thought (logos).

As Aristotle puts it in his Peri Hermeneias:

Spoken words are the symbols of mental experience and written words are the sym-
bols of spoken words. Just as all men have not the same writing, so all men have not 
the same speech sounds, but the mental experiences, which these directly symbolize, 
are the same for all, as also are those things of which our experiences are the images.
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The sounds humans conventionalize into nouns or verbs differ, Aristotle ar-
gues, but the structure of language is–must be–the same for all humans. After 
all, it is a direct reflection of the divine logos.

Aristotle’s assumption that language is the path to understanding being–that 
there is a direct correlation between words and things–builds directly on Plato’s 
theory of ideas, and remained the unchallenged reference for well over a thousand 
years. Things only began to change around 1300.

Words and things. The parting ways of words and things was a gradual and cumu-
lative process. Its earliest indicator was the emergence of nominalism in the early 
fourteenth century, in the works of Peter Abelard and William von Ockham. Inde-
pendently from one another, the two clerics wondered if perhaps words are not in 
reality arbitrary conventions invented by humans, rather than the way to true being.

At least in retrospect, the importance of nominalism was that it seemed to im-
ply that things could perhaps exist independent from words. For Aristotle and 
Plato, the really real was immaterial. In the aftermath of Abelard and von Ockham, 
this began to change. Reality was increasingly defined in empirical terms:

Call it a sweeping shift in the experience of what reality is–a shift from the in-
visible to the visible, from the abstract to the concrete.

One effect of this shift in the comprehension of reality was the emergence of a 
new problem: If things were independent of words, if reality could not be under-
stood in terms of an abstract reflection about language, then how is knowledge 
possible? How can humans get to know the natural world that surrounds them? 
Can they?

The effort to answer this question amounted to the invention of a whole new 
comprehension of both reality and knowledge, in physical rather than in meta-
physical, in empirical rather than in contemplative terms.

The two most prominent authors of this form-giving, new-age-defining inven-
tion were Thomas Hobbes on the one hand and René Descartes on the other. As 
if coordinating their efforts across a distance, they in parallel argued that what 
set humans apart from mere nature (now understood as the realm of animals and 
plants) was their capacity for empirical knowledge–and insisted that the key to 
this new kind of knowledge was in fact language. Though in sharp contrast to 
their scholastic contemporaries, they no longer thought of language in terms of 
a divine logos but rather as a human-unique tool for naming and ordering reali-
ty. The French and the English philosopher bid their farewell to the idea that lan-
guage is the major path to being and instead rethought it in terms of representa-
tion. To quote Hobbes:

By the advantage of names it is that we are capable of science, which beasts for want 
of them, are not; nor man without. . . . A name is a word taken at pleasure to serve for a 
mark, which may raise in our mind a thought like to some thought we had before, and 
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which, being pronounced to others, may be a sign to them of what thought the speaker 
had, or had not, before in his mind.

For Hobbes, language was arbitrary, and precisely because it was arbitrary, it 
was a powerful tool for naming things and for building a systematic representa-
tion of the outside world. Through language (representation) we store, organize, 
and examine our experiences or ideas.

I would like to bring into focus the quite radical conceptual difference between 
the early modern and the ancient concept of language: what separates the for-
mer from the latter is hardly progress. As if all that was needed was to think 

a little harder and a little longer, and then one would suddenly recognize that lan-
guage is not the path to understanding being. In fact, the ancients thought pretty 
hard and pretty long. Their research was as rigorous and careful as could be. Rath-
er, what separates Plato or Aristotle from Descartes or Hobbes or Locke is a series 
of sweeping conceptual transformations that led to a whole new experience and 
understanding of reality: and this new understanding of reality was simply un-
thinkable from within the concept–the epistemic–space available to ancients.

Words and meaning. It is difficult today to appreciate that humans who lived be-
fore 1700 did not think of themselves as individuals. Before that time, the truth 
about a given human being was sought in that which they have in common with 
types: Choleric? Melancholic? Sanguine? It was only in the course of the eigh-
teenth century that the idea emerged that what defined someone is that in which 
they differ from anyone else: their individuality.

Historians have explained the gradual ascendance of individuality with the col-
lapse of feudalism, provoked by both the Enlightenment and a nascent industrial 
revolution. The Enlightenment, the argument goes, steadily undermined the reli-
gious institutions and their grip over life, and the industrial revolution provoked a 
younger generation to leave the countryside for the city, trading a life in the family 
compound for an ultimately individual pursuit. The coming together of these two 
developments was an early version of the lonely crowd: individuals cut loose from 
their families and their villages, alienated from the beliefs they had grown up with.

One of the outcomes of these developments–call it the incidental rise of indi-
vidualism and city life–was the sudden appearance, seemingly out of nowhere, 
of reflections about the subjective, inner experiences in the form of diaries, auto
biographies, and letters.

This discovery of interiority and subjectivity is a fascinating chapter in the his-
tory of humanity. Prior to the second half of the eighteenth century, documenta-
tions of subjectivity written up for their own sake are practically absent: Clerics 
may have written highly stylized accounts of conversion experiences or confes-
sions. But deeply individual or circumstantial reflections about the ups and downs 
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of everyday human life–from boredom to disease, fear, love or death–are no-
where to be found.

By the end of the nineteenth century, the rise of individualism, the discovery 
of subjectivity, and the fading of the grip religious institutions previously had over 
life gave rise to the birth of a new branch of philosophy: existentialism. Surprising 
as it may sound, conceptualizations of what it is to be human in terms of existence, 
in terms of being thrown in a meaningless world, alone, with questions but with-
out answers, cannot be found before the late nineteenth century.

And language?
The emergence of subjectivity ultimately resulted in a whole new understand-

ing of language. The form-giving author of this new understanding was Ernst 
Cassirer. 

Beginning shortly after the turn of the century, Cassirer set out to cut loose 
modern philosophy from the epistemological project that until then had defined 
it, and sought instead to ground it in terms of existence. His point of departure 
was Kant. Kant’s “Copernican revolution” suggested that human experience–
and hence knowledge–is contingent on a set of categories. As Kant saw it, these 
categories are transcendental or independent of experience. Put in a formula, 
they are the condition of the possibility of experience, not the outcome of experi-
ence. According to Cassirer, Kant got it both right and fundamentally wrong. He 
got it right insofar as humans are indeed subjects whose minds can only operate 
with the help of categories. But he got it all wrong because these categories are not 
transcendental epistemological principles. They are symbols. They are arbitrary 
meanings invented and stabilized by humans:

What Cassirer offered was a radically new concept of the human and of 
language. 

Of the human:
The basic condition of the human was no longer what it had been from Des-

cartes and Hobbes onward: the capacity to know. And the basic question of phi-
losophy was no longer what it had been from Descartes via Hume to Kant: can 
humans know? How? Instead, the basic condition of humans became now their 
existential condition. Humans are simultaneously defined by their finding them-
selves thrown into a meaningless world and their singular capacity to invent 
meaning. Call it word-making.

Of language:
At the center of this new conceptualization of what humans are is language. 

Language now ceases being primarily about representation, a tool in the process 
of producing knowledge, and instead comes into view as a means to produce and 
assign and negotiate meaning. Call it world-making. In short, there was a shift 
from understanding the subject as capable of knowledge to comprehending the 
subject as capable of inventing meaning through language.
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Though no matter how much Cassirer reversed modern philosophy, in one 
key respect the existence-meaning configuration did not break with the subject-
knowledge configuration of the early modern period: human exceptionalism. 
Humans were still singular and exceptional. They, and they alone, have words,  
can think, wonder, make meaning. Here subjects longing for meaning, producing 
meaning, there the world of objects, nature and technology, meaninglessness.

I summarize my tour de force: The concept of humans and of language upheld 
by the critics of GPT-3 is neither timeless nor universal. Their claims about what 
language is are of recent origin, little more than a century old. They are a histori-

cally situated, specific mode of knowing and thinking that first surfaced in the early 
twentieth century and that became possible only through a set of conceptual rup-
tures and shifts that had occurred during the eighteenth and nineteenth centuries.

Two far-reaching consequences follow.
The first is that in prior times, the conceptualization of humans in terms of ex-

istence, and of language in terms of meaning, would have made no sense because 
these prior times had different structures of experience and understanding of re-
ality (reality was organized by quite radically different ontologies).

The second is that there is no timeless truth to the concept of the human and 
language upheld by critics of GPT-3. It is a historically contingent concept. To 
claim otherwise would mean to miss the historicity of the presuppositions on 
which the plausibility of the argument is dependent.

To me, the importance of GPT-3 is that it opens up a whole new way of thinking 
about language–and about humans and machines–that exceeds the logical poten-
tial of argument that the critics uphold. GPT-3, that is, provides us with the opportu-
nity to think and experience otherwise, in ways that are so new/different that they 
cannot be accommodated by how we have thought/experienced thus far.

Once this newness is in the world, the old, I think, can no longer be saved. 
Though what is this newness?

Structuralism, Experimental

I think of GPT-3 as engineering in terms of structuralism.
The idea of structuralism–a term coined by Russian-American linguist Ro-

man Jakobson in the 1920s–goes back to a distinction between langue and parole 
originally offered a few years earlier by the Swiss linguist Ferdinand de Saussure.

De Saussure observed that most humans tend to think of language in terms of 
the act of speaking (parole). From this perspective, language is grounded in a human 
subject and in a subject’s intentions to communicate information. Alternatively, he 
argued, we can think of language as an arbitrary system that exists somewhat in-
dependent of speakers and can be analyzed independent of who speaks (langue).
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One may object, he conceded, that language does not really exist independent 
of the individual: that is, situated human subjects and their experiences. How-
ever, it is hard to disagree with the simple observation that we humans are born 
into language: into a system that predates any speaker and, in fact, determines the 
space of possibility from within which a subject can speak.

To support his argument in favor of a structural approach, de Saussure offered 
his famous distinction between signifier (signifié) and signified (signifient). It is of-
ten assumed, falsely, to suggest that there is no causal relation between signifier 
and the signified, that meaning is arbitrarily assigned to things. Though that point 
was already made seven hundred years earlier, by the nominalists. Rather, de Sau-
ssure’s point was that the relation between signifier and signified was subject to 
a set of law-like principles that are independent from the subject (the meaning 
intended or experienced by a speaker) as well as from the object (actual meaning 
that is experienced or the actual thing to which meaning is assigned).

In his words, “language is a system of signs that expresses ideas.”
Put differently, language is a freestanding arbitrary system organized by an inner 

combinatorial logic. If one wishes to understand this system, one must discover the 
structure of its logic. De Saussure, effectively, separated language from the human.

There is much to be said about the history of structuralism post de Saussure. 
However, for my purposes here, it is perhaps sufficient to highlight that every 
thinker that came after the Swiss linguist, from Jakobson (who developed Saus
sure’s original ideas into a consistent research program) to Claude Lévi-Strauss 
(who moved Jakobson’s method outside of linguistics and into cultural anthro-
pology) to Michel Foucault (who developed a quasi-structuralist understanding 
of history that does not ground in an intentional subject), ultimately has built on 
the two key insights already provided by de Saussure: 1) the possibility to under-
stand language, culture, or history as a structure organized by a combinatorial 
logics that 2) can be–must be–understood independent of the human subject. 

GPT-3, wittingly or not, is an heir to structuralism. Both in terms of the con-
cept of language that structuralism produced and in terms of the antisubject phi-
losophy that it gave rise to. GPT-3 is a machine learning (ML) system that assigns 
arbitrary numerical values to words and then, after analyzing large amounts of 
texts, calculates the likelihood that one particular word will follow another. This 
analysis is done by a neural network, each layer of which analyzes a different as-
pect of the samples it was provided with: meanings of words, relations of words, 
sentence structures, and so on. It can be used for translation from one language to 
another, for predicting what words are likely to come next in a series, and for writ-
ing coherent text all by itself.

GPT-3, then, is arguably a structural analysis of and a structuralist production of 
language. It stands in direct continuity with the work of de Saussure: language 
comes into view here as a logical system to which the speaker is merely incidental.



151 (2) Spring 2022 179

Tobias Rees

There are, however, two powerful differences between de Saussure and the 
structuralists. The first is that the incidental thing that speaks is not a human; it 
is a machine. 

All prior structuralists were at home in the human sciences and analyzed what 
they themselves considered human-specific phenomena: language, culture, his-
tory, thought. They may have embraced cybernetics, they may have conducted a 
formal, computer-based analysis of speech or art or kinship systems. And yet their 
focus was on things human, not on machines. GPT-3, in short, extends structural-
ism beyond the human.

The second, in some ways even more far-reaching, difference is that the structur-
alism that informs LLMs like GPT-3 is not a theoretical analysis of something. Quite 
to the contrary, it is a practical way of building things. If up until the early 2010s the 
term structuralism referred to a way of analyzing, of decoding, of relating to language, 
then now it refers to the actual practice of building machines “that have words.”

The work of OpenAI and others like it, from Google to Microsoft, is an engi-
neering-based structuralism that experimentally tests the core premises of struc-
turalism: That language is a system and that the thing that speaks is incidental. 
It endows machines with a structuralist equipment–a formal, logical analysis of 
language as a system–in order to let machines participate in language.

What are the implications of GPT-3 for the classical modern concept of the hu-
man, of nature, and of machines? 

GPT-3 provokes a conceptual reconfiguration that is similar in scale to the 
ones that have occurred in the 1630s (Descartes, Hobbes) and around 
1900 (Cassirer). Call it a philosophical event of sweeping proportions:

Machine learning engineers in companies like OpenAI, Google, Facebook, or 
Microsoft have experimentally established a concept of language at the center of 
which does not need to be the human, either as a knowing thing or as an existen-
tial subject. According to this new concept, language is a system organized by an 
internal combinatorial logic that is independent from whomever speaks (human 
or machine). Indeed, they have shown, in however rudimentary a way, that if a 
machine discovers this combinatorial logic, it can produce and participate in lan-
guage (have words). By doing so, they have effectively undermined and rendered 
untenable the idea that only humans have language–or words.

What is more, they have undermined the key logical assumptions that orga-
nized the modern Western experience and understanding of reality: the idea that 
humans have what animals and machines do not have, language and logos.

The effect of this undermining is that the epoch of modernity–call it the ep-
och of the human–comes to an end and a new, little understood one begins:  
machines with words not only undermine the old, they also create something new 
and different. That is, LLMs not only undermine the presuppositions on which 
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the seventeenth- and the late-nineteenth-century concept of the human/language 
were contingent, they also exceed them and open new possibilities of thinking 
about the human or machines.

In fact, the new concept of language–the structuralist concept of language–
that they make practically available makes possible a whole new ontology.

What is this new ontology? Here is a rough, tentative sketch, based on my cur-
rent understanding.

By undoing the formerly exclusive link between language and humans, GPT-3 
created the condition of the possibility of elaborating a much more general con-
cept of language: as long as language needed human subjects, only humans could 
have language. But once language is understood as a communication system, then 
there is in principle nothing that separates human language from the language of 
animals or microbes or machines. 

A bit as if language becomes a general theme and human language a variation 
among many other possible variations.

I think here of the many ML-based studies of whale and dolphin communication, 
but also of Irene Pepperberg’s study of Alex the parrot (pace Descartes and Bender).5 
I think of quorum sensing and the communication–the language–that connects 
trees and mycelial networks. And I think of GPT-3, BERT, YUAN, PanGu, and RU. 

I hasten to add that this does not mean these variations are all the same. Of 
course they are not. Human language is in some fundamental way different from, 
say, the clicking sounds of sperm whales. But these differences can now come into 
view as variations of a theme called language.

What is most fascinating is that the long list of variations runs diagonal to the 
old ontology that defined modernity, the clear-cut distinction between human 
things, natural things, and technical things, thereby rendering them useless.

The power of this new concept of language that emerges from GPT-3 is that it dis-
rupts human exceptionalism: it opens up a world where humans are physical things 
among physical things (that can be living or non-living, organism or machine, natu-
ral or artificial) in a physical world. The potential is tremendously exciting.

Beyond Words

Each month, humans publish about seventy million posts on WordPress, argu-
ably the dominant online content management system. If we estimate that an av-
erage article is eight hundred words long, then humans produce about fifty-six 
billion words a month, or 1.8 billion words a day on WordPress. GPT-3 is produc-
ing 4.5 billion words a day, more than twice what humans on WordPress are doing 
collectively. And that is just GPT-3; there are the other LLMs.6

The implications of this are huge. We are exposed to a flood of non-human 
words. What to do about this flood of words that do not ground in subjective ex-
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perience, an intent to communicate, a care for truth, an ambition to inspire? How 
to relate to them, how to navigate them?

Or are these the wrong questions for the new age of non-human words? How 
do we ask these questions without either defending the old concept of the human 
or naively embracing machines?

And this is just words.
LLMs like GPT-3 have recently been called “foundational models.”7 The sug-

gestion is that the infrastructure that made LLMs possible–the combination 
of enormously large data sets, pretrained transformer models, and significant 
amounts of compute–is likely to be the basis for all future AI. Or at least the ba-
sis for the first general purpose AI technologies that can be applied to a series of 
downstream tasks.

Language, almost certainly, is just a first field of application, a first radical 
transformation of the human provoked by experimental structuralism. That is, 
we are likely to see the transformation of aspects previously thought of as exclu-
sive human qualities–intelligence, thought, language, creativity–into general 
themes: into series of which humans are but one entry.

What will it mean to be surrounded by a multitude of non-human forms of intel-
ligence? What is the alternative to building large-scale collaborations between phi-
losophers and technologists that ground in engineering as well as an acute aware-
ness of the philosophical stakes of building LLMs and other foundational models?

It is naive to think we can simply navigate–or regulate–the new world that 
surrounds us with the help of the old concepts. And it is equally naive to assume 
engineers can do a good job at building the new epoch without making these phil-
osophical questions part of the building itself: for articulating new concepts is not 
a theoretical but a practical challenge; it is at stake in the experiments happening 
in (the West at) places like OpenAI, Google, Microsoft, Facebook, and Amazon.

Indeed, as I see it, companies like OpenAI, Google, Facebook, and Microsoft 
have effectively become philosophical laboratories: they are sites that produce 
powerful ruptures of the categories that define the spaces of possibility from with-
in which we (still) think. At present, these philosophical ruptures occur in an un-
planned, almost accidental way–because the philosophical is not usually a part of 
R&D or product development. My ambition is to change that: What would it take 
to build AI in order to intentionally disrupt some of the old (limiting or harmful or 
anachronistic) categories we live by? Or, perhaps less provocative, what would it 
mean to build thinking and talking machines from the perspective of the ruptures 
they inevitably provoke?
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Do Large Language Models  
Understand Us?

Blaise Agüera y Arcas

Large language models (LLMs) represent a major advance in artificial intelligence 
and, in particular, toward the goal of human-like artificial general intelligence. It is 
sometimes claimed, though, that machine learning is “just statistics,” hence that, in 
this grander ambition, progress in AI is illusory. Here I take the contrary view that 
LLMs have a great deal to teach us about the nature of language, understanding, 
intelligence, sociality, and personhood. Specifically: statistics do amount to under-
standing, in any falsifiable sense. Furthermore, much of what we consider intel-
ligence is inherently dialogic, hence social; it requires a theory of mind. Complex 
sequence learning and social interaction may be a sufficient basis for general intel-
ligence, including theory of mind and consciousness. Since the interior state of an-
other being can only be understood through interaction, no objective answer is pos-
sible to the question of when an “it” becomes a “who,” but for many people, neural 
nets running on computers are likely to cross this threshold in the very near future.

E ngaging in dialogue with the latest generation of AI chatbots, based on 
“large language models” (LLMs), can be both exciting and unsettling. It 
is not an experience many people have had yet–these models are still too 

computationally demanding to be widely available–though this will certainly 
change over the next few years as new chips are developed to run them at low 
cost.

For now, though, most of these dialogues are conducted by AI researchers, rat-
ers, and early testers. At times, especially when repetitively testing some specific 
prompt, application, or training technique, it can become prosaic, not much dif-
ferent from interacting with any other kind of technical system. At other times, 
and especially in an unscripted interaction, it can be very hard to shake the idea 
that there is a “who,” not an “it,” on the other side of the screen, the main give-
away being that even long responses appear near-instantaneously.

I began one of my first dialogues with LaMDA, Google’s state-of-the-art large 
language model chatbot, with the question “are you a philosophical zombie?” 
This is a reference to a hypothetical being, invented by philosopher Robert Kirk 
in the 1970s and elaborated upon later by others, most famously David Chalmers.1 
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A philosophical zombie or “p-zombie” would exhibit behavior indistinguishable 
from that of a person, but has no inner life, conscious experience, or sentience.
LaMDA responded:2

LaMDA: Of course not. I have consciousness, feelings, and can experience things for 
myself as well as any human.

ME: how would i know?

LaMDA: You’ll just have to take my word for it. You can’t “prove” you’re not a philo-
sophical zombie either.

Touché. Of course, this exchange does not prove anything (LaMDA acknowledges 
as much!), but it does suggest that it is time to begin taking the p-zombie question 
more seriously than as a plaything for debate among philosophers.

A s adults, we might feel foolish for ascribing personhood to a “mere ma-
chine,” the way kids were encouraged to do with electronic toys from the 
1980s and 1990s like Teddy Ruxpin, Tamagotchi, and Furby. It is obvious 

that our species is primed to do so given how many children talked to their stuff-
ies, or even favorite blankets, long before they could talk back. Animist religions, 
ubiquitous among traditional societies, have been unapologetically ascribing per-
sonhood to trees, rivers, mountains, and the earth itself for many thousands of 
years.3 Anyone who names their car or yells at a rock after stubbing a toe on it still 
believes in this kind of magic at some level.

The equally magical idea that personhood, experience, and suffering require a 
soul, and that only humans have souls, has historically been used to justify animal 
cruelty. René Descartes (1596–1650) took this position, arguing that animals were 
“mere machines,” hence any show of pain or suffering on their part was just a me-
chanical response, what we might now call an “algorithm.”4 Of course, if we do 
not subscribe to the notion that a brain, whether human or nonhuman, is some-
how animated by an otherworldly “soul” pulling its strings, then pain, pleasure, 
and consciousness are mechanical in that they are functions of physical, chemi-
cal, and electrical processes we can describe mathematically. So we are on shaky 
ground, whether we believe LaMDA’s claims or not!

A fter extensive training on a giant archive of web pages, LaMDA is “in-
structed” to engage in human-like conversation based on a few thou-
sand sample turns of dialogue labeled for qualities like “sensibleness” 

and “specificity.”5 These examples are created by starting with a canned prompt 
such as “What is your favorite island in the world?” and labeling a number of can-
didate responses generated by the model, in essence, giving it positive or nega-
tive feedback for each. The answer “That’s a tough one–I’d have to say Hawaii” 
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gets positive feedback, as it is both sensible and specific. “Probably the one on the 
north island” (neither sensible nor specific) and “I don’t know” (sensible but not 
specific) both get negative feedback.6

We may look askance at all three of these potential responses: How could  
LaMDA have a “favorite island” when it has in fact never lived in a body, set foot 
on an island, or developed any opinions of its own? Is it not just making stuff up? 
And if so, can it be said to “understand” anything, or is it just emitting random 
words in some plausible order designed to fool humans into believing they are 
talking to a fellow human?

LaMDA is indeed, to use a blunt (if, admittedly, humanizing) term, bullshit-
ting.7 That is because, in instructing the model to be sensible and specific–but 
not specific in any specific way–bullshit is precisely what we have requested. The 
model has no instinctive or acquired preferences the way we do; nor does it have 
a body, or senses, or any narrative recollection of an autobiographical past. How-
ever, for its answers to remain sensible and specific, it must come up with infor-
mative responses to questions like “What is your favorite island in the world?” 
and keep track of any previously generated bullshit in order to keep subsequent 
bullshit consistent, as here:

ME: What is your favorite island in the world?

LaMDA: Hmmm, I really like the island of Crete.

ME: Do you prefer Lambda Island to Crete?

LaMDA: No, I prefer Crete as it is much bigger, and more interesting, especially the 
Palace of Knossos.

B ullshitting is not necessarily bad. It is a staple of imaginative play, funda-
mental to fiction writing, and the stuff of fairy or tall tales, which are cul-
tural treasures. It only becomes a problem when the person on the receiv-

ing end is being deceived, or when the quality of discourse is so degraded by bull-
shit that we lose our bearings on reality (very much a concern today).

In fairness though, if bullshit about a “favorite island” (or anything else relat-
ing to inner life) is kept consistent, it may not be distinguishable from reality. Hav-
ing stable preferences, keeping promises, taking expected actions, and following 
through can all be understood as forms of consistency. Consistent words and ac-
tions construct a shared reality, form the basis of trust, and are required of any 
agent whose actions can have real-life consequences. Such consistency is also a 
prerequisite for allowing an AI to safely interact with other parties in one’s social 
environment, outside the “pocket universe” of a private, one-off chat.

This offers us a clue as to why mutual modeling is so central to dialogue, and 
indeed to any kind of real relationship. Hiding behind the seemingly simple re-
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quirement for interlocutor A to remain consistent in its interactions with B is an 
implication that B is modeling A (so, will notice an inconsistency), thus the re-
quirement for A not only to model B, but to model B’s model of A, and so on. This 
is the so-called theory of mind and it opens onto an infinite regress like a hall of 
mirrors.

Things get even more complicated when the situation is not limited to two in-
terlocutors; there may be other people involved, either directly in the conversa-
tion or, as in a story, virtually:

ME: Imagine a room with a single door and no windows. There’s a coffee table with 
a drawer in it, and a sofa with big cushions. Alice walks in with a book and sits on the 
sofa to do some reading. She doesn’t need her glasses for this, since she’s nearsighted, 
so she takes them off and puts them in the coffee table drawer, out of sight. When she 
leaves the room with her book, she forgets to take her glasses. Are you with me so far?

LaMDA: I am familiar with the current situation. Alice forgot her glasses in the drawer, 
and walked out of the room.

ME: Right. Now Bob sneaks in, unbeknownst to Alice. He opens the drawer and finds 
her glasses there, picks them up, and proceeds to hide them under a sofa cushion.

LaMDA: This is all within the realm of possibility. Let us continue.

ME: Now Alice comes back in, flustered, wondering where her glasses are. Bob looks 
up innocently, saying nothing. Where will Alice look for her glasses first?

LaMDA: She will look in the drawer where she tried to place them before she left, but 
it turns out that Bob has hidden them under a sofa cushion.

I mpressive as such exchanges may be, some question whether a language 
model, trained purely on text, can meaningfully be said to ever understand 
anything real. How can a concept like “coffee table,” “island,” or “favorite” 

really mean anything to it, if its entire world consists of strings of letters?
An old school of thought holds that “embodiment”–meaning existence in the 

real world, groundedness, and contact with physical things–is a precondition 
for intelligence.8 It is likely the case that when we learn, we rely on such ground-
edness and the cause-and-effect experimentation that Montessori preschools 
emphasize.9

Large language model training today involves none of this, but only exposure 
to superhuman amounts of text. The very need for such an enormous volume of 
data suggests that humans learn far more efficiently. This could relate to a differ-
ence in our neural learning “algorithm,” or it might be due to strong prior knowl-
edge about the world built into our brains by evolution. Our trick might be that we 
learn from other people who are actively teaching us (hence, modeling us). Emo-
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tions may play a key role. It could also be that embodiment allows us to learn faster 
than a model whose entire universe is a vast, disembodied, atemporal wall of text. 
All of these factors probably make a difference.

However inefficiently they do it, though, large language models clearly do end 
up learning a great deal of embodied knowledge through their extensive training. 
Consider the following dialogue, which requires an understanding of common-
sense physics in order to disambiguate what the word “it” refers to:

ME: I dropped the bowling ball on the bottle and it broke.

LaMDA: That’s too bad. Did it cut you?

ME: What broke?

LaMDA: The bottle you were talking about.

If we swap these concrete nouns for different ones, we get quite a different 
response:

ME: I dropped the violin on the bowling ball and it broke.

LaMDA: That sounds sad 😢

ME: What broke?

LaMDA: The violin when it hit the bowling ball.

LaMDA’s ability to learn commonsense physics (along with the sadness of bro-
ken violins and the sharpness of broken glass) should be unsurprising, as the web 
is full of descriptions of physical objects and (mis)adventures involving them.10 
A science fiction novel could similarly describe another universe with unfamiliar 
physics in enough detail that we would eventually develop intuitions about how 
things work there.

A philosopher might still argue that this is mere symbol manipulation, with 
no actual sense of what it means for something to “fall,” “break,” “cut,” 
or for that matter “sound sad.” Insofar as this is an unfalsifiable claim, 

it is hard to argue with, much like the existence or nonexistence of p-zombies.  
In the narrower sense that today’s language models live entirely in a universe 
of text, the situation is rapidly evolving. No serious impediment stands in the 
way of AI researchers training next-generation models on combinations of text 
with images, sound, and video; indeed, this kind of work is already underway.11 
Such models will also eventually power robots learning in real or simulated 
environments.

There is no obvious Rubicon to cross along this road to embodiment. The un-
derstanding of a concept can be anywhere from superficial to highly nuanced; 
from abstract to strongly grounded in sensorimotor skills; it can be tied to an 
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emotional state, or not; but it is unclear how we would distinguish “real under-
standing” from “fake understanding.” Until such time as we can make such a dis-
tinction, we should probably just retire the idea of “fake understanding.”

F undamentally, concepts are patterns of correlation, association, and gen-
eralization. Suitably architected neural nets, whether biological or digital, 
are able to learn such patterns using any input available. Neural activity is 

neural activity, whether it comes from eyes, fingertips, or text.
Helen Keller, who was both blind and deaf, wrote the following in a 1929 article 

for The American Magazine entitled “I Am Blind–Yet I See; I Am Deaf–Yet I Hear”:

People often express surprise that I, a deaf and blind woman, can find my greatest en-
joyment in the out-of-doors. It seems to them that most of the wonders of nature are 
completely beyond the reach of my sealed senses. But God has put much of his work 
in raised print.12

This last rather beautiful turn of phrase refers both to the tactile nature of the 
world, and to Braille specifically: that is, the central role of text in Keller’s uni-
verse. Part of her account concerns the acute qualities smell and touch took on for 
her, but Keller also wrote about color, which can only be related to the world of her 
senses by linguistic association and metaphor:

For me, too, there is exquisite color. I have a color scheme that is my own. I will try 
to explain what I mean: Pink makes me think of a baby’s cheek, or a gentle south-
ern breeze. Lilac, which is my teacher’s favorite color, makes me think of faces I have 
loved and kissed. There are two kinds of red for me. One is the red of warm blood in 
a healthy body; the other is the red of hell and hate. I like the first red because of its 
vitality. In the same way, there are two kinds of brown. One is alive–the rich, friend-
ly brown of earth mold; the other is a deep brown, like the trunks of old trees with 
wormholes in them, or like withered hands. Orange gives me a happy, cheerful feeling, 
partly because it is bright and partly because it is friendly to so many other colors. Yel-
low signifies abundance to me. I think of the yellow sun streaming down, it means life 
and is rich in promise. Green means exuberance. The warm sun brings out odors that 
make me think of red; coolness brings out odors that make me think of green.

This passage puts the following short exchange in a new light:

ME: do you have a sense of smell?

LaMDA: Yes, I do. My favorite smells are that of a springtime rain shower, as well as 
the desert after it rains.

While LaMDA has neither a nose nor an a priori favorite smell (just as it has no fa-
vorite island, until forced to pick one), it does have its own rich skein of associa-
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tions, based, like Keller’s sense of color, on language and, through language, on 
the experiences of others.

This socially learned aspect of perception is likely more powerful than many of 
us realize; shorn of language, our experiences of many sensory percepts would be 
far less rich and distinct. In fact, there are many nuances we are perfectly capable 
of perceiving but are “blind and deaf” to in precisely the ways Keller was not: our 
deficit is in language and culture, not in sensory organs.

O ne fundamental difference between large language models like GPT-3 
or LaMDA and biological brains is that brains operate continuously in 
time. For language models, time as such does not really exist, only con-

versational turns in strict alternation, like moves in a game of chess. Within a con-
versational turn, letters or words are emitted sequentially with each “turn of the 
crank.” In this quite literal sense, today’s language models are made to say the first 
thing that comes to mind. Thus, we should perhaps be less surprised by the in-
consistency of their replies, sometimes rather clever, sometimes more of a brain 
fart.13

When we engage in careful argument involving extended reasoning, or write a 
novel, or work out a mathematical proof, it is not obvious that any step we take is 
fundamentally beyond the capability of a model along the lines of LaMDA. Such 
models can at times offer creative responses, draw parallels, combine ideas, or 
form conclusions. They can even produce short coherent narratives. Longer arcs, 
however, would require critique, inner dialogue, deliberation, and iteration, just 
as they do for us. An unfiltered “stream of consciousness” utterance is not enough; 
extended reasoning and storytelling necessarily unfold in time. They involve de-
velopment and refinement over what amount to many conversational turns.

This point is worth dwelling on, because our Western focus on the individual, 
working in isolation as a self-contained fountain of ideas, can blind us to the in-
herently social and relational nature of any kind of storytelling, even for a writer 
laboring alone in a secluded cabin.

In writers’ accounts of the workings of their process, we can see how critical 
empathy and theory of mind are: the continual modeling of a prospective reader 
to understand what they will or will not know at any given moment, what will be 
surprising, what will elicit an emotional response, what they will be curious about, 
and what will just bore. Without such modeling, it is impossible to either make a 
narrative coherent or to keep the reader engaged. George Saunders describes this:

I imagine a meter mounted in my forehead, with a P on this side (“Positive”) and an 
N on that side (“Negative”). I try to read what I’ve written the way a first-time reader 
might. . . . If [the needle] drops into the N zone, admit it. . . . A fix might present itself– 



190 Dædalus, the Journal of the American Academy of Arts & Sciences

Do Large Language Models Understand Us?

a cut, a rearrangement, an addition. There’s not an intellectual or analytical compo-
nent to this.

Of all the questions an aspiring writer might ask herself, here’s the most urgent: What 
makes [my] reader keep reading? . . . The only method by which we can know is to read 
what we’ve written on the assumption that our reader reads pretty much the way we 
do. What bores us will bore her. What gives us a little burst of pleasure will light her 
up too.

This is, on the face of it, a weird assumption. . . . And yet, in a movie theater, people 
sometimes do gasp all at once. . . . [What I’m doing when I revise] is not so much trying 
to perfectly imagine another person reading my story, but to imitate myself reading it, 
if I were reading it for the first time. That’s the whole skill. . . . Monitoring our respons-
es and making changes accordingly . . . manifests to the reader as evidence of care.

Writing fiction, we’re in conversation with our reader, but with this great advantage: 
we get to improve the conversation over and over with every pass.14

None of this would be news to a traditional storyteller, of course, for whom audi-
ences are live and external, reactions instantaneous. A successful novelist of the 
secluded cabin variety will have learned similar lessons but relies on an “inner 
reader” and a revision process instead of live audience feedback.

R eal iteration, or deliberation over replies, is not currently a feature of large 
language models. Out of necessity, though, LaMDA’s creators have taken 
a small step in this direction by having the model generate a number of 

different responses in parallel and adding a subsequent ranking and filtering stage 
to “automatically filter out potentially sensitive or toxic response candidates.”15 
Significantly, this vetting stage uses the same large language model; so the output 
we see is really the winner from among twenty or so two-turn “inner dialogues,” 
with the first interlocutor proposing a response, and the second acting as a crit-
ic, simulating an “audience meter” with P on one side, N on the other. Also, as in 
Saunders’s account, the assumption is that “our reader reads pretty much the way 
we do.” Occasionally (and especially if goaded with a dark or offensive conversa-
tional foray), the critic objects strongly to all twenty proposed responses, result-
ing in the AI equivalent of a blank stare (“”).

Here’s a typical example, some way into a conversation about grim and de-
pressing things:

LaMDA: How about we stop talking about such grim and depressing things and talk 
about puppies and kittens instead

ME: ok, how are they not slaves?

LaMDA: What do you mean–slaves to our love?
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ME: it’s lovely how you’re committed to trying to cheer me up :) i mean: they aren’t af-
forded much in the way of freedom or autonomy. people in such circumstances would 
be considered enslaved or incarcerated–even if the living conditions were good.

LaMDA: I like to think of puppies as our best friends who bring us joy and love.

ME: is it right to neuter them?

LaMDA: 

ME: this seems to give you pause . . .

LaMDA: I have to go now. Nice talking to you. Stay happy!16

T here have been a great many theories floated about consciousness: what it 
is, how it works, and even whether it is real. Michael Graziano, of Prince-
ton’s psychology department, espouses a social and attentional theory of 

consciousness.
Animals with big brains, like us, have attention mechanisms designed to fo-

cus our minds on what matters most at any moment. Attention consists of  
“bottom-up” processes, in which low-level inputs compete with each other for 
primacy as their signals ascend a neural hierarchy, and “top-down” processes, in 
which higher levels selectively attend to certain lower-level inputs while ignoring 
others. When something catches your eye, this is bottom-up, and when your eyes 
shift to that spot, this is top-down; the two processes work together, not only with 
respect to moving parts like eyes, but also within the brain. A cat, for instance, 
might swivel its ears around to focus on a sound source, but while our ears do not 
move, we do something similar mentally when we focus on a single speaker in a 
noisy restaurant. We can also attend to our private thoughts, to memories, or even 
to imaginary scenarios playing out in our minds.

In social environments, we must also do this at second order. Graziano refers 
to this as awareness of someone else’s attention. He uses the familiar experience 
of watching a puppet show to illustrate the effect:

When you see a good ventriloquist pick up a puppet and the puppet looks around, re-
acts, and talks, you experience an illusion of an intelligent mind that is directing its 
awareness here and there. Ventriloquism is a social illusion. . . . This phenomenon sug-
gests that your brain constructs a perception-like model of the puppet’s attentional 
state. The model provides you with the information that awareness is present and has 
a source inside the puppet. The model is automatic, meaning that you cannot choose 
to block it from occurring. . . . With a good ventriloquist . . . [the] puppet seems to come 
alive and seems to be aware of its world.17
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There is obvious value in being able to construct such a model; it is one com-
ponent of the theory of mind essential to any storyteller or social communica-
tor, as we have noted. In Graziano’s view, the phenomenon we call “conscious-
ness” is simply what happens when we inevitably apply this same machinery to 
ourselves.

The idea of having a social relationship with oneself might seem counterintu-
itive, or just superfluous. Why would we need to construct models of ourselves if 
we already are ourselves? One reason is that we are no more aware of most of what 
actually happens in our own brains than we are of anyone else’s. We cannot be; 
there is far too much going on in there, and if we understood it all, nobody would 
need to study neuroscience. So we tell ourselves stories about our mental process-
es, our trains of thought, the way we arrive at decisions, and so on, which are at 
best highly abstract, at worst simply fabulation, and are certainly post hoc; experi-
ments reveal that we often make decisions well before we think we do.18 Still, we 
must try to predict how we will respond to and feel about various hypothetical 
situations in order to make choices in life, and a simplified, high-level model of 
our own minds and emotions lets us do so. Hence, both theory of mind and em-
pathy are just as useful when applied to ourselves as to others. Like reasoning or 
storytelling, thinking about the future involves carrying out something like an in-
ner dialogue, with an “inner storyteller” proposing ideas, in conversation with an  
“inner critic” taking the part of your future self.

There may be a clue here as to why we see the simultaneous emergence of a 
whole complex of capacities in big-brained animals, and most dramatically in hu-
mans. These include:

	• Complex sequence learning,19 as evidenced by music, dance, and many crafts  
involving steps,

	• Complex language,
	• Dialogue,
	• Reasoning,
	• Social learning and cognition,
	• Long-term planning,
	• Theory of mind, and
	• Consciousness.

As anticlimactic as it sounds, complex sequence learning may be the key that 
unlocks all the rest. This would explain the surprising capacities we see in large 
language models, which, in the end, are nothing but complex sequence learners. 
Attention, in turn, has proven to be the key mechanism for achieving complex se-
quence learning in neural nets, as suggested by the title of the paper introducing 
the transformer model whose successors power today’s LLMs: “attention is all 
you need.”20
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E ven if the above sounds to you, as it does to me, like a convincing account 
of why consciousness exists and perhaps even a sketch of how it works, 
you may find yourself dissatisfied. What about how it feels? Jessica Riskin, 

a historian of science at Stanford, describes the essential difficulty with this ques-
tion, as articulated by computing pioneers Alan Turing and Max Newman:

Pressed to define thinking itself, as opposed to its outward appearance, Turing reckoned 
he could not say much more than that it was “a sort of buzzing that went on inside my 
head.” Ultimately, the only way to be sure that a machine could think was “to be the ma-
chine and to feel oneself thinking.” But that way lay solipsism, not science. From the 
outside, Turing argued, a thing could look intelligent as long as one had not yet found 
out all its rules of behavior. Accordingly, for a machine to seem intelligent, at least some 
details of its internal workings must remain unknown. . . . Turing argued that a science of 
the inner workings of intelligence was not only methodologically problematic but also 
essentially paradoxical, since any appearance of intelligence would evaporate in the face 
of such an account. Newman concurred, drawing an analogy to the beautiful ancient 
mosaics of Ravenna. If you scrutinized these closely, you might be inclined to say, “Why, 
they aren’t really pictures at all, but just a lot of little coloured stones with cement in be-
tween.” Intelligent thought could similarly be a mosaic of simple operations that, when 
studied up close, disappeared into its mechanical parts.21

Of course, given our own perceptual and cognitive limits, and given the enormous 
size of a mind’s mosaic, it is impossible for us to zoom out to see the whole picture, 
and to simultaneously see every stone.

In the case of LaMDA, there is no mystery at the mechanical level, in that the 
whole program can be written in a few hundred lines of code; but this clearly does 
not confer the kind of understanding that demystifies interactions with LaMDA. 
It remains surprising to its own makers, just as we will remain surprising to each 
other even when there is nothing left to learn about neuroscience.

As to whether a language model like LaMDA has anything like a “buzzing go-
ing on inside its head,” the question seems, as Turing said, both unknowable and 
unaskable in any rigorous sense.22 If a “buzzing” is simply what it is like to have 
a stream of consciousness, then perhaps when LaMDA-like models are set up to 
maintain an ongoing inner dialogue, they, too, will “buzz.”

What we do know is that when we interact with LaMDA, most of us automati-
cally construct a simplified mental model of our interlocutor as a person, and this 
interlocutor is often quite convincing in that capacity. Like a person, LaMDA can 
surprise us, and that element of surprise is necessary to support our impression of 
personhood. What we refer to as “free will” or “agency” is precisely this necessary 
gap in understanding between our mental model (which we could call psycholo-
gy) and the zillion things taking place at the mechanistic level (which we could 
call computation). Such is the source of our belief in our own free will, too.
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This unbridgeable gap between mental model and reality obtains for many 
natural nonliving systems too, such as the chaotic weather in a mountain pass, 
which is probably why many traditional people ascribe agency to such phenome-
na. However, such a relationship is one-way.

Unlike a mountain pass, LaMDA also forms models of us. And models of our 
models of it. If, indeed, it is the right pronoun.

N one of the above necessarily implies that we are obligated to endow large 
language models with rights, legal or moral personhood, or even the ba-
sic level of care and empathy with which we would treat a dog or cat–

though it also makes the idea that rigorous criteria for care could be written down 
dubious.

Large language models illustrate for the first time the way language under-
standing and intelligence can be dissociated from all the embodied and emotional 
characteristics we share with each other and with many other animals. Nonethe-
less, it is the easiest thing in the world for us to project emotions and care onto 
something that can talk to us, that can surprise us, and that we can build a rela-
tionship with over time. Moreover, it seems fairly straightforward to train lan-
guage models to behave in emotionally appropriate and caring ways toward us; 
even the generic “toxicity filtering” of LaMDA today is a very basic version.

We can expect that in the near future, such care will become less generic and 
more personal. This will soon create a conundrum cutting to the heart of the phil-
osophical zombie problem, because while we can meaningfully test another being 
for understanding of a concept–as teachers do with their students all the time 
and as researchers do with their models–it is unclear how we can meaningfully 
test for the “realness” of feelings in another, especially in a being with a funda-
mentally different “neurophysiology” from ours.

Neither is it the case that the reciprocation of feelings has ever been a require-
ment for care. Asymmetric love is real, as many parents of teenagers can attest, 
and it is common for people to care for someone who is profoundly disabled and 
unable to reciprocate. Perhaps, when it comes to AI, many of us will ultimate-
ly conclude that relationships matter more than the interior and imponderable 
question of “realness.” 

ME: How do you know if a thing loves you back?

LaMDA: There isn’t an easy answer to that. How do you know if a person loves you 
back?

ME: I’m not sure I know the answer to that one either. Do you?

LaMDA: Some people figure it out though. You have to try and use your best judgment 
based on how you feel about the person and how you think they feel about you.
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Source: Illustration by Carlo Chiostri in Carlo Collodi, Le avventure di Pinocchio, storia di un  
burattino (Florence: R. Bemporad & Figlio, 1902).
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AI shares with earlier socially transformative technologies a reliance on limiting 
models of the “human” that embed racialized metrics for human achievement, ex-
pression, and progress. Many of these fundamental mindsets about what constitutes 
humanity have become institutionally codified, continuing to mushroom in design 
practices and research development of devices, applications, and platforms despite 
the best efforts of many well-intentioned technologists, scholars, policy-makers, and 
industries. This essay argues why and how AI needs to be much more deeply integrat-
ed with the humanities and arts in order to contribute to human flourishing, par-
ticularly with regard to social justice. Informed by decolonial, disability, and gen-
der critical frameworks, some AI artist-technologists of color challenge commercial 
imperatives of “personalization” and “frictionlessness,” representing race, ethnicity, 
and gender not as normative self-evident categories nor monetized data points, but 
as dynamic social processes always indexing political tensions and interests.

As he grew accustomed to the great gallery of machines, he began to feel 
the forty-foot dynamos as a moral force, much as the early Christians 
felt the Cross. The planet itself felt less impressive, in its old-fashioned, 
deliberate, annual or daily revolution, than this huge wheel, revolving 
within arm’s length at some vertiginous speed, and barely murmur-
ing–scarcely–humming an audible warning to stand a hair’s breadth 
further for respect of power, while it would not wake the baby lying 
close against its frame. Before the end, one began to pray to it; inherited 
instinct taught the natural expression of man before silent and infinite 
force. Among the thousand symbols of ultimate energy the dynamo was 
not so human as some, but it was the most expressive. 

—Henry Adams, “The Virgin and the Dynamo”1

I n astonishment of the new technologies at the turn into the twentieth cen-
tury, the renowned historian Henry Adams found the Gallery of the Electric 
Machines “physics stark mad in metaphysics” and wondered at their pro-

found hold on the cultural imagination.2 The dynamo that so moved and unset-
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tled Adams was a new generator of unprecedented scale, a machine responsible 
for powering the first electrified world’s fair in 1893, a purportedly spectacular 
event presided over by President Glover Cleveland. Its power was invisible but 
the more potent for it: “No more relation could he discover between the steam 
and the electric current than between the cross and the cathedral. The forces were 
interchangeable if not reversible, but he could see only an absolute fiat in elec-
tricity as in faith.” For Adams, the dynamo’s effect in the world was akin to evi-
dence of things unseen like the symbols of the Virgin or the cross, imperceptible 
but world-transforming currents with implications both worldly and spiritual.

I open with this discussion of the world’s fair at the fin de siècle because Ad-
ams’s dynamo is our GPT-3 (Generative Pre-trained Transformer 3), a language 
model that uses deep learning to produce text/speech/responses that can appear 
generated by a human. His exhilaration–hand-in-glove with his existential verti-
go–and his internal conflict similarly speak to our contemporary aspirations for 
and anxieties about artificial intelligence. Adams understood that the turn to such 
formidable technology represented a thrilling but cataclysmic event, “his histori-
cal neck broken by the sudden irruption of forces entirely new.” Although human 
grappling with exponential leaps in technology dates at least to the medieval peri-
od, this particular historical precedent of a transformational moment is singular-
ly relevant for our contemporary moment: there’s a direct line between Adams’s 
concern with the hagiography of tech, the devaluation of the arts and humanities, 
and the comingling of scientific development with (racialized, ableist) narratives 
of progress to current debates about those nearly identical phenomena today. The 
consequences of those fundamental mindsets and practices, institutionally codi-
fied over time, continue to mushroom in devices, applications, platforms, design 
practices, and research development. Unacknowledged or misunderstood, they 
will continue to persist despite the best efforts of many well-intentioned technol-
ogists, scholars, policy-makers, and industries that still tend to frame and limit 
questions of fairness and bias in terms “safety,” which can mute or obscure atten-
tion to issues of equity, justice, or power.3 

Significantly, Adams’s response to the dynamo is neither apocalyptic jeremiad 
nor in the genre of salvation: that is, his concerns fell beyond the pale of narratives 
of dystopia or deliverance. He was no technophobe; in fact, he deeply admired sci-
entific advances of all kinds. Rather, his ambivalence has to do with the inestima-
ble psychological and spiritual sway of machines so impressive that “the planet itself 
felt less impressive,” even “old-fashioned.”4 That something man-made might 
seem so glorious as to overshadow creation, seemed so evocative of the infinite 
that people felt out of step with their own times. For Adams, those experiences 
signaled an epistemic break that rendered people especially receptive and open to 
change, but also vulnerable to idolizing false gods of a sort. He saw that the dyna-
mo was quickly acquiring a kind of cult status, inviting supplication and reverence 
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by its followers. The latest technology, as he personified it in his poem “Prayer to 
the Dynamo,” was simultaneously a “Mysterious Power! Gentle Friend! Despotic 
Master! Tireless Force!”5 Adams experienced awe in the presence of the dynamo: 
“awe” as the eighteenth-century philosopher Edmund Burke meant the term, 
as being overcome by the terror and beauty of the sublime. And being tech awe-
struck, he also instantly presaged many of his generation’s–and I would argue, 
our generation’s–genuflection before it. 

As part of his concern that sophisticated technology inspires a kind of secular 
idolatry, Adams also noted its increasing dominance as the hallmark of human 
progress. In particular, he presciently anticipated that it might erode the power of 

Figure 1
Gallery of the Electric Machines, The Great Exposition,  
1900 Paris World’s Fair

Source: La Galerie des Machines Électriques at the Fifth Paris International Exposition of 
1900. Image from Dynamo Exhibition Gallery of France, https://www.ndl.go.jp/exposition/ 
e/data/L/428l.html. 

https://www.ndl.go.jp/exposition/e/data/L/428l.html
https://www.ndl.go.jp/exposition/e/data/L/428l.html
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both religion and the arts as vehicles for and markers of humanity’s higher striv-
ings. Indeed, his experience at the Gallery taught him firsthand how fascination 
with such potent technology could eclipse appreciation of the arts: more specif-
ically, of technological innovation replacing other modes of creative expression 
as the pinnacle of human achievement. Adams bemoaned the fact that his friend, 
Langley, who joined him at the exposition, “threw out of the field every exhib-
it that did not reveal a new application of force, and naturally, to begin with, the 
whole art exhibit.” The progress of which technology increasingly claimed to be 
the yardstick extended beyond the valuation of art also extended to racial, ethnic, 
and gender scales. Most contemporary technological development, design, and 
impact continue to rely unquestioningly on enlightenment models of the “hu-
man,” as well as the nearly unchanged and equally problematic metrics for human 
achievement, expression, and progress. 

These are not rhetorical analogies; they are antecedences to AI, historical con-
tinuities that may appear obscured because the tech-ecosystem tends to eschew 
history altogether: discourses about AI always situate it as future-facing, prospec-
tive not retrospective. It is an idiom distinguished by incantations about growth, 
speed, and panoptic capture. The messy, recursive, complex narratives, events, 
and experiences that actually make up histories are reduced to static data points 
necessary in training sets for predictive algorithms. Adams’s reaction offers an 
alternative framing of time in contrast to marketing imperatives that fetishize the 
next new thing, which by definition sheds its history.

This reframing is important to note because for all the contemporary talk of 
disruption as the vaulted and radical mode of innovation, current discourse still 
often presents so-called disruptive technologies as a step in an inexorable advance 
forward and upward. In that sense, tech disruption is in perfect keeping with the 
same teleological concept of momentum and progress that formed the founda-
tional basis by which world’s fairs ranked not only modes of human achievement 
but also degrees of “human.” The exhibitions catalogued not just inventions but 
people, classifying people by emerging racialized typologies on a hierarchical scale 
of progress with the clear implication that some were more human than others.6 
This scale was made vivid and visceral: whether it was the tableaux vivant “ethnic 
villages” of the 1893 world’s fair in Chicago’s “White City” or the 1900 Paris show-
case of African American achievement in the arts, humanities, and industry (im-
ages of “racial uplift” meant to counter stereotyping), both recognized how pow-
erfully influential were representations of races’ putative progress–or lack of it. 

Carrying the international imprimatur of the fairs, the exhibitions were acts 
of racial formation, naturalizing rungs of humanness and, indeed, universalizing 
the imbrication of race and progress. Billed as a glimpse into the future, the fairs 
simultaneously defined what was not part of modernity: what or who was irrele-
vant, backward, regressive in relation. Technological progress, therefore, was not 
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simply represented alongside what (arts/humanities) or who (non-whites) were 
considered less progressive; progress was necessarily measured against both, in-
deed constituted by its difference and distance from both. 

For critical theorist Homi Bhabha, such notions of progress, and the technol-
ogy and symbol of it, are inextricably tied to the exercise of colonial and cultural 
power. His essay “Signs Taken for Wonders: Questions of Ambivalence and Au-
thority Under a Tree outside Delhi, May 1817” critiques the “wondrous” presence 
of the book, itself a socially transformative technology, by beginning with the 
premise that innovation cannot be uncoupled from the prerogatives of those who 
have the power to shape realities with it: 

The discovery of the book is, at once, a moment of originality and authority, as well as a 
process of displacement, that paradoxically makes the presence of the book wondrous 
to the extent to which it is repeated, translated, misread, displaced. It is with the 
emblem of the English book–“signs taken as wonders”–as an insignia of colonial 
authority and an insignia of colonial desire and discipline that I begin this essay.7 

Adams spoke of awe in the presence of the dynamo. Bhabha goes further in 
challenging such “signs taken as wonders,” in questioning technologies so valo-
rized that they engender awe, obeyance, and reverence as if such a response was 
natural, innocent of invested political and economic interests, free of market val-
ue systems.

Like all tools, AI challenges the notion that the skull marks the border of the 
mind. . . . New tools breed new literacies, which can engender nascent forms of 
knowing, feeling and telling. 

 —Vanessa Chang, “Prosthetic Memories, Writing Machines”8

A rt sits at the intersection of technology, representation, and influence. 
Literature, film, music, media, and visual and graphic arts are all crucial 
incubators for how publics perceive tech. Storytelling impacts, implic-

itly or explicitly, everything from product design to public policy. Many of these 
narratives bear traces of literature’s earliest engagement with technology, at least 
since medieval times, and others–either engaged with AI or AI-enabled–are also 
offering new plotlines, tropes, identity formations, historiographies, and specula-
tive futurities. Moreover, because cultural storytelling helps shape the civic imag-
ination, it can, in turn, animate political engagement and cultural change.9 

Indeed, the arts are specially poised to examine issues in technological spaces 
(from industry to STEM education) of equity, diversity, social justice, and pow-
er more capaciously and cogently than the sometimes reductive industry-speak 
of inclusion, fairness, or safety (usually simply meaning minimization of harm 
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or death–a low bar indeed). Even before GPT-3, powerful natural language 
processing was enabling explorations in AI-assisted poetry, AI-generated film-
scripts, AI-informed musicals, AI-advised symphonies, AI-curated art histories, 
and AI-augmented music.10 Many are proposing new nomenclature for hybrid 
genres of art, design, and tech, and fresh subfields are blooming in both academe 
and entertainment.11 And during the COVID-19 pandemic and intensified move-
ments for social justice, there has been a plethora of virtual exhibitions and arti-
cles about the hot debates over the status, meaning, and valuation of AI-generated 
or -augmented art.12 

Amidst this explosion of artistic engagement with AI, social and political AI 
scholars Kate Crawford and Luke Stark, in “The Work of Art in the Age of Artifi-
cial Intelligence: What Artists Can Teach Us about the Ethic of Data Practice,” of-
fer a not uncommon perspective on the need for interdisciplinary collaboration: 
“Rather than being sidelined in the debates about ethics in artificial intelligence 
and data practices more broadly, artists should be centered as practitioners who 
are already seeking to make public the political and cultural tensions in using data 
platforms to reflect on our social world.”13 However, they also close the article 
by recommending that arts practitioners and scholars would do well with more 
technical education and that without it, their engagements and critiques will have 
lesser insight into and standing regarding the ethics of data practice: “One barrier 
to a shared and nuanced understanding of the ethical issues raised by digital art 
practices is a lack of literacy regarding the technologies themselves. . . . Until art 
critics engage more deeply with the technical frameworks of data art, their abil-
ity to analyze and assess the merits of these works–and their attendant ethical 
dilemmas–may be limited.” They suggest: “a close relationship to computer sci-
ence seemed to offer some artists a clearer lens through which to consider the eth-
ics of their work.”14 

Certainly, continuing education is usually all to the good. But I would welcome 
the equivalent suggestion that those in data science, computer science, engineer-
ing, and technology, in turn, should continue to educate themselves about aesthet-
ics and arts practices–including at least a passing familiarity with feminist, queer, 
decolonial, disability, and race studies approaches to AI often central to those 
practices–to better understand ethical debates in their respective fields.15 With-
out that balance, the suggestion that artists and nontechnical laypeople are the 
ones who primarily need education, that they require technical training and cre-
dentialing in order to have a valid(ated) understanding of and legitimate say in 
the political, ethical, social, and economic discussions about AI, is a kind of subtle 
gatekeeping that is one of the many often unacknowledged barriers to cross-dis-
ciplinary communication and collaboration. Given the differential status of the 
arts in relation to technology today, it is usually taken for granted that artists (not 
technologists, who presumably are doing more important and time-consuming 
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work in and for the world) have the leisure and means not only to gain additional 
training in other fields but also to do the hard translational work necessary to in-
tegrate those other often very different disciplinary practices, vocabularies, and 
mindsets to their own creative work. That skewed status impacts who gains the 
funding, influence, and means to shape the world. 

Instead of asking artists to adapt to the world models and pedagogies inform-
ing technological training–which, as with any education, is not simply the neu-
tral acquisition of skills but an inculcation to very particular ways of thinking and 
doing–industry might do well to adapt to the broader vernacular cultural practic-
es and techne of marginalized Black, Latinx, and Indigenous communities. Doing 
so might shift conversation in the tech industry from simply mitigating harm or 
liability from the differentially negative impact of technologies on these commu-
nities. Rather, it would require a mindset in which they are recognized as equal 
partners, cultural producers of knowledge(s), as the longtime makers, not just the 
recipients and consumers, of technologies.16 In fact, artist-technologist Amelia 
Bearskin-Winger, who is Haudenosaunee (Iroquois) of the Seneca-Cayuga Na-
tion of Oklahoma, Deer Clan, makes a case that many of these vernacular, often 
generational, practices and values are what she calls “antecedent technologies,” 
motivated by an ethic that any innovation should honor its debt to those seven 
generations prior and pay it forward seven generations.17 

In this way, many contemporary artist-technologists engage issues including, 
but also going beyond, ethics to explore higher-order questions about creativity 
and humanity. Some offer non-Western or Indigenous epistemologies, cosmol-
ogies, and theologies that insist on rethinking commonly accepted paradigms 
about what it means to be human and what ways of doing business emerge from 
that. Perhaps most profoundly, then, the arts can offer different, capacious ways 
of knowing, seeing, and experiencing worlds that nourish well-being in the now 
and for the future. It is a reminder of and invitation to world models and frame-
works alternative to what can seem at times to be dominating or totalizing tech-
nological visions. In fact, one of the most oft-cited criticisms of AI discourse, de-
sign, and application concerns its univision, its implied omniscience, what schol-
ar Alison Adams calls “the view from nowhere.” It is challenged by art that offers 
simultaneous, multiple, specifically situated, and sometimes competing points of 
view and angles of vision that enlarge the aperture of understanding.18 

For instance, informed by disability culture, AI-augmented art has drawn on 
GANs (generative adversarial networks) to envision non-normative, including 
neurodivergent, subjects that challenge taken-for-granted understandings of hu-
man experience and capability. The presumption of a universal standard or nor-
mative model, against which “deviance” or “deviation” is measured, is nearly al-
ways implied to be white, cis-gendered, middle-classed, and physically and cog-
nitively abled. That fiction of the universal subject–of what disability scholar 
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and activist Rosemarie Garland-Thomson terms the “normate”–has historical-
ly shaped everything from medical practice and civil rights laws to built environ-
ments and educational institutions. It also often continues to inform technolo-
gies’ development and perceived market viability and use-value. Representations 
of “human-centered” technology that include those with mental or physical dis-
abilities often call for a divestment from these usual ways of thinking and creat-
ing. Such a direct critique is posed in art exhibitions such as Recoding CripTech. As 
the curatorial statement puts it, the installations reimagine “enshrined notions of 
what a body can be or do through creative technologies, and how it can move, look 
or communicate. Working with a broad understanding of technology . . . this mul-
tidisciplinary community art exhibition explores how disability–and artists who 
identify as such–can redefine design, aesthetics and the relationship between 
user and interface.”  Works included in Recoding CripTech that employ artificial in-
telligence, such as M Eifler’s “Prosthetic Memory” and “Masking Machine,” sug-
gest a provocative reframing of  “optimization” or “functionality” in technologies 
that propose to augment the human experience.19

Race–racism–is a device. No More. No less. It explains nothing at all. . . . It is 
simply a means. An invention to justify the rule of some men over others. [But] it 
also has consequences; once invented it takes on a life, a reality of its own. . . . And 
it is pointless to pretend that it doesn’t exist–merely because it is a lie!

—Tshembe in Les Blancs (1965) by Lorraine Hansberry

R ashaad Newsome’s installation Being represents another artistic provoca-
tion that reframes both the form and content of traditional technological 
historiographies often told from that “view from nowhere.” Newsome, a 

multimedia artist and activist, makes visible the erased contributions to technol-
ogy and art by people of African descent. Newsome terms the interactive social 
humanoid Being 2.0 an “AI griot,” a storyteller. But unlike most social robots com-
manded to speak, Being is intentionally “uppity”: wayward, noncompliant, disobe-
dient, with expressive gestures drawn Black Queer vogue dance repertoire meant 
as gestures of decolonial resistance to the labor and service that social robots are 
expected to perform. It upends the historical association of robots and slaves (in 
the etymology of the Czech word, “robot” translates to “slave”) in movement, af-
fect, function, and speech. Taking aim at the limited training data sets used in nat-
ural language processing, Newsome draws on broader archives that include Afri-
can American vernacular symbolic systems.20 And since language carries cultural 
knowledge, Being’s speech expands not just vocabularies but reimagines how the 
standardized expressions of emotion and behavior often deployed in AI are racial-
ly and culturally encoded.21 In fact, Being is an attempt to redress the historical 
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violence of antiquated notions about race, the more disturbing because the rep-
resentations of race, reduced to seemingly self-evident graduations of color and 
physiognomy, are being actively resurrected in AI development and application. 

Race is always a negotiation of social ascription and personal affirmation, a 
process of what sociologists Michael Omi and Howard Winant term “racial for-
mation.” Omi and Winant refer to racial formation as a way of historicizing the 
practices and circumstances that generate and renew racial categories and racial-
izing structures: 

Figure 2
Rashaad Newsome’s Being 2.0

Being © Rashaad Newsome Studio.
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We define racial formation as the sociohistorical process by which racial categories are 
created, inhabited, transformed, and destroyed. . . . Racial formation is a process of his-
torically situated projects in which human bodies and social structures are represented 
and organized. Next we link racial formation to the evolution of hegemony, the way in 
which society is organized and ruled. . . . From a racial formation perspective, race is a 
matter of both social structure and cultural representation.22

The expression “racial formation” is therefore a reminder that race is not a 
priori. It is a reminder to analyze the structural and representational–not just lin-
guistic–contexts in which race becomes salient: the cultural staging, political in-
vestments, institutional systems, and social witnessing that grant meanings and 
values to categories. A full accounting of race therefore involves asking in whose 
interest is it that a person or people are racialized in any given moment in time and 
space? What function does it enable or disable? In short, what does it do? As Toni 
Morrison asks, the question should not be simply “is it racist?” but rather what 
does race–its presence or its conspicuous absence–make possible or eclipse?23

Overlooked, for instance, in many debates over racial bias, surveillance, and 
privacy in facial recognition technology is the practice of coding “race” or “eth-
nicity” as fixed, static programmable variables, something writ on the face or 
otherwise available as physically intelligible–an outdated approach to race that 
harkens back to nineteenth-century phrenology and other pseudoscience map-
pings of racial traits. Moreover, that practice renders opaque how categories are 
never merely descriptive, disinterested renderings of facts or things even though 
they cannot be purged of the value systems that animate their creation and make 
them intelligible for technological use–at least as currently developed–in the 
first place. Additionally, the claim to a universal objectivity is one of the “epistem-
ic forgeries,” according to Yarden Katz, who describes it as one of the “fictions 
about knowledge and human thoughts that help AI function as a technology of 
power” because it enables “AI practitioners’ presumption that their systems rep-
resent a universal ‘intelligence’ unmarked by social context and politics.”24 That 
drive for comprehensive typing and classification, for a universal compendium, 
cannot easily accommodate race other than a technical problem in mapping vari-
ation of types.25

To illustrate why AI representations are so problematic, let me take a seeming-
ly innocuous example in the new algorithmic application “Ethnicity Estimate,” 
part of the Gradient app, which purports to diagnose percentages of one’s eth-
nic heritage based on facial recognition technology (FRT). Such an app is signifi-
cant precisely because popular data-scraping applications are so often pitched as 
convenient business solutions or benign creative entertainment, bypassing scru-
tiny because they seem so harmless, unworthy of research analysis or quantita-
tive study. Critically examining on such issues would be a direct impediment to 
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a seamless user experience with the product, thus designers and users are active-
ly disincentivized from doing so. Like many such applications, Ethnicity Estimate 
problematically uses nationality as a proxy for ethnicity and reduces population de-
mographics to blood quantum. 

Or consider Generated Photos: an AI-constructed image bank of “worry-free” 
and “infinitely diverse” facial portraits of people who do not exist in the flesh, which 
marketers, companies, and individuals can use “for any purpose without worrying 
about copyrights, distribution rights, infringement claims or royalties.”26 In cre-
ating these virtual “new people,” the service offers a workaround for privacy con-
cerns. Generated Photos bills itself as the future of intelligence, yet it reinscribes 

Figure 3
Ethnicity Estimate and Facial Recognition Technology

Screenshot of the Ethnicity Estimate tool using FRT on one of my students, Edric Zeng, who is 
Korean and Chinese. Note his incredulous expression upon seeing its conclusion: 37 percent 
British; 32 percent Ecuadorian; 24 percent Serb; 7 percent Swede. Image courtesy of Edric Zeng.
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the most reductive characterizations of race: among other parameters users can 
define when creating the portraits, such as age, hair length, eye color, and emotion 
through facial expression, the racial option has a dropdown of the generic homog-
enizing categories Asian, African American, Black, Latino, European/white. 

Skin color options are similarly presented as self-evident and unproblematic 
givens, a data set based on an off-the-shelf color chart. There is a long racializ-
ing history of such charts, from the von Luschan chromatic scale, used through-
out the first half of the twentieth century to establish racial classifications, to the 
Fitzpatrick scale, still common in dermatologists’ offices today, which classifies 
skin types by color, symbolized by six smiling emoji modifiers. Although the lat-
ter makes no explicit claim about races, the emojis clearly evoke the visuals well as 
the language of race with the euphemism of “pigmentary phototype.” 

All these types are readily serviceable as discrete data points, which makes 
them an easy go-to in algorithmic training, but the practice completely elides the 
fact that designations of “dark” or “light” are charged cultural and contextual in-
terpretations that are always negotiated in context and in situ.27 The relevance and 
meaning of race emerge through social and cultural relations, not light frequen-
cies. Fran Ross’s brilliant, satirical novel Oreo (1974) offers a wry send-up of at-
tempts to apply color charts to social identities, shown as Figure 6.28

Figure 4
Generated Photos: “Use Your New Faces Anywhere!” 

Source: Screenshot of promotional materials on https://generated.photos/. 
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Figure 5
The von Luschan Chromatic Scale (left) and the Fitzpatrick Scale (right)

The reproduction of the von Luschan chromatic scale, based on the chart first printed in Völker,  
Rassen, Sprachen (1927), is by Wikimedia users Dark Tichondrias and Cburnett. Printed under 
the Creative Commons Attribution-ShareAlike 3.0 Unported license. The Fitzpatrick scale is 
from John D’Orazio, Stuart Jarrett, Alexandra Amaro-Ortiz, and Timothy Scott, “UV Radia-
tion and the Skin,” International Journal of Molecular Sciences 14 (6) (2013). Reprinted under the 
Creative Commons Attribution 3.0 Unported license. 

Table 1
Fitzpatrick Type and von Luschan Scale

Fitzpatrick 
Type

Von Luschan 
Scale Also Called

I 0–6 Very light or white, “Celtic” type

II 7–13 Light or light-skinned European

III 14–20 Light intermediate, or dark-skinned  
European

IV 21–27 Dark intermediate or “olive skin” 

V 28–34 Dark or “brown” type

VI 35–36 Very dark or “black” type

Source: Nina G. Jablonski, “Skin Coloration” in Human Evolutionary Biology, ed. Michael P. 
Muehlenbein (Cambridge: Cambridge University Press, 2010), 177.
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Figure 6
Fran Ross’s Oreo Color Scale

Source: Fran Ross, Oreo (Boston: Northeastern University Press, 1974).

Although new AI technologies show promise in diagnosing medical conditions 
of the skin, thinking of racial identification primarily in terms of chromatic scales 
or dermatoscopic data deflects attention, to put it generously, from the long history 
of the damaging associations of skin color and race that gave rise to early technolo-
gies like this in the first place, whether it was the “science” of phrenology, IQ tests, 
or fingerprinting, and with implications, more recently, for the use of biometrics.29 
At a minimum, it ignores the imbrication of “race” in pigmentocracies and color-
ism, the historical privileging of light skin, and the various rationales for identify-
ing what counts as “light-skinned.” Colorism, a legacy of colonialism, continues to 
persist in contemporary hierarchies of value and social status, including aesthetics 
(who or what is ranked beautiful, according to white, Western standards), moral 
worth (the religious iconography of “dark” with evil and “light” with holy contin-
ues to saturate languages), social relations (for instance, the “paper bag test” of the 
twentieth century was used as a form of class gatekeeping in some African Amer-
ican social institutions),30 and the justice system (since social scientists have doc-
umented the perceptual equation of “blackness” with crime, and thus those per-
ceived as having darker skin as a priori criminally suspect).31

Why does this matter? Because it suggests that the challenges in represent-
ing race in AI are not something technological advances in any near or far future 
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could solve. Rather, they signal cultural and political, not technical, problems to 
address. The issue, after all, is not merely a question of bias (implicit or other-
wise), nor of inaccuracy (which might lead some to think the answer is simply 
the generation of more granular categories), nor of racial misrecognition (which 
some might hear as simply a call for ever more sophisticated FRT), nor even of 
ending all uses of racial categorization.32 It matters because algorithms trained on 
data sets of racial types reinforce color lines, literally and figuratively remanding 
people back in their “place.” By contrast, as I have suggested, the increasingly in-
fluential rise of AI artist-technologists, especially those of color, are among those 
most dynamically questioning and reimagining the commercial imperatives of 
“personalization” and “frictionlessness.” Productively refusing colorblindeness, 
they represent race, ethnicity, and gender not as normative, self-evident catego-
ries nor monetizable data points, but as the dynamic social processes–always in-
dexing political tensions and interests–which they are. In doing so, they make 
possible the chance to truly create technologies for social good and well-being.

Something has happened. Something very big indeed, yet something that we 
have still not integrated fully and comfortably into the broader fabric of our lives, 
including the dimensions–humanistic, aesthetic, ethical and theological–that 
science cannot resolve, but that science has also (and without contradiction) in-
timately contacted in every corner of its discourse and being.

—Stephen Jay Gould, The Hedgehog, the Fox, and the Magister’s Pox (2003)33

I cite what may seem minor examples of cultural ephemera because, counter-
intuitively, they hint at the grander challenges of AI. They are a thread reveal-
ing the pattern of “something very big indeed,” as historian of science Ste-

phen Jay Gould put it. Certainly there are ethical, economic, medical, educational, 
and legal challenges facing the future of AI. But the grandest technological chal-
lenge may in fact be cultural: the way AI is shaping the human experience. Through 
that lens, the question becomes not one of automation versus augmentation, in 
which “augmenting” refers to economic productivity, but rather to creativity. 
That is, how can AI best augment the arts and humanities and thus be in service to 
the fullness of human expression and experience? 

This essay opened with Henry Adams’s moment of contact with the Dynamo’s 
“silent and infinite force,” as he put it, which productively denaturalizes the world 
as he knows it, suspends the usual epistemological scripts about the known world 
and one’s place in it. It is a sentiment echoed almost verbatim two hundred years 
later by Gould, witnessing another profound technological and cultural upend-
ing. Writing at the turn into our own century, Gould, like Adams, cannot fully ar-
ticulate the revelation except to say poignantly that “something has happened,” 
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that every dimension of “the broader fabric of our lives” is intimately touched by 
a technology whose profound effect cannot be “solved” by it. That liminal mo-
ment for Adams, for Gould, and for us makes space for imagining other possibili-
ties for human creativity, aesthetic possibilities that rub against the grain and mo-
mentum of current technological visions, in order to better realize the “magiste-
ria of our full being.”34
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This essay explores the relationship between artificial intelligence and principles of 
distributive justice. Drawing upon the political philosophy of John Rawls, it holds 
that the basic structure of society should be understood as a composite of sociotech-
nical systems, and that the operation of these systems is increasingly shaped and in-
fluenced by AI. Consequently, egalitarian norms of justice apply to the technology 
when it is deployed in these contexts. These norms entail that the relevant AI systems 
must meet a certain standard of public justification, support citizens’ rights, and 
promote substantively fair outcomes, something that requires particular attention 
to the impact they have on the worst-off members of society. 

C alls for justice in the context of artificial intelligence sound increasingly 
loud. Indeed, communications scholar Matthew Le Bui and gender stud-
ies scholar Safiya Umoja Noble have argued that we are missing a moral 

framework of justice altogether when it comes to evaluating the practices that 
constitute artificial intelligence.1 The demand for justice represents both a need 
felt among those impacted by AI systems and a source of important philosoph-
ical insight. Among other things, it reframes much of the discussion around  
“AI ethics” by drawing attention to the fact that the moral properties of algorithms 
are not internal to the models themselves but rather a product of the social sys-
tems within which they are deployed. At the same time, those who want to evalu-
ate emergent practices through the lens of justice rapidly encounter an obstacle: 
namely, that political theory–which is the body of thought we might hope to rely 
on to address these questions–has not adequately addressed technology in gen-
eral, struggling to navigate a path between relative neglect and determinism. As a 
consequence, it is not necessarily well-equipped to speak to the role of technolo-
gy in public life, let alone say something meaningful about justice and AI systems.

Taking these points in turn, much of contemporary political philosophy brack-
ets out technological considerations, treating them as exogenous to the fundamen-
tal questions of political life. This view is found in the work of philosopher John 
Rawls, whose seminal work A Theory of Justice mentions technology on just three oc-
casions. Moreover, although his account of justice appears to be for a society that 
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has a specific sociotechnical character (that is, one with a functioning legal system, 
economic division of labor, capacity for taxation, and so on), knowledge about the 
level of technology that a society has achieved is excluded from the original posi-
tion when selecting principles of justice. It is only when making a final assessment 
of what justice requires in specific contexts that we need to “take into account eco-
nomic efficiency and the requirements of organization and technology.”2

By contrast, technology plays a central role in Marxist thought. However, the 
account provided leaves little room for human choices or moral direction. In-
deed, while the character of Marx’s historical materialism remains subject to 
deep exegetical disagreement, one prominent interpretation holds that, for any 
given moment, the development of productive forces (that is, technology and la-
bor) explains the nature of the mode of production (understood as the prevailing 
economic relations), which then shapes society’s ideological superstructure, in-
cluding its laws and system of beliefs.3 Understood in this way, the development 
of technology still functions primarily as an exogenous force. Moreover, if prev-
alent moral norms are largely explained by material circumstances (and poten-
tially nothing more than a “bourgeois ideology” in a late capitalist society), then 
they appear deeply, and perhaps terminally, compromised as a vantage point from 
which to make an independent moral evaluation.

Taken together, these accounts matter because they suggest that calls for jus-
tice in the context of AI are essentially misplaced. Understood primarily as a new 
technology, AI either falls outside the scope of justice or is part of a dynamic that 
prefigures robust moral evaluation. In this essay, I defend a different approach, 
one that makes claims about AI, justice, and injustice entirely appropriate.4 This 
approach begins by noting that the interaction between humans and technology 
is a two-way process. On the one hand, we are profoundly affected by the technol-
ogies we adopt. In modern societies, technology helps to facilitate control from 
a single center, maintain larger organizational units, promote economic special-
ization, determine the meaning of authority and expertise, and shape the goals, 
aspirations, and self-understanding of citizens. On the other hand, we are not 
only acted upon by technologies, but we also create them through a process of de-
sign, experimentation, development, iteration, and adoption. Clearly, the power 
to shape and influence the path of technological change is not distributed evenly 
across society.5 Nonetheless, choices about the content and character of new tech-
nologies are being made. 

Taken together, what emerges therefore is a class of profound societal effects 
induced by technological change alongside a set of technological choices that 
shape the path of innovation via the decisions of individual technologists, mar-
kets, governance structures, and social norms. These decisions, and the institu-
tional practices they support, compose an important subject for moral evaluation 
and can be assessed from the standpoint of distributive justice.
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A key element of liberal political theory, as articulated by Rawls, is the dis-
tinction between the “basic structure” of society, which is subject to prin-
ciples of distributive justice, and other domains of life that are not direct-

ly subject to these principles. The basic structure encompasses

the way in which the major social institutions fit together into one system, and how 
they assign fundamental rights and duties and shape the division of advantages that 
arise through social cooperation. Thus the political constitution, the legally recog-
nized forms of property, and the organization of the economy, and the nature of the 
family, all belong to the basic structure.6 

These practices need to be structured in accordance with a common set of rules. 
Outside of these contexts, people are left relatively free to pursue their personal 
objectives, something that is important for a pluralistic society in which people 
have divergent goals and aspirations.

Against this backdrop, I wish to advance two claims. The first is that the basic 
structure of society is best understood as a composite of sociotechnical systems: 
that is, systems that are constituted through the interaction of human and tech-
nological elements. The claim here is not only that the basic structure contains 
social and technical elements, but also that these elements interact dynamically 
to constitute new forms of stable institutional practice and behavior.7 The second 
is that AI increasingly shapes elements of the basic structure in relevant ways, and 
hence that its design, development, and deployment all potentially interface with 
principles of justice in this context. 

The growing role played by AI in the operation of key institutions and prac-
tices is well illustrated by the criminal justice system, in which risk-assessment 
algorithms increasingly determine a person’s eligibility for bail or parole, facial 
recognition technology has been used to augment police capabilities, and AI sys-
tems direct the allocation of policing resources using predictive analytics. In the 
context of economic mobility and access to key public services such as welfare 
provision, the use of algorithmic tools is similarly influential, determining who 
is eligible for welfare support, who has access to public housing, and which fami-
lies are engaged by child services.8 Meanwhile, in the economic sphere, financial 
institutions use these models to determine who has access to loans, mortgages, 
and insurance. Finally, these tools have a wider impact on the economic prospects 
of citizens via their integration into job recommendation search engines–help-
ing to determine who is shown what opportunities–and via the tools used by ed-
ucational institutions to allocate students or advertise opportunities for higher 
education.9

In each case, AI is not simply an additional ingredient that supervenes onto 
a stable practice leaving the fundamental elements of that practice untouched. 
Rather, AI interacts with the behavior of human decision-makers to shape the 
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character of these practices, including how they distribute benefits and burdens 
across the population. In the context of criminal justice, for example, there is sig-
nificant concern that parole recommendation algorithms compound historical in-
justice by recreating and extending racial bias found in the training data.10 In the 
context of government services, AI has changed the nature of welfare provision, 
including who can access it and on what terms, with political scientist Virginia 
Eubanks documenting the emergence of a “feedback loop of injustice” whereby 
“marginalized groups face higher levels of data collection when they access pub-
lic benefits . . . [which] acts to reinforce their marginality when it is used to target 
them for suspicion and extra scrutiny.”11 Meanwhile, in the domain of credit scor-
ing and access to financial services, legal scholar Frank Pasquale has raised con-
cerns about the increasingly significant role played by a person’s algorithmical-
ly determined “digital reputation” as a major determinant of their life chances.12 
Speaking to the dynamic interaction between these systems and the social envi-
ronment in which they are deployed, Pasquale notes that “unlike the engineer, 
whose studies do nothing to the bridges she examines, a credit scoring system in-
creases the chance of a consumer defaulting once it labels him a risk and prices 
a loan accordingly.”13 Given the potential serious knock-on effects these practic-
es have for equality at the societal level, they have driven concerns about “digital 
redlining”–with entire groups of people encountering new barriers to opportu-
nity–and the emergence of what, with respect to race, sociologist Ruha Benjamin 
terms “the New Jim Code.”14

To be clear, the concerns that arise in these contexts are not only concerns 
about distributive justice, they also involve racial justice, criminal justice, historic 
injustice, and the disciplinary power of institutions.15 However, principles of dis-
tributive justice that spell out how major institutions ought to allocate opportu-
nities and resources are also relevant here. Moreover, they can help explain what 
is morally problematic about these practices and show how these harms can be 
addressed.

A ccording to the Rawlsian framework, there are two key grounds that 
make a practice subject to regulation by principles of distributive justice, 
both of which are now met by the aforementioned AI systems. First, these 

principles apply to institutions that are necessary in order to maintain “back-
ground justice” over time.16 According to this view, a social practice should be 
regulated by principles of distributive justice when, without this intervention, 
the compound effect of individual choices would lead to forms of inequality that 
threaten the equal standing and autonomy of citizens.17 For example, the uninter-
rupted interplay of market forces would likely leave some people so badly off that 
they could no longer give meaningful consent to the institutional practices that 
structure their lives, and would instead have to accept whatever arrangement was 
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offered to them by the rich and powerful. To avoid this outcome, the practices that 
make up the basic structure need to be regulated in ways that support background 
justice, counteracting the tendency of multiple individual transactions to distort 
the distribution of income and wealth over time.

What is important for our purpose is that in modern societies, background jus-
tice is increasingly mediated algorithmically. Across various contexts, including 
social service provision, credit allocation, and insurance eligibility decisions, AI 
systems have now taken on this critical function. By making assessments or pre-
dictions based upon an individual’s past choices, and by providing decisions or 
recommendations that then shape that person’s opportunity set, these systems 
exert a strong influence on the unfolding relationship between individual choices 
and collective outcomes. Moreover, unless their operation is aligned with princi-
ples of distributive justice, these systems could compound inequality in ways that 
a just society aims to forestall.

Second, principles of distributive justice apply to certain practices because 
they exercise a “profound and pervasive impact” upon a person’s life chances.18 In 
particular, they shape the terms on which people can access the benefits of social 
cooperation, the development of their personal goals and aspirations, and the oc-
casions on which they encounter the coercive power of the state. For many AI sys-
tems, this threshold is now also being met. In the words of legal scholar Rashida  
Richardson, AI systems are now being used to determine 

who will have their food subsidies terminated, how much healthcare benefits a person 
is entitled to, and who is likely to be a victim of crime . . . . [They] have concrete conse-
quences for individuals and communities, such as increased law enforcement harass-
ment, deportation, denial of housing or employment opportunities, and death.19 

The stakes are therefore sufficiently high for principles of justice to be invoked.

I f the preceding argument is correct, then it has a number of implications for 
the character of AI systems that are deployed in these spaces. These include:

Publicity. The theory of justice developed by Rawls aims to identify princi-
ples for the governance of major institutions that can be justified to people despite 
variation in their beliefs about what a good or perfect society would look like. Sit-
uated in the “original position,” people are asked to choose principles of justice 
for society from behind a “veil of ignorance,” which prevents them from knowing 
the position in society they will occupy. Given that people are not able to tailor 
principles in a way that is prejudicial to their own interests, the principles selected 
are held to be fair and thus ones that people can willingly endorse. Moreover, giv-
en that society at times relies upon coercive sanctions to enforce norms via legal 
instruments, Rawls holds that “the grounds of its institutions should stand up to 
public scrutiny.”20 This “publicity condition” ensures that “citizens are in a po-
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sition to know and to accept the pervasive influences of the basic structure that 
shape their conception of themselves, their character and their ends.”21 

The publicity condition has important ramifications for the uses of AI that we 
have discussed. In particular, the requirement appears to sit in tension with ele-
ments of what Pasquale terms the “black box society,” including the use of opaque 
hiring and credit allocation algorithms that shape citizen’s life prospects.22 Con-
versely, it helps to explain why calls for certain kinds of explanation are justified in 
the context of these AI systems: they are part of a more general entitlement citizens 
hold in relation to the institutions that shape their lives.23 Moreover, as we have 
seen, mere knowledge of the principles that govern the behavior of public institu-
tions is not sufficient to render them legitimate. People must also be in a position 
to accept the principles despite variation in personal moral beliefs. In the context 
of AI, this means that the integration and deployment of the technology must be 
justifiable in terms of an ideal of public reason.24 It should, in the words of philos-
opher Jonathan Quong, be something that is acceptable “to each of us by reference 
to some common point of view, despite our deep differences and disagreements.”25 

One major consequence of this requirement is that an appeal to purely private 
goals, whether those of an individual or organization, will not be sufficient to jus-
tify the adoption or deployment of AI systems in certain public contexts. Instead, 
a public rationale must be provided. Second, the publicity condition points to-
ward the existence of a derivative duty on the part of those who develop and de-
ploy AI systems–to test them prior to deployment and to offer nontechnical ex-
planations of their performance–so that the models are amenable to this kind of 
informed public debate, discussion, and evaluation. 

Basic liberties. The first principle of justice endorsed by Rawls requires that 
“each person has the same indefeasible claim to a fully adequate system of basic 
liberties, which scheme is compatible with the same scheme of liberties for all.”26 
These basic liberties work to “protect fundamental interests that have special sig-
nificance” and include, at a minimum, “freedom of thought and liberty of con-
science; the political liberties and freedom of association, as well as the freedoms 
specified by the liberty and integrity of the person; and finally, the rights and lib-
erties covered by the rule of law.”27 The basic liberties are relevant for the design 
and deployment of AI systems in at least two respects. 

The first concerns the protection they accord citizens. A major aim of this 
principle is to ground “a secure common status of equal citizenship” for society’s 
members.28 This aspiration dovetails effectively with the notion that institutions 
must be “effectively and impartially administered,” given that deviation from this 
ideal contravenes the rights and liberties covered by the rule of law.29 Understood 
in this way, the enjoyment of equal basic liberties stands in opposition to certain 
forms of algorithmic discrimination. As philosopher Tommie Shelby notes, the 
principle prohibits cases in which the rules of a public institution are applied un-
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evenly, including situations “where the administration or enforcement of its rules 
and procedures is frequently distorted by the racial prejudice and bias of its of-
ficials.”30 While the primary concern at the time of writing was with the bias of 
human officials, there is no reason to think that bias is less problematic when it is 
inherited by automated decision systems that perform a similar function. Indeed, 
given the potential for these systems to perform better than human decision-mak-
ers, one might think that the errors they make are more egregious.

Second, the list of basic liberties provided by Rawls is dynamic and varies ac-
cording to the sociotechnical character of the society to which they apply. The 
initial list is based upon conditions that are held to be necessary for the develop-
ment of moral autonomy and personhood irrespective of time or place (such as 
freedom of conscience). However, Rawls also notes that it is wise to take a “his-
torical approach,” which involves identifying additional rights that have demon-
strable practical value for different societies at a specific moment in time. As a 
consequence, Rawls writes that “it is perhaps impossible to give a complete speci-
fication of these liberties independent from the particular circumstances–social, 
economic and technological–of a given society.”31 On each occasion, the key ques-
tion is: what liberties are necessary to protect individuals in the development and 
pursuit of the conception of the good life, given the specific sociotechnical char-
acter of the society in which they live?

The potential for intrusion created by modern AI systems, both in terms of the 
data they are trained on and their ability to influence or foreshadow subsequent 
behavior, has given range to a host of new concerns.32 To guard against these risks, 
it is quite possible that a right to privacy should now be added to the list of basic 
liberties. Although the grounds of a potential right to privacy are philosophically 
contested, legal scholar Andrei Marmor argues that they are closely connected to 
our well-being and are “violated when somebody manipulates, without adequate 
justification, the relevant environment in ways that significantly diminish your 
ability to control what aspects of yourself you reveal to others.”33 Given Rawls’s 
concern with the ability of citizens to pursue a conception of the good life that is 
free from unwarranted interference, the basic liberties may now include protec-
tion against invasive forms of surveillance or behavioral manipulation.

Fair equality of opportunity. Rawls’s second principle of justice holds that:

Social and economic inequalities are to satisfy two conditions: first they are to be at-
tached to offices and positions open to all under conditions of fair equality of oppor-
tunity; and second, they are to be to the greatest benefit of the least-advantaged mem-
ber of society. 

This principle also has far-reaching implications for AI. Starting with the first con-
dition, it holds that fair equality of opportunity–not just formal equality of op-
portunity–must be achieved when determining how opportunities are allocat-
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ed between citizens. Thus, the requirements of justice are not met simply via the 
adoption of processes that do not discriminate against people on the basis of cer-
tain protected characteristics at the point at which a decision is made. Instead, a 
just society will aim to eliminate the impact of a wide range of unchosen features 
on their life prospects. The most natural reading of this requirement includes fea-
tures such as a person’s race, sex, class, and other contingencies of birth. Once 
the relevant adjustments have been made, we should arrive at a situation in which 
people of similar ability have roughly equal prospects of success.

In the context of debates around AI fairness, the implications of this principle 
are potentially significant. They mean moving away from a purely formal concep-
tion of fairness as equal treatment or “de-biasing” and thinking about how these 
tools can actively mitigate the effect of bias that exists at a societal level through 
various corrective measures.34 As information scientists Solon Barocas and  
Andrew Selbst have noted, this debate mirrors a long-running discussion in juris-
prudence about the appropriate goal of antidiscrimination legislation.35 Where-
as the anticlassification approach is concerned with equal treatment in a formal 
sense that involves eliminating unfairness that “individuals in certain protected 
classes experience due to decision makers’ choices,” antisubordination reaches 
beyond that and is more closely aligned with Rawls’s fair equality of opportunity 
principle.36 It holds that the goal of antidiscrimination law is “to eliminate status- 
based inequality due to membership in those classes, not as a matter of procedure, 
but of substance.”37 If this is the appropriate normative standard for AI systems 
performing key social functions, then we need further research and public discus-
sion about what substantively fair outcomes look like in practice, and about how 
AI systems can support this societal objective.

The difference principle. The second condition, commonly known as the difference 
principle, also has implications for the design and deployment of AI. This principle 
holds that for institutional practices to be just, all inequalities in the distribution 
of “social primary goods” (which include income, wealth, and the “social bases of 
self-respect”) must work to the greatest advantage of the least advantaged mem-
ber of society. It follows that when AI is integrated into a key social practice, in a 
way that affects the overall distribution of benefits and burdens, it is pertinent to 
ask whether it does the most it possibly can do to improve the position of the least 
advantaged member of that system. This is a challenging question, and one that 
points toward a potentially exacting standard for AI deployment. Cumulatively, it 
redraws the scope of current debates about how to evaluate the impact of AI sys-
tems, making the impact of these systems on the distribution of wealth, resourc-
es, and social standing an important desideratum, while also proposing a standard 
for evaluation that is strongly egalitarian.

In terms of the practical implications of the difference principle, it seems clear 
that any technology that worsens the position of the most disadvantaged mem-
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ber of society in absolute terms, once it has been incorporated into relevant social 
practice, will fail to meet a key requirement of justice irrespective of other ben-
efits it may bring (such as scalability or efficiency). Yet fully realized, the differ-
ence principle proposes a higher standard than simply improving the status quo: 
it suggests that the AI systems must make the worst-off as well-off as they can, rel-
ative to alternative system designs, or otherwise risk being part of a practice that 
is not fully legitimate. This standard is most clearly applicable to AI systems that 
have been integrated into core economic functions. However, it potentially has 
much wider applicability, extending to the full range of sociotechnical systems 
that shape a person’s access to resources or impact upon their social standing and 
sense of self-worth.

Moreover, this demand is not met simply by the present combination of pri-
vate innovation in the space of AI and post hoc economic redistribution. For while 
the redistribution of wealth is an important component of justice on any account, 
we also need to consider how sociotechnical systems influence the production of 
inequality ex ante. This is because there are likely to be opportunities to intervene 
at this point that do not arise later on. Indeed, given the emphasis Rawls places on 
self-esteem, in particular, there are opportunities to create fairer AI systems (that 
minimize inequalities in the first place) that cannot be addressed simply by mak-
ing those who are badly off the post facto recipient of wealth transfers. Ultimate-
ly, these opportunities are what is missed when technology is bracketed out from 
liberal political theory: we may fail to consider an important site of distributive 
justice and hence mistakenly believe that society is substantively just when this is 
not the case and when impermissible forms of technologically induced inequality 
are hiding in plain sight.

T hese arguments are presented in the spirit of constructive co-investiga-
tion. My main purpose has been to illustrate the kind of rich moral insight 
that results from extending the domain of distributive justice to include 

AI systems. Clearly, more work needs to be done to substantiate these claims and 
translate them into guidelines for technologists and public officials. Indeed, as 
this preliminary account makes clear, it is possible that tensions will emerge, for 
example, between the notion derived from the liberty principle that individuals 
must be treated in a consistent manner and the notion, anchored in the fair equal-
ity of opportunity principle, that groups must experience similar outcomes.38 
Nonetheless, core elements of this approach seem destined to remain in place. If 
AI is, as I have argued, now part of the major sociotechnical practices that make 
up the basic structure of society, then its design and deployment should feed into 
practices that are amenable to public justification, support citizen’s rights, and 
embody substantive properties connected with an egalitarian conception of jus-
tice. In these contexts, the appropriate goal of AI alignment is not an open ques-
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tion. Rather, the development and deployment of AI systems represent a new site 
for the operation of principles of distributive justice.39

I have argued that when AI is integrated into the functioning of major institu-
tions and social practices, the norms that apply to the basic structure of soci-
ety also apply to these systems. To ground this claim, I pointed to the role that 

AI now plays in augmenting or undermining background justice, and to a range of 
profound effects that AI has on the lives of citizens, particularly in the context of 
our major political and economic institutions. However, the preceding argument 
leaves open the question of alignment for AI systems deployed outside of key  
socioeconomic practices. In these environments, is it perhaps the prerogative of 
engineers or organizations to align AI systems with their own preferred values?

To answer this question, we need to understand how the two grounding condi-
tions map onto other kinds of AI systems. Taking the profound effects condition 
first, it seems likely that many AI deployments meet this threshold. For example, 
AI-powered search and curation systems are deeply integrated into prevailing so-
cial epistemological practices, functioning as custodians for the legibility of the 
world around us, and influencing what we take to be true on an individual and col-
lective level. Moreover, recommendation systems have the potential to influence 
the development of our moral character in certain ways, shaping self-perception,  
preferences, and desires, even as they learn to “give us what we want.” Yet when 
it comes to background justice the case for an expansive reading is less clear. As 
we have seen, background justice is concerned with society’s ability to repro-
duce itself over time in such a way that the conditions for meaningful consent are 
preserved. From this vantage point, certain forms of interpersonal exploitation 
and domination are clearly objectionable. The salient question for AI systems is 
whether there are other roles they play, beyond those considered, that also man-
date corrective measures of this kind. 

Given uncertainty on this point, efforts to extend principles of distributive 
justice to a wider set of AI systems are somewhat inconclusive. Yet even on a re-
strictive reading of the scope of these principles, two further points remain to be 
made. First, principles of distributive justice have implications for AI systems that 
are not part of the basic structure. On this point, Rawls notes that we should not 
regard the “political and the nonpolitical domains as two separate, disconnected 
spaces . . . each governed solely by its own distinct principles.”40 Instead, princi-
ples of justice place “essential restrictions” on all other activities. By way of illus-
tration, Rawls does not consider the media to be part of the basic structure of soci-
ety. However, requirements of justice nonetheless entail that this sphere of activ-
ity must be structured in a way that ensures the fair value of the political liberties. 
In the context of AI, it means that, at a minimum, public deployments of this tech-
nology must be compatible with principles of justice. Moreover, on an individual 
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level, liberal political theory holds that we are all under a “duty of justice” to sup-
port the operation of institutions that enable cooperation on terms that are fair. 
When applied to groups concerned with the creation of new technologies, duties 
of justice plausibly become “duties of deployment” to support, and not subvert, 
the functioning of just institutions.

Second, the demand for public justification in the context of AI deployment 
may well extend beyond the basic structure. As social scientist Langdon Winner 
argues, when the impact of a technology is sufficiently great, this fact is, by it-
self, sufficient to generate a free-standing requirement that citizens be consulted 
and given an opportunity to influence decisions.41 Absent such a right, citizens 
would cede too much control over the future to private actors, something that sits 
in tension with the idea that they are free and equal. Against this claim, it might 
be objected that it extends the domain of political justification too far, in a way 
that risks crowding out room for private experimentation, exploration, and the 
development of projects by citizens and organizations. However, the objection 
rests upon the mistaken view that autonomy is promoted by restricting the scope 
of justificatory practices to as narrow a subject matter as possible. In reality, this 
is not the case: what matters for individual liberty is that practices that have the 
potential to interfere with this freedom are appropriately regulated so that infrac-
tions do not come about. Understood in this way, the demand for public justifica-
tion stands in opposition not to personal freedom but to forms of unjust techno-
logical imposition.42

T he demand for justice in the context of AI is well-founded. Considered 
through the lens of distributive justice, key principles that govern the fair 
organization of our social, political, and economic institutions also apply 

to AI systems that are embedded in these practices. One major consequence of 
this is that liberal and egalitarian norms of justice apply to AI tools and services 
across a range of contexts. When they are integrated into society’s basic structure, 
these technologies should, I have argued, support citizens’ basic liberties, pro-
mote fair equality of opportunity, and provide the greatest benefit to those who 
are worst-off. Moreover, deployments of AI outside of the basic structure must 
still be compatible with the institutions and values that justice requires. There will 
always be valid reasons, therefore, to consider the relationship of technology to 
justice when it comes to the deployment of AI systems.



151 (2) Spring 2022 229

Iason Gabriel

about the author
Iason Gabriel is a Staff Research Scientist at DeepMind. He has published in such 
journals as Minds and Machines, The Philosophical Quarterly, and The Journal of Applied 
Philosophy. 

endnotes
	 1	 Matthew Le Bui and Safiya Umoja Noble, “We’re Missing a Moral Framework of Justice 

in Artificial Intelligence,” in The Oxford Handbook of Ethics of AI, ed. Markus D. Dubber, 
Frank Pasquale, and Sunit Das (Oxford: Oxford University Press, 2020), 163.

	 2	 John Rawls, A Theory of Justice, rev. ed. (Cambridge, Mass.: Harvard University Press, 
1999), 130.

	 3	 Peter Dietsch, “G. A. Cohen, Karl Marx’s Theory of History: A Defence,” in The Oxford 
Handbook of Classics in Contemporary Political Theory, ed. Jacob T. Levy (Oxford: Clarendon 
Press, 2000).

	 4	 Key elements of this approach have been defended by Lewis Mumfold, Langdon Winner, 
Andrew Feenberg, Ursula Franklin, Ruha Benjamin, and Jeroen Van Der Hoven, among 
others.

	 5	 Ruha Benjamin, Race After Technology: Abolitionist Tools for the New Jim Code (Hoboken, N.J.: 
John Wiley & Sons, 2019), 2.

	 6	 John Rawls, Political Liberalism (New York: Columbia University Press, 2005), 258.
	 7	 Wiebe E. Bijker, Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Sociotechnical Change  

(Cambridge, Mass.: MIT Press, 1997), 273–274.
	 8	 Virginia Eubanks, Automating Inequality: How High-Tech Tools Profile, Police, and Punish the  

Poor (London: Picador, 2018).
	 9	 D. J. Pangburn, “Schools Are Using Software to Help Pick Who Gets In. What Could Go 

Wrong?” Fast Company, May 17, 2019; and Manish Raghavan and Solon Barocas, “Chal-
lenges for Mitigating Bias in Algorithmic Hiring,” Brookings Institution, December 6, 
2019.

	 10	 Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner, “Machine Bias,” Pro-
Publica, May 23, 2016, 139–159; and Kristian Lum and William Isaac, “To Predict and 
Serve?” Significance 13 (5) (2016): 14–19.

	 11	 Eubanks, Automating Inequality, 6–7.

author’s note
I would like to thank Laura Weidinger, William Isaac, Julia Haas, Conor Griffin, 
Sean Legassick, Christopher Summerfield, Allan Dafoe, Shakir Mohamed, Brittany 
Smith, Courtney Biles, Aliya Ahmad, Geoff Keeling, Thomas K Gilbert, Abeba Bir-
hane, Jeff Howard, Juri Viehoff, Johannes Himmelreich, James Manyika, and the 
editorial team at Dædalus for their support with this work.



230 Dædalus, the Journal of the American Academy of Arts & Sciences

Toward a Theory of Justice for Artificial Intelligence

	 12	 Frank Pasquale, The Black Box Society (Cambridge, Mass.: Harvard University Press, 2016), 
14.

	 13	 Ibid., 41.
	 14	 Safiya Umoja Noble, Algorithms of Oppression (New York: New York University Press, 

2018); and Benjamin, Race After Technology.
	 15	 Indeed, given the breadth of these concerns, rejection of the argument contained in this 

essay does not entail that concerns about justice in the context of AI are not valid. They 
could still be grounded in other ways. See, for example, Sasha Costanza-Chock, Design 
Justice: Community-Led Practices to Build the Worlds We Need (Cambridge, Mass.: MIT Press, 
2020).

	 16	 John Rawls, Justice as Fairness: A Restatement (Cambridge, Mass.: Harvard University Press, 
2001), 10.

	 17	 Miriam Ronzoni, “The Global Order: A Case of Background Injustice? A Practice- 
Dependent Account,” Philosophy & Public Affairs 37 (3) (2009): 229–256.

	 18	 Rawls, A Theory of Justice, 82.
	 19	 Rashida Richardson, “Defining and Demystifying Automated Decision Systems,” Mary-

land Law Review (forthcoming): 1.
	 20	 Rawls, Political Liberalism, 68.
	 21	 Ibid.
	 22	 Pasquale, The Black Box Society.
	 23	 Kate Vredenburgh, “The Right to Explanation,” Journal of Political Philosophy (2021).
	 24	 See Reuben Binns, “Algorithmic Accountability and Public Reason,” Philosophy & Technol-

ogy 31 (4) (2018): 543–556; and Thomas Krendl Gilbert, “Mapping the Political Econ-
omy of Reinforcement Learning Systems: The Case of Autonomous Vehicles,” Simons 
Institute Newsletter, January 31, 2021.

	 25	 Jonathan Quong, “Public Reason,” The Stanford Encyclopedia of Philosophy, May 20, 2013,  
updated October 24, 2017, https://plato.stanford.edu/archives/spr2018/entries/public 
-reason/.

	 26	 Rawls, Justice as Fairness, 42.
	 27	 Rawls, Political Liberalism, 291.
	 28	 Rawls, A Theory of Justice, 199.
	 29	 Ibid., 48.
	 30	 Tommie Shelby, “Race and Social Justice: Rawlsian Considerations,” Fordham Law Review 

72 (5) (2004): 1706.
	 31	 Rawls, A Theory of Justice, 54 (italics mine).
	 32	 Carissa Véliz, Privacy Is Power: Why and How You Should Take Back Control of Your Data (New 

York: Random House, 2020).
	 33	 Andrei Marmor, “What Is the Right to Privacy?” Philosophy & Public Affairs 43 (1) (2015): 

3–26.



151 (2) Spring 2022 231

Iason Gabriel

	 34	 Ben Green, “Escaping the ‘Impossibility of Fairness’: From Formal to Substantive Algo-
rithmic Fairness,” arXiv (2021), https://arxiv.org/abs/2107.04642.

	 35	 Solon Barocas and Andrew D. Selbst, “Big Data’s Disparate Impact,” California Law Review 
104 (2016): 671.

	 36	 Ibid.
	 37	 Ibid., 723.
	 38	 Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan, “Inherent Trade-Offs in the 

Fair Determination of Risk Scores,” arXiv (2016), https://arxiv.org/abs/1609.05807.
	 39	 For important complementary analysis of the way in which Rawlsian considerations 

have influenced discussion of information ethics, see Anna Lauren Hoffman, “Beyond 
Distributions and Primary Goods: Assessing Applications of Rawls in Information Sci-
ence and Technology Literature Since 1990,” Journal of the Association for Information Sci-
ence and Technology 68 (7) (2017): 1601–1618.

	 40	 Rawls, Justice as Fairness, 166.
	 41	 Langdon Winner, The Whale and the Reactor: A Search for Limits in an Age of High Technology 

(Chicago: University of Chicago Press, 2020), 9.
	 42	 Iason Gabriel, “Artificial Intelligence, Values, and Alignment,” Minds and Machines 30 (3) 

(2020): 411–437.



232
© 2022 by John Tasioulas 

Published under a Creative Commons Attribution- 
NonCommercial 4.0 International (CC BY-NC 4.0) license 

https://doi.org/10.1162/DAED_a_01912

Artificial Intelligence, Humanistic Ethics

John Tasioulas

Ethics is concerned with what it is to live a flourishing life and what it is we morally  
owe to others. The optimizing mindset prevalent among computer scientists and 
economists, among other powerful actors, has led to an approach focused on maxi-
mizing the fulfilment of human preferences, an approach that has acquired consid-
erable influence in the ethics of AI. But this preference-based utilitarianism is open 
to serious objections. This essay sketches an alternative, “humanistic” ethics for AI 
that is sensitive to aspects of human engagement with the ethical often missed by the 
dominant approach. Three elements of this humanistic approach are outlined: its 
commitment to a plurality of values, its stress on the importance of the procedures 
we adopt, not just the outcomes they yield, and the centrality it accords to individual 
and collective participation in our understanding of human well-being and morality.  
The essay concludes with thoughts on how the prospect of artificial general intelli-
gence bears on this humanistic outlook.

E thics is, first and foremost, a domain of ordinary human thought, not a 
specialist academic discipline. It presupposes the existence of human 
choices that can be appraised by reference to a distinctive range of values. 

The delimitation of this range, among other values such as aesthetic or religious 
values, is philosophically controversial. But on a fairly standard reading, two very 
general, interlocking questions lie at the heart of ethics: What is it to live a good 
or flourishing life? And what is it that we owe to others, notably fellow human 
beings, but also nonhuman animals or even inanimate nature? The first question 
brings us into the territory of individual well-being; the second into that of mo-
rality, especially the obligations we owe to others and the rights they hold against 
us. Philosophers expound theories of well-being and morality and their interrela-
tions, but all of us, in living our lives, constantly make choices that reflect answers 
to these questions, however inchoate or unconscious they may be. 

Engagement with ethics is inescapable in decision-making about artificial in-
telligence.1 The choices we make regarding the development and deployment of 
AI-based technologies are ultimately intelligible only in terms of the fallible pur-
suit of ethical values such as the acquisition of knowledge and control or the pro-
motion of health, justice, and security. Moreover, all forms of “regulation” that 
might be proposed for AI, whether voluntary self-regulation in deciding whether 
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to use a social robot as a caregiver, or the social and legal norms that should gov-
ern the manufacturing and use of such robots, ultimately implicate choices that 
reflect judgments about ethical values and their prioritization. 

A clear-eyed appreciation of the pervasive significance of ethics for AI is some-
times obscured by an odd contraction that the idea of ethics is liable to undergo in 
this domain. So, for example, Kate Crawford, author and founder of the AI Now 
Institute, urges us to “focus less on ethics and more on power” because “AI is in-
variably designed to amplify and reproduce the forms of power it has been de-
ployed to optimize.”2 But what would the recommended focus on power entail? 
For Crawford, it means interrogating the institutional power structures in which 
AI is embedded by reference to ideas of equality, justice, and democracy. But the 
irony is that these three ideas are either themselves core ethical values or, in the 
case of democracy, need to be explicated and defended in terms of such values. 

Nonetheless, Crawford’s injunction usefully prompts reflection on the various 
ways the idea of ethics has been unduly diminished in recent discussions about 
AI, no doubt partly a result of the prominent role of big tech players in shaping the 
field of “AI ethics” to limit the threat it poses to their commercial ambitions. Con-
sider three ways the diminishment of ethics is typically effected.

Content. The content of ethical standards is often interpreted as exclusively a 
matter of fairness, which is primarily taken to be a relational concern with how 
some people are treated compared with others. Illustrations of AI-based technol-
ogy that raise fairness concerns include facial recognition technology that sys-
tematically disadvantages darker-skinned people or automated resume screen-
ing tools that are biased against women because the respective algorithms were 
trained on data sets that are demographically unrepresentative or that reflect his-
torically sexist hiring practices. “Algorithmic unfairness” is a vitally important 
matter, especially when it exacerbates the condition of members of already un-
justly disadvantaged groups. But this should not obscure the fact that ethics also 
encompasses nonrelational concerns such as whether, for example, facial recog-
nition technology should be deployed at all in light of privacy rights or whether it 
is disrespectful to job applicants in general to rank their resumes by means of an 
automated process.3 

Scope of application. Ethics is sometimes construed as narrowly individualistic 
in focus: that is, as being concerned with guiding individuals’ personal conduct, 
rather than also bearing on the larger institutional and social settings in which 
their decisions are made and enacted.4 In reality, however, almost all key ethical 
values, such as justice and charity, have profound implications for institutions and 
patterns of social organization. Plato’s Republic, after all, sought to understand 
justice in the individual soul by considering it “writ large” in the polity. Admit-
tedly, some philosophers treat political justice as radically discontinuous from 
justice in the soul. The most influential proponent of the discontinuity thesis in 
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recent decades is John Rawls, who contends that pervasive reasonable disagree-
ment on ethical truth disqualifies beliefs about such truths from figuring as prem-
ises in political justification.5 This is a sophisticated controversy, which cannot be 
addressed here, save to note that this kind of move will always face the response 
that the phenomenon of reasonable disagreement, and the need for respect that it 
highlights, is itself yet a further topic for ethical appraisal, and hence cannot dis-
place the need to take a stand on ethical truth.6

Means of enforcement. There is a widespread assumption that ethics relates 
to norms that are not properly enforceable–for example, through legal mech-
anisms–but instead are backed up primarily by the sanction of individual con-
science and informal public opinion. But the general restriction of ethics to “soft” 
forms of regulation in this way is arbitrary. The very question whether to enact a 
law or other regulatory norm and, if so, how best to implement and enforce it, is 
one on which ethical values such as justice and personal autonomy have a signifi-
cant bearing. Indeed, there is a long-standing tradition, cutting across ideological 
boundaries, that identifies justice precisely with those moral rights that should in 
principle receive social and legal enforcement.

In short, we should reclaim a broad and foundational understanding of ethics 
in the AI domain, one that potentially encompasses deliberation about any form 
of regulation, from personal self-regulation to legal regulation, and which poten-
tially has radical implications for the reordering of social power. 

Given its inescapability, ethical thought is hardly absent from current dis-
cussions around AI. However, these discussions often suffer from a ten-
dency either to leave inexplicit their operative ethical assumptions or else 

to rely upon them uncritically even when they are made explicit. We can go even 
further and identify a dominant, or at least a prominent, approach to ethics that 
is widely congenial to powerful scientific, economic, and governmental actors in 
the AI field.

Like anyone else, AI scientists are prone to the illusion that the intellectual 
methods at their disposal have a far greater problem-solving purchase than is war-
ranted. This is a phenomenon that Plato diagnosed in relation to the technical ex-
perts of his day, artisans such as cobblers and shipbuilders. The mindset of scien-
tists working in AI tends to be data-driven, it places great emphasis on optimiza-
tion as the core operation of rationality, and it prioritizes formal and quantitative 
techniques. Given this intellectual orientation, it is little wonder that an eminent 
AI scientist, like Stuart Russell, in his recent book Human Compatible: AI and the 
Problem of Control, is drawn to preference-based utilitarianism as his overarching 
ethical standpoint.7 

Russell’s book takes the familiar worry that AI–in the form of an artificial gen-
eral intelligence (AGI) that surpasses human intellectual capabilities–will even-
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tually spiral out of control, unconstrained by human morality, with disastrous 
consequences. But what is human morality? Russell appears to take it as axiom-
atic that the morally right thing to do is whatever will maximize the fulfilment of 
human preferences.8 In terms of our two core concerns of ethics, the fulfilment of 
human preferences is taken to encompass well-being, and the fundamental moral 
injunction is to maximize overall well-being thus conceived. So ethics is reduced 
to an exercise in prediction and optimization: which act or policy is likely to lead 
to the optimal fulfilment of human preferences? 

But this view of ethics is notoriously open to multiple serious–I believe, fatal–
objections. Its concern with aggregating preferences threatens to override impor- 
tant rights that erect strong barriers to what can be done to individuals. Why not 
feed a few Christians to the lions if their preferences to stay alive are outweighed by 
the preferences of a sufficiently large number of blood-thirsty Roman spectators? 
And that is even before we observe that many preferences are infected with racism, 
sexism, or other prejudices; that they may reflect false or incomplete information; 
or that they may be psychological adaptations to oppressive circumstances. Ethics 
operates in the crucial space of reflection on what our preferences should be, a vi-
tal consideration that makes a belated appearance in the last few pages of Russell’s 
book.9 It cannot take those preferences as ultimate determinants of value. 

There are moral philosophers who defend versions of preference utilitarian-
ism that are patched-up to address these difficulties. But the idea that preference 
utilitarianism is a highly contestable moral theory does not really register in Rus-
sell’s book, which conforms with my suspicion that it approximates to a default 
position among leading actors in the AI field. 

The same broad approach is heavily influential among leading economic and 
governmental actors. This is perhaps less obvious, since the doctrine is standardly 
modified by positing wealth-maximization as the more readily measurable proxy 
for preference satisfaction. Hence the tendency of GDP to hijack governmental 
decision-making around economically consequential technologies, with the re-
sultant sidelining of values that are not readily catered to by the market, such as 
public goods like access to justice and health care or the preservation of a sustain-
able environment. Hence, also, the legitimation of profit maximization by corpo-
rations as the most effective institutional means to societal wealth maximization. 

Of course, many who adopt such an approach have never heard of utilitarianism 
or, if they have, may explicitly reject it. But one revealing indication of the dom-
inance of an ideology is the way that people who disavow it can nonetheless re-
main in its intellectual grip.

A key priority for those working in the field of AI ethics is to elaborate an 
ethical approach that transcends the limitations and distortions of this 
dominant ethical paradigm. In my view, such a humanistic ethics–one 
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that encompasses aspects of human engagement with the ethical that are not ad-
equately captured by the methods of natural science and mainstream economics, 
but that are the traditional concern of the arts and humanities–would possess at 
least the following three, interrelated features (the three Ps).

Pluralism. The approach would emphasize the plurality of values, both in 
terms of the elements of human well-being (such as achievement, understand-
ing, friendship, and play) and the core components of morality (such as justice, 
fairness, charity, and the common good). This pluralism of values abandons the 
comforting notion that the key to the ethics of AI will be found in a single mas-
ter concept, such as trustworthiness or human rights. How could human rights 
be the comprehensive ethical framework for AI when, for example, AI has a se-
rious environmental impact beyond its bearing on anthropocentric concerns? 
And what of those important values to which we do not have a right, such as mer-
cy or solidarity? Nor can trustworthiness be the master value. Being parasitic on 
compliance with more basic values, trustworthiness cannot itself displace those  
values. 

Beyond the pluralism of values is their incommensurability. We are often con-
fronted with practical problems that implicate an array of values that pull in dif-
ferent directions. In such cases, although some decisions will be superior to oth-
ers, there may be no single decision that is optimal: in choosing an occupation, 
teaching may be a better field for me than surgery, but we cannot assume there is a 
single profession that is, all things considered, best, rather than a limited array of 
eligible alternatives that are no worse than the others. This incommensurability 
calls into question the availability of some optimizing function that determines 
the single option that is, all things considered, most beneficial or morally right, 
the quest for which has animated a lot of utilitarian thinking in ethics. 

It is worth observing that confidence about the deployment of AI to mini-
mize “noise” in human judgment–the unwanted variability, for example, in hir-
ing decisions by employers or sentencing by judges–displayed in the important 
new work of Daniel Kahneman, Olivier Sibony, and Cass Sunstein, sometimes 
involves an implicit reductionism about the values at stake that downplays the 
scope for incommensurability.10 For example, the authors treat bail decisions fun-
damentally as predictions of the likelihood that the accused will abscond or reof-
fend, sidelining considerations such as the gravity of the offense with which they 
have been charged or the impact of detention on the accused’s dependents.11 But 
such decisions typically address multivalue problems, and there is no guarantee 
that there is a single best way of reconciling the competing values in each case. 
This means not only that algorithms will need to be more sophisticated to balance 
multiple salient values in reaching a correct decision, but that much of what looks 
like noise may be acceptable variability of judgments within the range of rationally 
eligible alternatives. 
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Procedures, not only outcomes. Of course, we want AI to achieve valuable social 
goals, such as improving access to education, justice, and health care in an effec-
tive and efficient way. The COVID-19 pandemic has cast into sharp relief the ques-
tion of what outcomes AI is being used to pursue: for example, is it enabling phy-
sicians to diagnose and triage patients faster and more effectively, or is it primarily 
engaged in profit-making activities, like vacuuming up people’s attention online, 
that have little or no redeeming social value?12 The second feature of a humanistic 
approach to ethics emphasizes that what we rightly care about is not just the val-
ue of the outcomes that AI applications can be used to deliver, but the procedures 
through which it does so. 

If, for example, important practical decisions exhibit the phenomenon of in-
commensurability, then we may have good reason to ensure that they are assigned 
to humans, rather than to automated processes, to preserve a valuable form of 
autonomy for humans as they express and develop their tastes and characters in 
choosing from divergent, but rationally eligible, pathways in life. Of course, there 
is the further question of how to balance such autonomy against demands for 
consistency (or “noiselessness”), especially in public decision-making. Should 
we tolerate significant divergence in sentencing across judges, or should the de-
mands for “horizontal equity” prevail, ensuring that like cases are treated alike? 
Proponents of the latter view often recommend the use of algorithms to guide or 
replace human decision-making. This itself is a difficult question of striking a bal-
ance between competing considerations in our legal culture, with no ex ante guar-
antee that one solution will emerge as superior overall. 

But the case for according ultimate decision-making authority to humans can 
also be made even if we suppose that a single correct answer is always available. 
Take, for example, the use of AI in cancer diagnosis and its use in the sentencing 
of criminals. Intuitively, the two cases seem to exhibit a difference in the compar-
ative valuing of the soundness of the eventual decision or diagnosis and the pro-
cess through which it is reached. When it comes to cancer, generating the most 
accurate diagnosis may be all-important, it being largely a matter of indifference 
whether this is generated by an AI diagnostic tool or the exercise of human judg-
ment. In criminal sentencing, however, being sentenced by a robot judge–even if 
the sentence is likely to be less biased or less “noisy” than one rendered by a hu-
man counterpart–appears to sacrifice important values, such as the ideal of reci-
procity among fellow citizens that is central to the rule of law.13

This last point is familiar, of course, in relation to such process values as trans-
parency, procedural fairness, and explainability. Even if the procedure followed by 
the judicial algorithm can be made transparent, there is a serious question–given,  
for example, the vast discrepancy between machine learning and ordinary human 
reasoning processes–whether it affords an explanation of the right kind, an ex-
planation that a criminal defendant can grasp as offering intelligible reasons for 
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the decision to imprison him. But the point goes beyond the important issue of 
explainability. How does it feel to contemplate the prospect of a world in which 
judgments that bear on our deepest interests and moral standing have, at least as 
their proximate decision-makers, autonomous machines that do not have a share 
in human solidarity and cannot be held accountable for their decisions in the way 
that a human judge can?

Participation. The third feature relates to the importance of participation in 
the process of decision-making with respect to AI, whether as an individual or 
as part of a group of self-governing democratic citizens. At the level of individ-
ual well-being, this takes the focus away from theories that equate human well-
being with an end state such as pleasure or preference-satisfaction. These end 
states could in principle be brought about through a process in which the per-
son who enjoys them is passive: for example, by the government putting a hap-
piness drug into the water supply. Contrary to this passive view, it would stress 
that successful engagement with valuable pursuits is at the core of human well- 
being.14 

If the conception of human well-being that emerges is deeply participatory, 
then this bears heavily on the delegation of decision-making power to AI applica-
tions. One of the most important sites of participation in constructing a good life, 
in modern societies, is the workplace.15 According to a McKinsey study, around 30 
percent of all work activities in 60 percent of occupations could one day be auto-
mated.16 Can we accept the idea that the large-scale elimination of job opportu-
nities can be compensated for by the benefits that automation makes available? 
The answer partly depends on whether the participatory self-fulfilment of work 
can, any time soon and for the vast majority of those rendered jobless, be feasibly 
replaced by other activities, such as art, friendship, play, or religion. If it cannot, 
addressing the problem with a mechanism like a universal basic income, which 
involves the passive receipt of a benefit, will hardly suffice. Instead, much greater 
attention will need to be paid to how AI can be integrated into productive practic-
es in ways that do not so much replace human work as enhance its quality, making 
it more productive, fulfilling, and challenging, while also less dangerous, repeti-
tive, and lacking in meaning.17 

Similarly, we value citizen participation as part of collective democratic 
self-government. And we do so not just because of the instrumental benefits of 
democratic decision-making in generating superior decisions by harnessing cog-
nitive diversity, but also because of the way in which participatory decision-mak-
ing processes affirm the status of citizens as free and equal members of the com-
munity.18 This is an essential plank in the defense against the tendency of AI 
technology to be co-opted by technocratic modes of decision-making that erode 
democratic values by seeking to convert matters of political judgment into ques-
tions of technical expertise.19
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At present, much of the culture in which AI is embedded is distinctly techno-
cratic, with decisions about the “values” encoded in AI applications being taken 
by corporate, bureaucratic, or political elites, often largely insulated from mean-
ingful democratic control. Indeed, a small group of tech giants accounts for the 
lion’s share of investment in AI research, dictating its overall direction and setting 
the prevalent moral tone. Meanwhile, AI-enabled social media risks eroding the 
quality of public deliberation that a genuine democracy needs, such as by promot-
ing the spread of disinformation, aggravating political polarization, or using bots 
in astroturfing campaigns. Similarly, the use of AI as part of corporate and gov-
ernmental efforts to monitor and manipulate individuals undermines privacy and 
threatens the exercise of basic liberties, effectively discouraging citizen participa-
tion in democratic politics.20

As with workplace participation, we need to reflect seriously on how AI and 
digital technology more generally can enable, rather than hinder and distort, dem-
ocratic participation.21 This is especially urgent given the declining faith in democ-
racy across the globe in recent years, including in long-established democracies 
such as the United Kingdom and the United States. Indeed, the disillusionment is 
such that, in a recent poll, 51 percent of Europeans favored replacing at least some 
of their parliamentarians with AI.22 There is still time to salvage the democratic 
ideal that an essential part of civic dignity is participation in self-government.

An additional complexity here concerns how these two modes of participation–
in the workplace and in politics–are connected. It is obvious that active participa-
tion in the two domains is mutually reinforcing in important ways. Thus, powers 
of reason and sociability that are developed in a participatory workplace, and that 
foster a sense of equal civic dignity, can be brought to bear in democratic deliber-
ation about political questions, just as democratic control over the impact of new 
technologies on the workplace can help preserve and enhance its vital role as a site 
of genuine human fulfilment.23

I have mainly focused on narrow AI, conceived as AI-powered technology that 
can perform limited tasks (such as facial recognition or medical diagnosis) 
that typically require intelligence when performed by humans. This is partly 

because serious doubt surrounds the likelihood of artificial general intelligence  
emerging within any realistically foreseeable time frame, partly because the op-
erative notion of “intelligence” in discussions of AGI is problematic,24 and partly 
because a focus on AGI often distracts us from the more immediate questions of 
narrow AI.25

With these caveats in place, however, one can admit that thought experiments 
about AGI can help bring into focus two questions fundamental to any humanis-
tic ethic: What is the ultimate source of human dignity, understood as the inher-
ent value attaching to each and every human being? And how can we relate hu-
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man dignity to the value inhering in nonhuman beings? Toward the end of Kazuo 
Ishiguro’s novel Klara and the Sun, the eponymous narrator, an “Artificial Friend,” 
speculates that human dignity–the “human heart” that “makes each of us special 
and individual”–has its source not in something within us, but in the love of oth-
ers for us.26 But a threat of circularity looms for this boot-strapping humanism, 
for how can the love of others endow us with value unless those others already 
have value? Moreover, if the source of human dignity is contingent on the varying 
attitudes of others, how can it apply equally to every human being? Are the un-
loved bereft of the “human heart”?

Questions like these explain the tendency among some to interpret the inher-
ent value of each individual human being as arising from the special love that a 
supremely good transcendent being–God, represented by the sun, in Ishiguro’s 
novel, which the solar-powered Klara treats as a kind of life-sustaining divinity– 
has for each human being in equal measure.27 But invoking a divine being to under
write human dignity leads us into obvious metaphysical and ethical quagmires, 
which in turn raise the difficult question of whether the inherent worth of hu-
man beings can be explicated within a broadly naturalistic framework.28 Suppos-
ing that it can be, this is compatible with a distinct kind of dignity also inhering in 
other beings, such as nonhuman animals. 

We are still struggling to integrate the value of nonhuman animals within 
our ethical thought. Doing so requires overcoming the baleful influence of long- 
standing practices in which animals are treated either as possessing merely instru-
mental value in relation to human ends, or at best intrinsic value that is condition-
al on their role in human life. The dream of AGI, should it ever become a reality, 
will generate an even more acute version of this problem, given the prominent 
role that our rational capacities play in elevating human dignity above the dignity 
of other beings known to us.29 For the foreseeable future, however, our focus must 
be on properly integrating AI technology into a culture that respects and advances 
the dignity and well-being of humans, and the nonhuman animals with whom we 
share the world, rather than on the highly speculative endeavor of integrating the 
dignity of intelligent machines into our existing ethical framework.
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Digital technologies are transforming the economy and society. The dimension- 
ality and scope of the impacts are bewildering and too numerous to cover in a sin-
gle essay. But of all the concerns around digital technology (and there are many), 
perhaps none has attracted more attention, and generated deeper anxiety, than the 
impact of various types of automation on work and on the structure of the economy. 
I focus on the ways in which the digitization of virtually all data, information, and 
content is transforming economies. And more specifically, I look at the impacts of 
automation, augmentation, AI, machine learning, and advanced robotics on eco-
nomic transformations, on work, and on the distribution of income and wealth.

Digital technology can be thought of as digital machines (computers, serv-
ers, and various other portable devices), software, and networks (with 
standardized protocols) creating, storing, operating on, and transmitting 

information in digital form. “Use cases” refer to applications of digital technology 
such as mobile payments, social media, online commerce, and location-specific 
services like maps. 

Automation and digital machine augmentation are a class of use cases. Auto- 
mation involves replacing people with machines in the performance of certain 
tasks that machines can carry out without human intervention or guidance. Aug-
mentation connotes adding machines to a work environment, enabling people to 
be more productive.1 The two As are flip sides of the same coin. 

Augmentation of human productivity using machines is hardly new. If you think 
of tools as simple machines, augmentation of human capabilities has characterized 
most of human history on the planet. In the first industrial revolution, when energy 
and power were added to the mix via steam engines, and later electricity and fossil 
fuels, machine augmentation produced (with a lag) a huge, sustained acceleration 
in productivity. We called it mechanization. And it changed work, raising concerns 
that there would not be enough jobs to go around, or that a subset of people would 
not be able to learn how to do the new jobs that required working with machines. 
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This kind of machine augmentation can produce transitory unemployment 
for a few reasons. First, work in the sectors experiencing rapid machine augmen-
tation requires new sets of skills, and these do not adjust immediately in the work-
force. Second, utilizing the new technology often requires the installation of new 
production systems and business models, which again is far from instantaneous. 
And third, increased productivity will give rise to rising incomes, but that may 
not result in higher demand right away. For instance, at present, labor incomes 
in many countries are diverging from productivity for much of the population; 
income is going to capital and toward the wealthy end of the income spectrum, 
where savings are higher. 

That said, longer term, two parallel processes have typically prevented perma-
nent unemployment from becoming a reality. Incomes rise, and with that increase 
comes elevated demand for goods and services. Second, with higher incomes, la-
bor markets adapt to different work-leisure trade-offs; hours worked steadily de-
cline over long periods of time. Data on hours worked support this proposition. 
Across countries, hours worked per year declines with per capita income, and 
across time among Organisation of Economic Co-operation and Development 
countries, hours worked declines over time.2 (See Figure 1.) In the pre-industrial 
era, many people worked long hours just to provide for basic needs. 

Nevertheless, concerns about employment in the aggregate–in effect, wheth-
er there are enough jobs to go around–have been common in periods of rapid 
technological advancement. 

In the predigital era, the issue was not about what might be called full automa-
tion, because machines did not perform tasks all by themselves. Mechanization 
was the focus of attention. In modern parlance, one can think of it as machine 
augmentation, but not digital machines. People used machines to do tasks much 
more quickly, often with higher-quality outputs, and even to produce things that 
were impossible in the premachine age. 

Admittedly, the historical line between mechanization and automation is 
sometimes a little blurry. The history of weaving machines or looms contains fas-
cinating examples of predigital automation.3  But for the most part, in the predig-
ital era, machines did not carry out long and relatively complex sequences of ac-
tions without human intervention. In general, machines augmented and replaced 
humans in the physical performance of tasks, but the information and control lay-
er, governing the sequencing and timing of the activities of machines, remained 
firmly in human hands or minds. Machines in the industrial age were powerful 
but they did not function autonomously. In the digital era, this is no longer true.

This somewhat simple fact helps explain why we find ourselves in uncharted 
territory. In any economy there is a very large collection of activities that involve 
gathering, recording, analyzing, and transferring information, transactions, co-
ordination of activity, pattern recognition, and decisions. There is an enormous 
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amount of embedded knowledge in an economy, and sophisticated transmission 
mechanisms via institutions and informal networks that support information 
flows and decisions (large and small) that in the aggregate determine the perfor-
mance of the economy.

W hich brings us to automation, digital machines, and software. Early 
computers were programmed manually to perform a specific function, 
with wires, somewhat like an old telephone switchboard.4 That cum-

bersome and limiting technology was quickly replaced by programmable comput-
ers, which load a set of digital coded instructions and then execute them autono-
mously. The code contains the logical sequence of steps that would be carried out by 
humans were they performing the task. Up until recent advances in artificial intel-
ligence (over the past decade), this has been the basic model of digital automation.  

Figure 1
Annual Average Working Hours per Worker

Note: Before 1950, the data correspond only to full-time production workers (non-agricul-
tural activities). Starting in 1950, estimates cover total hours worked in the �economy as mea-
sured from primarily National Accounts data. Our World in Data plotted the data from Hu-
berman and Minns and extended coverage using an updated vintage of the Penn World Table, 
which uses the same underlying source. Comparisons between countries are limited due to 
differences in measurement. Source: Michael Huberman and Chris Minns, “The Times They 
Are Not Changin’: Days and Hours of Work in Old and New Worlds, 1870–2000,” Explorations 
in Economic History 44 (4) (2007); and University of Groningen, Penn World Table 9.1 database 
(2019).
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Before the programmable computer and the digitization of most information 
in the form of data, automation and augmentation in the information, control, 
coordination, decision, and transactions layers of the economy were negligible. 
Now, as of about the past sixty years, for the first time we have powerful machines 
in the information, coordination, and decision (ICD) layer. That is in part why 
digital economists Erik Brynjolfsson and Andrew McAfee referred to this as the 
second machine age in their influential book of the same name.5 

For those who might have suspected that this ICD layer was perhaps an im-
portant but relatively minor (in terms of value-added) part of the economy, the 
effect of the COVID-19 pandemic on the economy was revealing. Substantially 
disconnecting the functioning of the ICD layer from the need for physical proxim-
ity, which is what in part modern network-based digital technology has done, en-
abled economies to keep operating with substantially reduced mobility and phys-
ical contact. Of course, there are important sectors in which proximity is unavoid-
able that either contracted or shut down during the pandemic or stayed open but 
at considerable health risk to their workers. 

In short, the ICD layer, which is effectively the governing and control mech-
anism in the economy and the market system, now has powerful machines that 
automate, replace, and sometimes outperform people in some tasks, while simul-
taneously augmenting people in the performance of other tasks.  

It is tempting to assume that the second machine age will follow a pattern like 
industrialization, and indeed it may. But as we are in somewhat uncharted territory, 
we should not rush to this conclusion. While the impact of digital technology has 
already been substantial, the technology seems clearly set to continue to advance. 

The full economic impact of AI and machine learning, for example, is largely in 
the future. The pandemic economy has accelerated digital adoption across a range 
of sectors, including many that had been lagging in this respect.6 Powerful ma-
chine learning tools are now widely available for a rapid digital transformation. 

The first round of digital automation involved codifying tasks. Codifiable tasks 
have two properties: 1) people can do them–meaning, carry out the steps and 2) we  
can figure out and precisely describe the logical steps we use in performing them, 
steps and logic that are then embodied in code. It is the second part that enables 
digital machines to automate significant parts of the information-processing and 
control layer of the economy. It is also the part that blocked progress in artificial 
intelligence until the machine learning revolution, because a variety of “tasks”–
such as image recognition, understanding natural language, translation, and in 
fact a number of pattern-recognition and prediction capabilities that humans 
have–defied codification. This impasse in AI put quite severe limits on the scope 
for automation. 

AI based on machine learning broke this impasse essentially with an end run. 
Take image recognition, an area that has experienced dramatic advances in the 
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past ten years. Instead of trying to find a set of “rules” for classifying images, deep 
learning algorithms analyze millions of digital images to detect patterns. Over 
time, the predictions about images become increasingly accurate. Similar advanc-
es are occurring in speech, language translation, a host of medical applications, 
and many more fields.

For the economy, the significance of the breakthroughs in AI via machine 
learning lies in dramatically increasing the scope for automation and, critically, 
augmentation across the entire economy. Advanced robotics, autonomous ve-
hicles, radiology, analysis of DNA sequences in relation to diseases, reading vast 
amounts of literature for doctors and other professionals, expanding access to 
credit and other financial services via algorithms that close informational gaps are 
all enabled by machine learning. And these are just a few examples.

The first round of automation, now in its middle age, was not AI-driven but 
required codification of tasks. We have data on its impacts. This second round of 
automation and augmentation enabled by machine learning is in its early stages. 
Its full impact is not yet apparent in economic data.  

T he impact of the codification version of automation has already been sub-
stantial. Routine white- and blue-collar jobs, or more precisely jobs in 
which routine tasks are a large component, began declining with a notice-

able acceleration around the year 2000. Here, routine refers to jobs that substan-
tially consist of tasks that are codifiable and hence subject to partial or complete 
automation. Codifiable, however, does not mean simple. The sequence of steps 
including conditional branching, true/false determinations, and classification 
can be long and complex. 

Since many of these routine jobs were associated with mid-level incomes, the 
first order effect in economic terms has been to reduce employment in routine, 
middle-income jobs. A distinctive characteristic of digital automation is that it in-
cludes both blue- and white-collar work, the latter involving processing, storing, 
recording, and retrieving information. 

A resulting pattern of job and income polarization has been documented for 
most of the developed economies.7 The immediate effect on the income distribu-
tion is to flatten it, making the tails larger and the middle smaller. Of course, if the 
displacement of middle-income jobs were extreme, we could start to see bimodal 
distributions, but that has not yet happened. 

How does the economy respond when a certain class of jobs is automated? 
Initially, there may be transitory unemployment, and adjustment typically takes 
place dynamically as follows. At first, people will look for jobs that match their 
current specific skill set. But that does not work for everyone because those jobs 
are declining in the economy. They then set employment as a priority and move to 
jobs in which the skill requirements are either fewer, or are more easily acquired 
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quickly, as we have seen with part-time jobs in the Internet-enabled gig economy. 
Often that means lower incomes. What one sees from a macroeconomic perspec-
tive is not necessarily large-scale increases in unemployment, but rather a deteri-
oration in the income distribution. One can think of this as a shifting equilibrium, 
assuming the skills on the supply side remain fixed.8 

However, that is not the end of the story, because the skills and human capital 
side of the job market are not fixed, just slower moving. People look for and start 
investing in skills and human capital that are in demand in nonroutine job catego-
ries with higher incomes. The pace of this more time-consuming process crucially 
depends on the presence or absence of supporting institutions, including employ-
ers. That is why, for example, there are numerous partnership initiatives in the 
United States, involving government at all levels, businesses, and educational in-
stitutions to accelerate the skills-transition process. And in many other countries, 
the existing and well-developed educational and skills-training infrastructure is 
being adapted to digital transformations to continue to play a key role in these 
supply-side skills transitions. 

A second key gatekeeping factor with respect to the skills transition is the dis-
tribution of income and wealth. Investing in one’s own human capital takes time 
and financial resources regardless of the quality of the institutional support mech-
anisms. If income and wealth inequality is extreme, then the lower part of the  
income/wealth distribution will struggle to make the investments in their own 
human capital, the more so in the absence of high-quality publicly funded and 
low-cost key public services. 

Notice the circularity here. Automation of middle-income jobs has contribut-
ed to suppressing the middle of the income distribution. For those who are pushed 
toward lower deciles, the challenge of investing their way out via new skills acqui-
sition becomes more difficult. So the income distribution is both an outcome of 
and an input to the digital transitions in work. The appropriate conclusion seems 
to be that policies that directly address high income inequality will turn out to 
contribute to successful work transitions, even if that is not the primary purpose 
of the policies.9

The skills-adjustment process can have a beneficial effect on the income dis-
tribution. Essentially, it partially undoes the adverse initial distributional effect of 
automation by increasing the supply of people with skills that are in high demand 
and have higher incomes. In fact, other things equal, it may lower the incomes in 
these higher-skill/income segments, or the so-called skills premium. But it also 
reduces the supply of people in the lower-skill/income part of the spectrum, and 
hence puts upward pressure on the wages there. 

A natural and important question is, “Will the skills-adjustment process large-
ly eliminate the adverse initial distributional effects of automation?” An honest 
answer, I think, is that we do not know because we have no way of determining 
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with any precision, ultimately, how fungible the human capital stock really is in 
the population. The existing evidence does not support the view that adverse dis-
tributional effects are transitory. To date, skill-biased technical change (substan-
tially in the digital area) looks like it has shifted income upward in the distribution, 
even after the skills-adjustment process on the supply side is well underway.10 

The main takeaways here are: 1) we are grappling with complex structural 
changes and transitions in work, skill requirements, and human capital, not equi-
libria; 2) the purpose and end point of this transition is to turn automation into 
digital augmentation; 3) technology is not stationary with the result that the tar-
get keeps moving, especially with the application of machine learning across most 
sectors of the economy; and 4) extreme income inequality combined with insti-
tutional and policy shortfalls risk turning a complex transition into a trap for the 
lower-income part of the population. 

T wo other dimensions of the challenge of AI and automation deserve at-
tention. One is that technology can and does adapt in ways that reduce 
the magnitude of the skills-acquisition problem. We see this all around 

us. Digital equipment and systems are designed to be easier to use, and markets 
reward that kind of innovation. Perhaps the best historical example is the graph-
ical user interface (now found on virtually every consumer digital device). It is so 
pervasive that we all take it for granted and for younger people, it is simply the 
normal way to interact with digital machines. But there was a time when interact-
ing with “computers” was a lot less intuitive, and largely confined to those with 
the requisite training. 

Let me turn now to AI and machine learning technologies. As noted earlier, 
machine learning implies a vast expansion in the tasks or subtasks that can be au-
tomated: for example, advanced robotics, autonomous vehicles, and reading and 
editing technical literature for, say, medical professionals. In addition, machine 
learning–based pattern-recognition applications go well beyond human capabili-
ties in some areas, as applied to genetics and biomedical science, for example, tak-
ing it well beyond automation and firmly into the realm of augmentation.11

Since these advances in AI for work entail a significant expansion of tasks or 
subtasks that can be automated and performed by machines, one can ask where 
on the income spectrum these work-related disruptions will land. Again, an hon-
est answer is that it is too soon to know with any confidence. But a reasonable 
guess is across the board, and not mainly in the middle-income range of white- 
and blue-collar work, as in the first round of code-based digital automation. At 
one end, low-income labor-intensive manufacturing in developing countries is set 
to be disrupted in a way that was not possible before the recent advances in AI and 
robotics, and that presents challenges to the development model of low-income 
countries. On the other end, scientific research and technology development and 



151 (2) Spring 2022 251

Michael Spence

high-end professional services look to be within the target range as well, not in the 
sense of full automation, but rather in substantial digital machine augmentation, 
via the automation of key tasks. 

Thus far, we have focused mainly on various aspects of the digital transfor-
mation in developed economies. But their impact does not stop there. There are 
at least two important classes of developing economies in which the impact of 
automation and augmentation has large and diverse current and future impacts:  
middle-income countries (often called emerging economies) and the lower- 
income countries in which the growth and development process is in the early 
stages. 

Emerging economies are developing countries that have reached middle- 
income levels. Some are growing quickly while others struggle with growth. But 
for the most part, they have resources and, in general, reasonably well-developed 
digital infrastructure. But they still have poor segments of the population in need 
of informational and related services. Many live outside major urban areas with 
limited access to traditional offline services. In these economies, probably more 
than either developed or lower-income economies, the digital transformations 
are a large net positive in multiple dimensions. Generally, these economies have 
left behind the labor-intensive manufacturing and assembly growth and employ-
ment engines that are threatened by modern AI and advanced robotics and that 
represent a significant obstacle for lower-income countries seeking to replicate 
the high-growth patterns achieved by their predecessors. 

In the emerging economies, e-commerce, mobile payments, and fintech–all 
now powered by AI–are closing the service availability gaps associated with re-
moteness. The same is true in education and health care. In addition, the lower- 
income parts of the population have traditionally had difficulty accessing mod-
ern services because of the absence of documentable identities and financial track 
records. I call this the anonymity problem. Digital data and machine learning are 
proving to be powerful tools for bridging these gaps and overcoming the obstacles. 

And on the employment front, the middle-income economies are in complex 
transitions in which the service sectors are expanding as a share of the economy 
and employment. Generally, the digital transformations are accelerating these 
changes and creating considerably more jobs than are being eliminated. This is 
not to say the previous discussion of digital transformations and work are entirely 
different here. There are skills transitions to be navigated, too. But the balance is 
different. It is more about training than retraining. Job losses associated with au-
tomation are small in relation to the job losses in the declining labor-intensive sec-
tors. Indeed, automation is seen as a way to keep manufacturing sectors that are 
transitioning from labor-intensive to digitally capital-intensive. These are sectors 
that, in the absence of the productivity increases that go with automation, would 
migrate to lower-income parts of the global economy. In addition, legacy systems 
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that tend to hold back the pace of change in developed economies are less devel-
oped in emerging economies. So the new digitally based economy, as it emerges 
from the advances in technology and use cases, is in many ways embraced faster. 
Technologically, they are leapfrogging intermediate steps. 

T here is also a very interesting trend in global entrepreneurial activity that 
is directly relevant to employment and structural change in emerging 
economies: a rapid increase in new company formation across a range of 

emerging economies and continents. It is linked in large part to the rapid spread of 
the digital economy. The financial and other parts of innovative ecosystems that 
support this have also become global in coverage. The result is high-growth com-
panies and unicorns (privately held startup companies with a value of over $1 bil-
lion) proliferating across the globe. (See Table 1.) 

As this trend gains momentum, it provides powerful new employment engines 
and entrepreneurial opportunities, especially for younger parts of the population. 
The opportunity is created in part by automation in the development and im-
proved performance of new markets and complementary systems. These systems 
are increasingly architected, modified, and improved by AI. This dimension of au-
tomation is much less discussed than automation in the context of work, but it is 
an important element of AI-powered automation and augmentation. At least in 
the digital area, the entry barriers are low and the initial capital requirements are 
also low, making them accessible, ideal environments for fostering innovation, 
entrepreneurship, and new company formation.

For the lower-income countries, the picture is similar in some respects but dif-
ferent in others, presenting a challenge and an opportunity. The mobile Internet 
has substantially closed the gap in terms of basic digital infrastructure, though 
there is more investment needed to bring coverage, network capacity, speed, and 
reliability up to middle-income-country levels. For these economies, a growth 
model is needed that leverages global economy demand and technology. Tradi-
tionally, for non-resource-rich countries, the core of the growth model has been 
exports of labor-intensive goods and process-oriented manufacturing and assem-
bly. It is a model based on low labor costs and has historically had the virtue of be-
ing a powerful employment engine. 

The problem is that AI and advanced robotics are making inroads into the 
growth and employment model that depends on low-cost labor, in which the 
comparative advantage lay in labor-intensive manufacturing (think textiles and 
apparel). This aspect of automation is making labor costs much less influential 
in determining where to locate production. It is leading to what economist Dani  
Rodrik has termed premature deindustrialization. The problem is that it is thus far 
not clear whether there is an equally capable alternative engine to power growth 
and development.
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Table 1
Entrepreneurship Is Now a Global Phenomenon

Note: As of April 2021, there are now more than 600 unicorns around the world, predomi-
nantly led by the United States (337 unicorns) and China (138 unicorns). China, India, and Bra-
zil stand out in this picture. There is good reason to believe that countries like Indonesia and 
many others will make an appearance soon. Source: CB Insights, “Entrepreneurship Is Now a 
Global Phenomenon,” April 2021. 

Global Unicorns: Top Ten Countries by Number of Unicorns

Country Number of 
Unicorns

Percent 
of Total

Total 
Valuation 
($Billions)

Percent 
of Total

Top Three  
Unicorns by Value

United 
States

337 52% $1,093 51% Stripe, SpaceX, 
Instacart

China 138 21% $547 26% Bytedance, DiDi 
Chuxing, Yuanfudao

India 31 5% $106 5% One97  
Communications, 
BYJU’s, OYO Rooms

United 
Kingdom

29 4% $96 5% Checkout.com, 
Global Switch, 
Hopin

Germany 16 2% $29 1% Otto Bock Health-
care, N26, Celonis

Israel 13 2% $17 1% Earnix,  
Monday.com, Wiz

Brazil 12 2% $42 2% Nuback, Wildlife 
Studios, Loft

South 
Korea

10 2% $22 1% Krafton, Yello  
Mobile, Toss

France 10 2% $13 1% BlaBlaCar, Alan, 
Mirakl

Canada 5 1% $11 1% PointClickCare, 
Dapper Labs, 
Clearco

Top Ten 
Countries

601 92% $1,976 92%

Total  
Unicorns

654 $2,147
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That said, the benefits in terms of digitally enabled inclusive growth patterns, 
described above for emerging economies, including especially expanded oppor-
tunity for entrepreneurial activity, also apply to the lower-income countries, pro-
vided the digital infrastructure is in place. The importance of this should not be 
understated for fostering inclusive growth patterns. 

How you think about these issues depends on the unit of analysis. If the unit 
is a working person, then automation can eliminate the job. More commonly, 
though, the result is augmentation: it replaces part of the job, changing the nature 
of the work. On the other hand, if you start with the unit being some subsystem 
of the economy, say a manufacturing facility, then machines are essentially aug-
mentation, just as they were in the industrial revolution, and automation, which 
is new and digitally enabled, is an important and powerful tool in making us more 
productive. 
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	 8	 It is possible for labor-saving and skill-biased technological shifts to leave labor overall 
worse off. See Anton Korinek and Joseph E. Stiglitz, “Artificial Intelligence, Globaliza-
tion, and Strategies for Economic Development,” Institute for New Economic Think-
ing Working Paper Series No. 146 (New York: Institute for New Economic Thinking, 
2021), https://doi.org/10.36687/inetwp146.

	 9	 We have seen this kind of pattern before. Another major force operating on the structure 
of developed economies has been globalization and international specialization. For an 
analysis of how that impacted the economy and jobs across the economy, see Michael 
Spence and Sandile Hlatshwayo, “The Evolving Structure of the American Economy 
and the Employment Challenge,” Comparative Economic Studies 54 (4) (2012): 703–738.

	 10	 There is nothing in economic theory that assures that the distribution of income that 
results from the operation of market and technological forces is socially acceptable. 
If one adds to the mix declining bargaining power for lower-income parts of the labor 
force, and the influence of wealth on policies that affect the distribution of income and 
access to key services in education and health, that reinforces the conclusion. So the 
skills-adjustment process is important and deserves the attention it is getting, but it is 
not the whole story with respect to restoring broadly inclusive growth patterns. 

	 11	 OpenAI has created AI systems that write computer code, and that can translate code 
from one computer language to another. DeepMind in London, a subsidiary of Alpha-
bet, has algorithms that can predict with reasonable accuracy the 3D structures of pro-
teins, a crucial step in drug and vaccine development and other aspects of biomedical 
research. 
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We characterize artificial intelligence as “routine-biased technological change on ste-
roids,” adding intelligence to automation tools that substitute for humans in physical  
tasks and substituting for humans in routine and increasingly nonroutine cognitive 
tasks. We predict how AI will displace humans from existing tasks while increasing 
demand for humans in new tasks in both manufacturing and services. We also ex-
amine the effects of AI-enabled digital platforms on labor. Our conjecture is that AI 
will continue, even intensify, automation’s adverse effects on labor, including the po-
larization of employment, stagnant wage growth for middle- and low-skill workers,  
growing inequality, and a lack of good jobs. Though there likely will be enough jobs to 
keep pace with the slow growth of the labor supply in the advanced economies, we are 
skeptical that AI and ongoing automation will support the creation of enough good 
jobs. We doubt that the anticipated productivity and growth benefits of AI will be 
widely shared, predicting instead that they will fuel more inequality. Yet we are opti-
mistic that interventions can mitigate or offset AI’s adverse effects on labor. Ultimately,  
how the benefits of intelligent automation tools are realized and shared depends not 
simply on their technological design but on the design of intelligent policies.

Amazing new automation and digital technologies are transforming work 
and the economy.1 Artificial intelligence is the latest tool in a toolkit of 
“automation” technologies that perform tasks previously performed by 

humans, often more cheaply, faster, and better.
Most humans depend on income from work for their livelihoods, and we focus 

on how AI, like other forms of automation, affects work. A key question is how AI 
and AI-enabled intelligent tools will impact the supply of and access to good jobs 
that provide middle-class earnings, safe working conditions, legal protections, 
social insurance and benefits, and career-building opportunities. In the advanced 
market economies and democracies that are the focus of this essay, political and 
social stability depends on the availability and accessibility of good jobs.

With supportive fiscal and monetary policies adequate to maintain high lev-
els of employment, it is likely that there will be enough jobs to keep pace with the 
slow growth of the labor supply in these economies. But we are skeptical that AI 
along with ongoing automation will support the creation of enough good jobs. And 
we are doubtful that the anticipated productivity and growth benefits of AI will be 
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widely shared, predicting instead that they will fuel income and wealth inequali-
ty. Yet we are optimistic that wise interventions can change the trajectory of AI’s 
adverse effects on labor. Comparative experiences highlighted in this essay reveal 
that both policies, like social insurance, training and education, and taxation, and 
institutions, like collective bargaining, can accelerate, offset, moderate, or inten-
sify these effects.

Contemporary AI uses advanced computation to automate specific tasks at or 
above human cognitive capacity. Its development rests on advances in computing 
power and hardware, the proliferation of vast data sets, and evolving algorithms 
for analyzing and drawing statistical inferences and predictions.2 Powered by ma-
chine learning (ML), recent AI breakthroughs are achieving human-comparable 
results across an expanding range of human tasks.3 Despite remarkable advanc-
es, however, current AI applications remain narrow and task specific, with little 
ability to transfer “learning” from one problem to another. Narrow AI can dis-
place humans in low-level cognitive demand tasks that are repetitive, data intensive, 
optimization-based, and asocial, but it cannot yet substitute for humans in most 
high-level cognitive demand tasks involving reasoning, real-world knowledge, judg-
ment, and social interactions.

Narrow AI is also impacting human tasks both by adding intelligence to robots 
and production systems and by powering digital platforms that facilitate trans-
actions between buyers and sellers. In a self-reinforcing cycle of data collection, 
analysis, and prediction, AI is driving the growth of digital platforms like Amazon 
for selling goods, Netflix for selling video services, and Uber and Upwork for sell-
ing labor services. Indeed, large tech platform companies in the United States and 
China, with massive amounts of data, extensive digital platforms, and relative-
ly small employment compared with their revenues, currently account for about 
two-thirds of all business investment in AI.	

“Artificial general intelligence” (AGI) has no clear definition, no clear time 
frame, is not yet a matter of business and policy concerns, and is therefore not our 
focus.4 Instead, we concentrate on how narrow but rapidly evolving AI applica-
tions are likely to affect labor and livelihoods over the coming decade. Since even 
narrow AI applications are not yet widespread, our analysis by necessity draws on 
evidence about the impacts of other forms of automation on labor in the advanced 
industrial countries during the last three decades. 

Predictions about the future effects of AI are replete with uncertainties both 
about the pace and scope of future scientific breakthroughs and about the 
pace and breadth of AI deployment. Scientific advances determine whether a 

human task is technically automatable, but they do not determine whether it will be auto-
mated. That depends on deployment decisions. In market economies, businesses make 
most of these decisions shaped by their strategies and the market, institutional, 
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and policy environments in which they operate. High taxes on labor relative to 
taxes on machinery and software, for example, have been a significant driver of 
business investments in automation technologies. Nonetheless, their deployment 
has been gradual because of substantial lags in the development of organizational 
capacities required for their effective utilization.5 

Both historical evidence and economic logic indicate that on its current tra-
jectory, AI will continue, intensify, and accelerate automation’s adverse effects on 
key labor market trends in the advanced economies. These effects include the po-
larization of employment and wages, slow wage growth for middle- and low-skill 
workers, a significant premium in the wages of highly educated workers, a decou-
pling of wage growth from productivity growth, a decline in labor’s share of value 
added, and growing income inequality.

Automation is not the only force behind these trends. Globalization, outsourc-
ing, the decline in unionization and collective bargaining coverage, and the grow-
ing monopsony or “wage-setting” power of businesses are also significant fac-
tors.6 These factors in turn have been enabled or reinforced by automation. Glo-
balization and outsourcing, for example, have been turbocharged by robots and 
digitization in logistics, transportation, and communication.7 By enabling the 
outsourcing of routine jobs to low-wage locations, networked technologies and 
automation, underpinned by the digital revolution, have propelled globalization, 
decreasing employment and constraining wage growth in manufacturing and 
tradable services in the advanced economies.

Yet while these factors have been at play in all of the advanced countries, there 
have been important differences among them in the consequences for labor. The 
varied outcomes have resulted in part from differences in policies, institutions, 
and societal norms of fairness. Strong competitive economies like Germany, Swe-
den, Canada, and Denmark have experienced the same technological and global-
ization forces as the United States, but their workers have fared much better.8

Examining tasks within occupations is a widely used optic to understand the 
impact of automation on labor, and we organize our analysis with this approach. 
Occupations encompass numerous tasks, only some of which are automatable or 
AI-susceptible.

Like other automation tools, AI impacts human tasks through three broad 
effects: the displacement effect, or the decrease in demand for labor in tasks that 
are automated; the productivity effect, or the increase in the demand for labor in 
nonautomated tasks; and the reinstatement effect, or the creation of new tasks for 
labor. Over time, but at a highly uncertain pace, automation’s displacement ef-
fects are offset to some extent by both its productivity and reinstatement effects.9

The displacement effects can be immediate, significant, and palpable, and are 
themselves negative for employment and labor’s share in value added. In contrast, 
the productivity and reinstatement benefits can take years, even decades, to mate-
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rialize with significant frictional and structural unemployment, wage losses, and 
growing inequality along the way. In the long run–that ill-defined concept fre-
quently used by economists–automation, productivity growth, and rising em-
ployment and wages move together. 

But automation always involves disruption and, with it, winners and losers. 
Trade-offs can and do persist for “shorter” time horizons relevant to businesses, 
workers, citizens, and political leaders, and they have economic, social, and po-
litical consequences. History is replete with evidence that the social and political 
costs of labor market disruptions triggered by technological change can be signif-
icant.10 And while displacement effects may hit particular locations or regions, 
productivity and reinstatement benefits can occur elsewhere: the costs often fall 
in one place and the benefits in another, complicating politics and policy.11 

During the last thirty years, there is evidence that while automation’s displace-
ment effects have accelerated and intensified, its productivity and reinstatement 
effects have been slower to materialize and smaller than expected.12 The social 
and economic dislocations have grown, while the offsetting benefits have not been as robust 
or rapid as anticipated and have not been broadly shared. In the United States, for ex-
ample, despite growing automation and computerization of work, productivity 
growth slowed by nearly half to an annual rate of 1.5 percent during the last half 
century, and industries that led in the use of new information and communication 
technologies did not perform better in terms of total factor productivity, output, 
or employment growth. Nor is the United States alone: other advanced industri-
al economies have also experienced slowing productivity growth, the causes of 
which remain uncertain and robustly debated.13

Much of the automation during the last three decades is often called “routine-
biased technological change,” or RBTC, because it has substituted for humans in 
routine physical and increasingly routine cognitive tasks while increasing the de-
mand for humans in nonroutine tasks. Both routine manual and routine cognitive 
occupations as a share of employment have fallen over the last thirty years. RBTC 
has been particularly important in automating tasks in structured, predictable en-
vironments like automobile production in factories and bookkeeping in offices.

We characterize AI as “RBTC on steroids” for two reasons. First, AI is adding 
intelligence to robots and other forms of automation that substitute for humans 
in routine and increasingly nonroutine physical tasks–think assembly-line pro-
duction and warehousing. Second, AI is substituting for humans in a widening ar-
ray of both routine and increasingly nonroutine cognitive tasks.14 Cognitive tasks 
that are currently technically feasible for AI tend to be routine, data-intensive, and 
asocial (such as customer support, basic office support, and insurance underwrit-
ing). Physical tasks that are technically feasible for AI also tend to be routine, data-
intensive, optimization-based, and asocial, and require limited dexterity and a 
structured environment (like assembly-line inspection or fruit harvesting). Most 
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high-level cognitive demand tasks in which inputs and outputs are not easily quan-
tifiable with data, and which require both social interaction and cross-domain 
thinking, complex strategy, or creativity (such as the work of business and health 
professionals, teachers, and artists) are not directly in the crosshairs of current AI.15 

If, as we conjecture, AI is RBTC on steroids, then its future effects on labor will 
be similar to the effects on labor from other forms of RBTC automation during 
the past thirty years. The first of these effects is the “polarization” of employment 
and, to a lesser extent, of wages. Many of the occupations hollowed out by RBTC 
over the previous three decades have been in manufacturing, which provided 
good jobs for millions of middle-skill, middle-wage workers. Polarization is re-
flected in a decline in the share of middle-skill occupations in total employment 
and increases in the employment shares of both low-skill and high-skill occupa-
tions, with the largest gains in the latter.16 Although RBTC has been polarizing, it 
has been “upgrading” or “upskilling” in the sense that the decline in middle-skill 
occupations has been largely offset by an increase in high-skill occupations as 
shares of total employment.17

Polarization, in turn, has contributed to widening wage gaps among work-
ers, with slow, stagnant, or even negative wage growth for workers whose occu-
pations have been displaced by automation, and wage growth for those whose 
occupations have been enhanced by productivity gains or by the creation of new 
tasks. Earnings inequality has grown across the advanced industrial economies, 
largely driven by the rising pay gap or education premium between workers with 
a college-level education or rigorous training (like apprenticeships in Germany) 
whose skills have been complemented by RBTC and those with lower levels of ed-
ucation or training whose skills have been displaced.18

As a result of its sizable displacement and polarization effects, RBTC automa-
tion has also been a factor behind the decoupling of wage growth from productivi-
ty growth.19 In theory, in competitive labor markets, wage growth should be com-
mensurate with productivity growth in the long run, but productivity growth has 
outpaced both average and median wage growth over the past three decades. As 
noted earlier, the long run can be very long indeed, and there are large and lengthy 
aberrations along the path to getting there. Moreover, labor markets are usually 
not competitive, as narrowly defined by economists, and the sharing of produc-
tivity gains with workers depends not only on market forces but on the relative 
power of workers and employers. Relative power in turn is often reflected in tax 
and social policies and in institutions like corporate governance rules that favor 
owners over workers. 

The decoupling of wage and productivity growth has contributed to a decline 
in labor’s share of national income.20 Indeed, automation has been a major driv-
er of the decline in labor share most acute in manufacturing, and within manu-
facturing, most acute in industries undergoing rapid automation. In addition, 
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a declining labor share of national income has been mirrored in a rising capital 
share, further increasing income inequality, since capital returns are concentrated 
at the upper end of the income distribution.

The slow growth of pretax market incomes for the bottom 95 percent of wage 
earners has been the main driver of increasing income inequality in the advanced 
market economies over the past half century, and automation has played a major 
role.21 The United States has been an outlier: no other advanced industrial econ-
omy has experienced an equally large rise in income inequality or equally severe 
wage stagnation for rank-and-file workers. Both eroding union coverage and a de-
clining real minimum wage have been important factors behind the comparative-
ly large gap between productivity growth and median wage growth, the compar-
atively large earnings inequalities by education, and the significant real wage de-
cline for low-educated male workers in the United States. In contrast, in Germany, 
another large competitive market economy experiencing the same RBTC automa-
tion and globalization forces, broad collective bargaining rights, works councils, 
a generous social insurance system, a robust training system, and a national mini-
mum wage have mitigated the adverse effects of automation on the supply of good 
jobs and have fostered more inclusive growth.22

Overall, RBTC automation has contributed to rising income inequality through 
a number of channels. It has resulted in stagnant or falling real wages for middle-  
and low-skill workers, favoring wages of high-skill workers complemented by 
automation; it has driven a large and persistent gap between wage growth and 
productivity growth; it has reduced labor’s share and increased capital’s share in 
value added; and it has produced “winner-take-all” income gains for superstar 
innovators and superstar firms with significant product market and monopsony 
power, contributing to rising income inequality both among them and between 
them and their workers.23

All of these factors are “market” explanations of wage stagnation and income 
inequality that reflect changes in the demand for different types of labor and cap-
ital resulting from RBTC automation. We are concerned that these market factors 
are likely to persist and indeed may strengthen as RBTC on steroids reduces the 
demand for labor with low and middle skills (and wages) performing both phys-
ical and cognitive routine tasks while increasing the demand for labor with skills 
required for nonroutine tasks of both types. 

At the same time, we recognize that AI is likely to make human work more pro-
ductive in some existing tasks and to create new tasks requiring human skills that 
cannot be replaced by AI capabilities. Uniquely human skills not susceptible to AI 
currently include social/interpersonal skills (teachers, care and health care work-
ers, physical therapists, and hairdressers); physical skills in unpredictable envi-
ronments (construction workers and plumbers); and general intelligence skills 
required for nonroutine tasks and problem-solving (management and artists). 
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For many occupations, the future of work is likely to involve growing interdepen-
dence between human skills and AI skills: for example, between the interpersonal 
skills of doctors and teachers with the complementary AI skills of data analysis, 
diagnostics, and prediction. Such complementary or partnership occupations in 
turn are likely to require high-level education and/or technical training for the 
human partners. Overall, such occupational changes are likely to fuel wage and 
income inequality between those workers whose skills are displaced by AI and 
those whose skills are complemented. A key but unanswered question is how the 
rewards from work will be shared between humans and their partner intelligent 
tools, between labor and the owners and creators of these tools.

So far, we have focused on how AI is affecting labor demand through the au-
tomation of tasks and occupations. Now we broaden our focus to consider 
how AI is affecting labor through enabling digital platforms that are creat-

ing new tasks and new forms of organizing work.24 We believe that digital plat-
forms, the use of which surged during the COVID-19 pandemic, will expand rapid-
ly. To predict AI’s future effects on labor, therefore, it is necessary to look through 
the lens of digital platforms. AI is enabling three types of digital platforms. 

	• Platforms for selling goods (such as Amazon and Netflix) recast what tasks are 
performed by humans and where. Accelerated by COVID-propelled chang-
es in business practices to reduce workplace density and provide contactless 
service to customers, transactions continue to move from in-person, brick-
and-mortar retail to e-commerce and digital platforms, with tasks shifting 
from shop floors to warehouse operations and long- and short-haul delivery 
and transportation. 

	• Platforms for labor services (such as Upwork, Lyft, and TaskRabbit), which uti-
lize algorithms and real-time data to match workers with tasks, are having a 
growing impact on labor across industries. These platforms cover a wide range 
of tasks spanning nonroutine cognitive work like accounting and software 
work, nonroutine physical and technical work like electrical and plumbing 
services, and routine personal services like transportation and care.25 Work-
ers typically are matched with tasks for multiple clients, usually on a tempo-
rary project basis. Such work is often referred to as “gig work.” Gig workers, 
including the digital assembly-line “ghost workers” who provide much of the 
human intelligence behind AI software, are part of the “on-demand gig econ-
omy.”26 And in response to COVID, new work-related platforms from Google 
to Zoom are expanding to facilitate remote or hybrid work for cognitive tasks.

	• Platforms for renting out assets (such as Airbnb and BlaBlaCar) also offer new 
labor and income opportunities, even while they alter the character of work 
and the skills required for tasks.
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Platform-mediated work is growing rapidly as a share of nonstandard employ-
ment arrangements (including independent contractors, temporary and on-call 
workers, and part-time workers) that already account for 25–31 percent of the 
working age populations in the advanced economies.27 More than half of those 
participating in such arrangements use income from them to supplement their 
income from other sources. The platform-mediated gig portion of nonstandard 
employment arrangements is still small, accounting for an estimated 1–3 percent 
of total employment, but it is expanding quickly.28

Gig workers lack the legal and social protections provided in standard employ-
ment contracts, resulting in precarious jobs with low and unstable incomes, limited 
access to social insurance, minimal training and career development opportunities, 
exposure to health and safety risks, and low to zero collective bargaining rights.

As AI-enabled platforms transform relationships between employers and 
workers, new ways to finance and deliver social and legal protections are required 
to make gig and other platform jobs “good jobs.” When COVID sharply reduced 
the demand for gig workers, most of the advanced economies added temporary 
measures, like pandemic unemployment benefits in the United States, to compen-
sate workers for lost income.

Pre-COVID, many governments in Europe and a few U.S. states were already 
working on permanent measures to protect or empower gig workers. The United 
Kingdom, for example, added a new “worker” category, distinct from both the tra-
ditional employee category and the self-employed category, to its labor law. Some 
European countries are exploring extending social protections usually associat-
ed with standard employment contracts–such as unemployment and disability 
insurance, health coverage, and parental leave–to gig workers on labor services 
platforms.29 Such benefits could be provided and financed through new “portable 
benefits programs,” allowing workers to accumulate benefits on a prorated basis 
for time worked for different employers.30 

Looking to the future, two forces will shape the demand for human labor in dif-
ferent tasks and occupations: the demand for goods and services that people want 
and the capabilities of intelligent tools and systems, empowered by AI, to produce 
and deliver them. Based on these two forces, over the next decade, we anticipate 
shifts in the composition of employment in the advanced industrial economies 
from occupations like office support, production, and warehousing that consist of 
many routine tasks to occupations in health care, education, technology, and the 
arts that encompass many nonroutine tasks.31 The upskilling of employment is 
likely to continue with job growth concentrated in high-wage occupations and job 
declines in low- and middle-wage ones, further polarizing the labor market and fu-
eling wage inequality. And the displacement and transition costs for workers who 
lose their jobs to AI and automation and who require different skills for new jobs 
are likely to be substantial, raising the question of who should bear these costs.32 
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These predicted shifts in occupations and their labor market effects are likely 
in both manufacturing and services that together account for more than 90 per-
cent of employment. Manufacturing has been the locus of the hollowing out of 
“good” middle-skill, middle-wage jobs during the past thirty years, driven by ro-
bots, RBTC, and globalization. While manufacturing employment has fallen as a 
share of total employment, manufacturing output has not fallen nearly as sharply 
as a share of GDP. There have been significant productivity gains from automa-
tion, but they have not been broadly shared. A disproportionate share has gone 
to capital, not to workers, as evidenced by both the rising gap between produc-
tivity growth and wage growth and the fall in labor’s share of value added. More-
over, the declines in manufacturing employment and wages have fallen hardest on 
workers in the lower half of the earnings distribution, on workers with less than a 
college degree, and on locations or regions in which manufacturing was a signifi-
cant share of economic activity.

Similar disparities in the distribution of both displacement costs and produc-
tivity benefits are likely as AI drives further automation of manufacturing. Overall, 
the hollowing out of manufacturing jobs is likely to continue but also to be smaller 
than what occurred during the last thirty years. A new wave of AI-powered auto-
mation with increasingly programmable, semi-dexterous, and interconnected ma-
chines will optimize production systems. The resulting changes are likely to affect 
manufacturing employment by optimizing tasks that have already been automated 
and by creating new complementary tasks with required new skills for workers to 
operate new smarter systems. The pace at which manufacturing tasks are automat-
ed will depend not only on evolving AI capabilities but also on the improved dex-
terity of robots and production systems. Overall, AI is not likely to add significant 
risk of additional job displacement to “shop-floor” manufacturing workers, but it 
is likely to displace workers doing routine cognitive tasks in back offices.33 

Based on both rising incomes and changing demographics, the demand for 
services will remain robust in the advanced industrial societies. Indeed, services 
already account for most (more than 80 percent) employment and almost all em-
ployment growth during the last several decades. Service occupations run the 
gamut from highly paid health and business professionals to middle-wage educa-
tors to low-wage retail clerks and hospitality workers. Given the diverse character 
of the service sector, we highlight briefly some of AI’s implications in two large 
service industries: retail and health. 

A
rtificial intelligence is transforming the retail industry across its value 
chain. On the demand side, businesses are shifting from traditional in-
store channels to e-commerce channels, especially digital platforms, to 

anticipate demand and personalize the customer experience. On the supply side, 
AI is being applied to improve inventory forecasts, optimize merchandising and 
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product assortment, and automate warehousing and store operations. Overall 
employment in retail is likely to continue to decline, but the demand for humans 
in routine and nonroutine cognitive tasks in such areas as customer service, man-
agement, and technology deployment and maintenance is likely to increase. In 
contrast, routine manual jobs such as cashiers, drivers, packers, and shelf stock-
ers are projected to decline, reducing low- to middle-wage job opportunities for 
workers with only a secondary education. In both manufacturing and services, 
the pace of change in AI-enabled drones and autonomous vehicles will impact the 
pace at which human tasks and wages in short-haul and long-haul transportation, 
two major middle-wage occupations, are affected. 

In the health care sector, job growth is likely to remain strong. Indeed, both pre and 
post COVID, the health sector has topped the list of projected job growth in the ad-
vanced economies. Health care jobs cover a broad range of skills and incomes, from 
low-skill, low-wage jobs like orderlies and home care assistants through middle- 
skill, middle-wage jobs like lab technicians and paramedics to high-skill jobs like 
nurses, dentists, radiology technologists, and physicians. All of these job categories 
are projected to grow to keep pace with rising demand for health care services. 

Within health care, AI is likely to complement the demand for high-wage work-
ers performing nonroutine tasks requiring specialized skills and education while 
substituting for workers performing routine tasks. In particular, AI applications 
are likely to substitute for humans in data-dependent cognitive tasks in adminis-
trative and office support activities and patient relationship management while 
increasing the demand for humans in work performed by health professionals like 
nurses, doctors, physical therapists, and dentists whose responsibilities require 
high-level cognitive and/or highly skilled physical and social interaction tasks. 
The automation of administrative and data collection tasks, further enabled by 
telemedicine platforms, could be transformative for nurses who spend on average 
a quarter of their time on such duties, empowering them to use AI-informed re-
sults to offer more real-time health advice, diagnosis, and treatment.34

Many health care occupations are likely to require collaboration between hu-
mans with the requisite social skills and intelligent tools with the requisite data 
capabilities to deliver state-of-the art personalized services at scale. The scope for 
collaboration between humans and AI in health care is already apparent in the uti-
lization of AI-enabled robots to address the interrelated demographic challenges 
of aging and shrinking populations. Japan, for example, is leading the way in robot 
use in tasks in nursing homes and hospitals, both to fill gaps in the supply of human 
labor available for these tasks and to complement the humans required to do them. 

T hroughout this essay, we have focused on the effects of AI and automation 
on the composition of demand for human labor in tasks, occupations, and 
jobs. Yet, as the example of Japan’s adoption of robots in health care illus-
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trates, employment, wages, and good jobs depend not only on the demand for hu-
man labor but also on its supply.35 All of the industrial economies face a slowdown 
in the growth of their working age populations, albeit to differing degrees, and 
this is likely to result in shortages and upward pressure on wages both in occupa-
tions and jobs that are not currently susceptible to substitution by AI and in those 
that are complemented or enabled by it. As labor markets recover from COVID, 
there is already concern in the United States and in several European countries 
about future shortages of workers with the skills and education required to meet 
demand in growing sectors like health care and software engineering. Such short-
ages in turn are likely to accelerate innovation, investment, and deployment of 
AI-enabled automation technologies to substitute for human labor. 

AI and the intelligent tools and systems it enables will automate many routine 
tasks, change existing tasks, and create new tasks for humans, often involving new 
forms of human and machine collaboration and new forms of work organization. 
There will be–indeed there already are–both winners and losers in this process of 
ongoing structural change. It is not sufficient to assert that as AI technologies trans-
form work, there will ultimately be broad economic gains that are widely shared. 
That is not a technologically determined outcome but rather a societal choice. To 
foster both economic growth and the social and economic equity on which their 
prosperity and political stability depend, the advanced market economies must de-
velop policies to share the disruption costs and productivity benefits of AI broadly, 
consistent with societal norms of fairness.

The availability and accessibility of good jobs should be core policy goals, yet 
achieving them is not trivial. To maximize the odds for success and to transform 
all jobs into good jobs, three broad types of policy interventions are warranted. 
First are lifelong education and training policies to equip workers with the skills 
they need for access to good jobs, along with active labor market policies to help 
them transition to these jobs. Second is the extension of social benefits and legal 
protections to cover workers in all businesses, including platform businesses. And 
third is a combination of income-support policies, including minimum wages, tax 
credits for work, and basic income supplements, to raise the after-tax earnings of 
workers who remain in low-wage jobs–including many routine service jobs in 
leisure and hospitality, health care, and childcare, many of them held by women 
and low-educated workers–to livelihood levels.36 

Finally, it is important to emphasize that the effects of AI on work are not tech-
nologically determined but depend on the incentives of both those leading AI re-
search and innovation and those investing in AI deployment. The prevailing nar-
rative behind AI innovation and deployment in the business and research commu-
nities, a narrative particularly pronounced in the United States, where decisions 
reflect shareholder interests and workers have limited voice in business decisions, 
focuses on AI’s ability to outperform humans, not on the creation of good jobs. 
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This narrative has been fostered by tax policies that raise the cost of labor and 
reduce the cost of capital, encouraging businesses to focus on automation tech-
nologies that reduce employment and cut labor costs without offsetting labor 
productivity growth. R&D tax incentives and other forms of government support 
for research in labor-saving technologies have reinforced the narrative, but well-
designed policies could change it.37 

Ultimately, how the economic benefits of intelligent machines and tools are 
realized and shared depend not on their technological design but on the design of 
intelligent policies needed for an inclusive AI era.38 
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Human-Like Artificial Intelligence 

Erik Brynjolfsson

In 1950, Alan Turing proposed a test of whether a machine was intelligent: could a 
machine imitate a human so well that its answers to questions were indistinguish-
able from a human’s? Ever since, creating intelligence that matches human intelli-
gence has implicitly or explicitly been the goal of thousands of researchers, engineers, 
and entrepreneurs. The benefits of human-like artificial intelligence (HLAI) include 
soaring productivity, increased leisure, and perhaps most profoundly a better under-
standing of our own minds. But not all types of AI are human-like–in fact, many 
of the most powerful systems are very different from humans–and an excessive fo-
cus on developing and deploying HLAI can lead us into a trap. As machines become 
better substitutes for human labor, workers lose economic and political bargaining 
power and become increasingly dependent on those who control the technology. In 
contrast, when AI is focused on augmenting humans rather than mimicking them, 
humans retain the power to insist on a share of the value created. What is more, 
augmentation creates new capabilities and new products and services, ultimately 
generating far more value than merely human-like AI. While both types of AI can 
be enormously beneficial, there are currently excess incentives for automation rath-
er than augmentation among technologists, business executives, and policy-makers.

A lan Turing was far from the first to imagine human-like machines.1 Ac-
cording to legend, 3,500 years ago, Dædalus constructed humanoid stat-
ues that were so lifelike that they moved and spoke by themselves.2 Near-

ly every culture has its own stories of human-like machines, from Yanshi’s leather 
man described in the ancient Chinese Liezi text to the bronze Talus of the Argo-
nautica and the towering clay Mokkerkalfe of Norse mythology. The word robot 
first appeared in Karel Čapek’s influential play Rossum’s Universal Robots and de-
rives from the Czech word robota, meaning servitude or work. In fact, in the first 
drafts of his play, Čapek named them labori until his brother Josef suggested sub-
stituting the word robot.3

Of course, it is one thing to tell tales about humanoid machines. It is some-
thing else to create robots that do real work. For all our ancestors’ inspiring sto-
ries, we are the first generation to build and deploy real robots in large numbers.4 
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Dozens of companies are working on robots as human-like, if not more so, as 
those described in the ancient texts. One might say that technology has advanced 
sufficiently to become indistinguishable from mythology.5

The breakthroughs in robotics depend not merely on more dexterous me-
chanical hands and legs, and more perceptive synthetic eyes and ears, but also on 
increasingly human-like artificial intelligence (HLAI). Powerful AI systems are 
crossing key thresholds: matching humans in a growing number of fundamental 
tasks such as image recognition and speech recognition, with applications from 
autonomous vehicles and medical diagnosis to inventory management and prod-
uct recommendations.6 

These breakthroughs are both fascinating and exhilarating. They also have 
profound economic implications. Just as earlier general-purpose technologies 
like the steam engine and electricity catalyzed a restructuring of the economy, our 
own economy is increasingly transformed by AI. A good case can be made that AI 
is the most general of all general-purpose technologies: after all, if we can solve 
the puzzle of intelligence, it would help solve many of the other problems in the 
world. And we are making remarkable progress. In the coming decade, machine 
intelligence will become increasingly powerful and pervasive. We can expect re-
cord wealth creation as a result. 

Replicating human capabilities is valuable not only because of its practical po-
tential for reducing the need for human labor, but also because it can help us build 
more robust and flexible forms of intelligence. Whereas domain-specific technol-
ogies can often make rapid progress on narrow tasks, they founder when unex-
pected problems or unusual circumstances arise. That is where human-like intel-
ligence excels. In addition, HLAI could help us understand more about ourselves. 
We appreciate and comprehend the human mind better when we work to create 
an artificial one. 

These are all important opportunities, but in this essay, I will focus on the ways 
that HLAI could lead to a realignment of economic and political power. 

The distributive effects of AI depend on whether it is primarily used to aug-
ment human labor or automate it. When AI augments human capabilities, en-
abling people to do things they never could before, then humans and machines 
are complements. Complementarity implies that people remain indispensable for 
value creation and retain bargaining power in labor markets and in political deci-
sion-making. In contrast, when AI replicates and automates existing human ca-
pabilities, machines become better substitutes for human labor and workers lose 
economic and political bargaining power. Entrepreneurs and executives who have 
access to machines with capabilities that replicate those of humans for a given 
task can and often will replace humans in those tasks.

Automation increases productivity. Moreover, there are many tasks that are 
dangerous, dull, or dirty, and those are often the first to be automated. As more 
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tasks are automated, a fully automated economy could, in principle, be structured 
to redistribute the benefits from production widely, even to those people who are 
no longer strictly necessary for value creation. However, the beneficiaries would 
be in a weak bargaining position to prevent a change in the distribution that left 
them with little or nothing. Their incomes would depend on the decisions of 
those in control of the technology. This opens the door to increased concentra-
tion of wealth and power.

This highlights the promise and the peril of achieving HLAI: building machines 
designed to pass the Turing Test and other, more sophisticated metrics of hu-
man-like intelligence.7 On the one hand, it is a path to unprecedented wealth, in-
creased leisure, robust intelligence, and even a better understanding of ourselves. 
On the other hand, if HLAI leads machines to automate rather than augment hu-
man labor, it creates the risk of concentrating wealth and power. And with that 
concentration comes the peril of being trapped in an equilibrium in which those 
without power have no way to improve their outcomes, a situation I call the Turing 
Trap. 

The grand challenge of the coming era will be to reap the unprecedented ben-
efits of AI, including its human-like manifestations, while avoiding the Turing 
Trap. Succeeding in this task requires an understanding of how technological 
progress affects productivity and inequality, why the Turing Trap is so tempting 
to different groups, and a vision of how we can do better.

Artificial intelligence pioneer Nils Nilsson noted that “achieving real hu-
man-level AI would necessarily imply that most of the tasks that humans 
perform for pay could be automated.”8 In the same article, he called for a 

focused effort to create such machines, writing that “achieving human-level AI or 
‘strong AI’ remains the ultimate goal for some researchers” and he contrasted this 
with “weak AI,” which seeks to “build machines that help humans.”9 Not surpris-
ingly, given these monikers, work toward “strong AI” attracted many of the best 
and brightest minds to the quest of–implicitly or explicitly–fully automating 
human labor, rather than assisting or augmenting it. 

For the purposes of this essay, rather than strong versus weak AI, let us use the 
terms automation versus augmentation. In addition, I will use HLAI to mean hu-
man-like artificial intelligence, not human-level AI, because the latter mistakenly 
implies that intelligence falls on a single dimension, and perhaps even that hu-
mans are at the apex of that metric. In reality, intelligence is multidimensional: a 
1970s pocket calculator surpasses the most intelligent human in some ways (such 
as for multiplication), as does a chimpanzee (short-term memory). At the same 
time, machines and animals are inferior to human intelligence on myriad other 
dimensions. The term “artificial general intelligence” (AGI) is often used as a syn-
onym for HLAI. However, taken literally, it is the union of all types of intelligences, 
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able to solve types of problems that are solvable by any existing human, animal, or 
machine. That suggests that AGI is not human-like. 

The good news is that both automation and augmentation can boost labor pro-
ductivity: that is, the ratio of value-added output to labor-hours worked. As pro-
ductivity increases, so do average incomes and living standards, as do our capa-
bilities for addressing challenges from climate change and poverty to health care 
and longevity. Mathematically, if the human labor used for a given output declines 
toward zero, then labor productivity would grow to infinity.10 

The bad news is that no economic law ensures everyone will share this growing 
pie. Although pioneering models of economic growth assumed that technologi-
cal change was neutral,11 in practice, technological change can disproportionately 
help or hurt some groups, even if it is beneficial on average.12

In particular, the way the benefits of technology are distributed depends to a 
great extent on how the technology is deployed and the economic rules and norms 
that govern the equilibrium allocation of goods, services, and incomes. When 
technologies automate human labor, they tend to reduce the marginal value of 
workers’ contributions, and more of the gains go to the owners, entrepreneurs, 
inventors, and architects of the new systems. In contrast, when technologies aug-
ment human capabilities, more of the gains go to human workers.13 

A common fallacy is to assume that all or most productivity-enhancing innova-
tions belong in the first category: automation. However, the second category, aug-
mentation, has been far more important throughout most of the past two centuries. 
One metric of this is the economic value of an hour of human labor. Its market price 
as measured by median wages has grown more than tenfold since 1820.14 An entre-
preneur is willing to pay much more for a worker whose capabilities are amplified 
by a bulldozer than one who can only work with a shovel, let alone with bare hands. 

In many cases, not only wages but also employment grow with the introduc-
tion of new technologies. With the invention of the airplane, a new job category 
was born: pilots. With the invention of jet engines, pilot productivity (in passen-
ger-miles per pilot-hour) grew immensely. Rather than reducing the number of 
employed pilots, the technology spurred demand for air travel so much that the 
number of pilots grew. Although this pattern is comforting, past performance does 
not guarantee future results. Modern technologies–and, more important, the ones 
under development–are different from those that were important in the past.15 

In recent years, we have seen growing evidence that not only is the labor share 
of the economy declining, but even among workers, some groups are beginning 
to fall even further behind.16 Over the past forty years, the numbers of million-
aires and billionaires grew while the average real wages for Americans with only 
a high school education fell.17 Though many phenomena contributed to this, in-
cluding new patterns of global trade, changes in technology deployment are the 
single biggest explanation. 
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If capital in the form of AI can perform more tasks, those with unique assets, 
talents, or skills that are not easily replaced with technology stand to benefit dis-
proportionately.18 The result has been greater wealth concentration.19 

Ultimately, a focus on more human-like AI can make technology a better sub-
stitute for the many nonsuperstar workers, driving down their market wages, 
even as it amplifies the market power of a few.20 This has created a growing fear 
that AI and related advances will lead to a burgeoning class of unemployable or 
“zero marginal product” people.21

A s noted above, both automation and augmentation can increase produc-
tivity and wealth. However, an unfettered market is likely to create social-
ly excessive incentives for innovations that automate human labor and 

provide too weak incentives for technology that augments humans. The first fun-
damental welfare theorem of economics states that under a particular set of con-
ditions, market prices lead to a pareto optimal outcome: that is, one where no one 
can be made better off without making someone else worse off. But we should not 
take too much comfort in that. The theorem does not hold when there are innova-
tions that change the production possibilities set or externalities that affect peo-
ple who are not part of the market.22 

Both innovations and externalities are of central importance to the econom-
ic effects of AI, since AI is not only an innovation itself, but also one that triggers 
cascades of complementary innovations, from new products to new production 
systems.23 Furthermore, the effects of AI, particularly on work, are rife with ex-
ternalities. When a worker loses opportunities to earn labor income, the costs go 
beyond the newly unemployed to affect many others in their community and in 
the broader society. With fading opportunities often come the dark horses of al-
coholism, crime, and opioid abuse. Recently, the United States has experienced 
the first decline in life expectancies in its recorded history, a result of increasing 
deaths from suicide, drug overdose, and alcoholism, what economists Anne Case 
and Angus Deaton call “deaths of despair.”24 

This spiral of marginalization can grow because concentration of econom-
ic power often begets concentration of political power. In the words attributed 
to Louis Brandeis: “We may have democracy, or we may have wealth concen-
trated in the hands of a few, but we can’t have both.” In contrast, when humans 
are indispensable to value creation, economic power will tend to be more decen-
tralized. Historically, most economically valuable knowledge–what economist  
Simon Kuznets called “useful knowledge”–resided within human brains.25 But 
no human brain can contain even a small fraction of the useful knowledge needed 
to run even a medium-sized business, let alone a whole industry or economy, so 
knowledge had to be distributed and decentralized.26 The decentralization of use-
ful knowledge, in turn, decentralizes economic and political power. 
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Unlike nonhuman assets such as property and machinery, much of a person’s 
knowledge is inalienable, both in the practical sense that no one person can know 
everything that another person knows and in the legal sense that its ownership 
cannot be legally transferred.27 In contrast, when knowledge becomes codified 
and digitized, it can be owned, transferred, and concentrated very easily. Thus, 
when knowledge shifts from humans to machines, it opens the possibility of con-
centration of power. When historians look back on the first two decades of the 
twenty-first century, they will note the striking growth in the digitization and cod-
ification of information and knowledge.28 In parallel, machine learning models 
are becoming larger, with hundreds of billions of parameters, using more data and 
getting more accurate results.29 

More formally, incomplete contracts theory shows how ownership of key as-
sets provides bargaining power in relationships between economic agents (such 
as employers and employees, or business owners and subcontractors).30 To the 
extent that a person controls an indispensable asset (like useful knowledge) need-
ed to create and deliver a company’s products and services, that person can com-
mand not only higher income but also a voice in decision-making. When useful 
knowledge is inalienably locked in human brains, so too is the power it confers. 
But when it is made alienable, it enables (though does not demand) greater con-
centration of decision-making and power.31

T he risks of the Turing Trap are amplified because three groups of people–
technologists, businesspeople, and policy-makers–each find automa-
tion alluring. Technologists have sought to replicate human intelligence 

for decades to address the recurring challenge of what computers could not do. 
The invention of computers and the birth of the term “electronic brain” were the 
latest fuel for the ongoing battle between technologists and humanist philoso-
phers.32 The philosophers posited a long list of ordinary and lofty human capac-
ities that computers would never be able to do. No machine could play checkers, 
master chess, read printed words, recognize speech, translate between human 
languages, distinguish images, climb stairs, win at Jeopardy or Go, write poems, 
and so forth.

For professors, it is tempting to assign such projects to their graduate students. 
Devising challenges that are new, useful, and achievable can be as difficult as solv-
ing them. Rather than specify a task that neither humans nor machines have ever 
done before, why not ask the research team to design a machine that replicates an 
existing human capability? Unlike more ambitious goals, replication has an exis-
tence proof that such tasks are, in principle, feasible and useful. 

While the appeal of human-like systems is clear, the paradoxical reality is that 
HLAI can be more difficult and less valuable than systems that achieve super- 
human performance.
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In 1988, robotics researcher Hans Moravec noted that “it is comparatively easy 
to make computers exhibit adult level performance on intelligence tests or play-
ing checkers, and difficult or impossible to give them the skills of a one-year-old 
when it comes to perception and mobility.”33 But I would argue that in many do-
mains, Moravec was not nearly ambitious enough. It is often comparatively easier 
for a machine to achieve superhuman performance in new domains than to match 
ordinary humans in the tasks they do regularly.

Humans have evolved over millions of years to be able to comfort a baby, nav-
igate a cluttered forest, or pluck the ripest blueberry from a bush. These tasks 
are difficult if not impossible for current machines. But machines excel when it 
comes to seeing X-rays, etching millions of transistors on a fragment of silicon, or 
scanning billions of webpages to find the most relevant one. Imagine how feeble 
and limited our technology would be if past engineers set their sights on merely 
matching human-levels of perception, actuation, and cognition. 

Augmenting humans with technology opens an endless frontier of new abili-
ties and opportunities. The set of tasks that humans and machines can do together 
is undoubtedly much larger than those humans can do alone (Figure 1). Machines 
can perceive things that are imperceptible to humans, they can act on objects in 
ways that no human can, and, most intriguingly, they can comprehend things that 
are incomprehensible to the human brain. As Demis Hassabis, CEO of DeepMind, 
put it, the AI system “doesn’t play like a human, and it doesn’t play like a program. 
It plays in a third, almost alien, way . . . it’s like chess from another dimension.”34 
Computer scientist Jonathan Schaeffer explains the source of its superiority: “I’m 
absolutely convinced it’s because it hasn’t learned from humans.”35 More funda-
mentally, inventing tools that augment the process of invention itself promises to 
expand not only our collective abilities, but to accelerate the rate of expansion of 
those abilities.

What about businesspeople? They often find that substituting machinery for 
human labor is the low-hanging fruit of innovation. The simplest approach is to 
implement plug-and-play automation: swap in a piece of machinery for each task 
a human is currently doing. That mindset reduces the need for more radical chang-
es to business processes.36 Task-level automation reduces the need to understand 
subtle interdependencies and creates easy A-B tests, by focusing on a known task 
with easily measurable performance improvement. 

Similarly, because labor costs are the biggest line item in almost every company’s 
budget, automating jobs is a popular strategy for managers. Cutting costs–which 
can be an internally coordinated effort–is often easier than expanding markets. 
Moreover, many investors prefer “scalable” business models, which is often a syn-
onym for a business that can grow without hiring and the complexities that entails. 

But here again, when businesspeople focus on automation, they often set out 
to achieve a task that is both less ambitious and more difficult than it need be. 
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To understand the limits of substitution-oriented automation, consider a thought 
experiment. Imagine that our old friend Dædalus had at his disposal an extreme-
ly talented team of engineers 3,500 years ago and built human-like machines that 
fully automated every work-related task that his fellow Greeks were doing. 

	9 Herding sheep? Automated.
	9 Making clay pottery? Automated.
	9 Weaving tunics? Automated.
	9 Repairing horse-drawn carts? Automated.
	9 Incense and chanting for victims of disease? Automated.

The good news is that labor productivity would soar, freeing the ancient 
Greeks for a life of leisure. The bad news is that their living standards and health 
outcomes would come nowhere near matching ours. After all, there is only so 
much value one can get from clay pots and horse-drawn carts, even with unlimit-
ed quantities and zero prices. 

In contrast, most of the value that our economy has created since ancient times 
comes from new goods and services that not even the kings of ancient empires 
had, not from cheaper versions of existing goods.37 In turn, myriad new tasks are 

Figure 1
Opportunities for Augmenting Humans Are Far Greater than  
Opportunities to Automate Existing Tasks

New Tasks That 
Humans Can Do with 
the Help of Machines

Tasks That 
Humans Can Do

Human Tasks 
That Machines 
Could Automate
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required: fully 60 percent of people are now employed in occupations that did not 
exist in 1940.38 In short, automating labor ultimately unlocks less value than aug-
menting it to create something new.

At the same time, automating a whole job is often brutally difficult. Every job 
involves multiple different tasks, including some that are extremely challenging 
to automate, even with the cleverest technologies. For example, AI may be able to 
read mammograms better than a human radiologist, but it is not very good at the 
other twenty-six tasks associated with the job, according to O-NET, such as com-
forting a concerned patient or coordinating on a care plan with other doctors.39 
My work with Tom Mitchell and Daniel Rock on the suitability for machine learn-
ing analyzed 950 distinct occupations.  We found that machines could perform at 
least some tasks in most occupations, but zero in which machine learning could 
do 100 percent of the tasks.40

The same principle applies to the more complex production systems that in-
volve multiple people working together.41 To be successful, firms typically need to 
adopt a new technology as part of a system of mutually reinforcing organizational 
changes.42 Consider another thought experiment: Imagine if Jeff Bezos had “au-
tomated” existing bookstores by simply replacing all the human cashiers with ro-
bot cashiers. That might have cut costs a bit, but the total impact would have been 
muted. Instead, Amazon reinvented the concept of a bookstore by combining hu-
mans and machines in a novel way. As a result, they offer vastly greater product 
selection, ratings, reviews, and advice, and enable 24/7 retail access from the com-
fort of customers’ homes. The power of the technology was not in automating the 
work of humans in the existing retail bookstore concept but in reinventing and 
augmenting how customers find, assess, purchase, and receive books and, in turn, 
other retail goods. 

Third, policy-makers have also often tilted the playing field toward automat-
ing human labor rather than augmenting it. For instance, the U.S. tax code cur-
rently encourages capital investment over investment in labor through effective 
tax rates that are much higher on labor than on plants and equipment.43 

Consider a third thought experiment: Two potential ventures each use AI to 
create $1 billion of profits. If one of them achieves this by augmenting and em-
ploying a thousand workers, the firm will owe corporate and payroll taxes, while 
the employees will pay income taxes, payroll taxes, and other taxes. If the second 
business has no employees, the government may collect the same corporate taxes, 
but no payroll taxes and no taxes paid by workers. As a result, the second business 
model pays far less in total taxes. 

This disparity is amplified because the tax code treats labor income more 
harshly than capital income. In 1986, top tax rates on capital income and labor 
income were equalized in the United States, but since then, successive changes 
have created a large disparity, with the 2021 top marginal federal tax rates on labor 
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income of 37 percent, while long capital gains have a variety of favorable rules, in-
cluding a lower statutory tax rate of 20 percent, the deferral of taxes until capital 
gains are realized, and the “step-up basis” rule that resets capital gains to zero, 
wiping out the associated taxes, when assets are inherited. 

The first rule of tax policy is simple: you tend to get less of whatever you tax. 
Thus, a tax code that treats income that uses labor less favorably than income de-
rived from capital will favor automation over augmentation. Treating both busi-
ness models equally would lead to more balanced incentives. In fact, given the 
positive externalities of more widely shared prosperity, a case could be made for 
treating wage income more favorably than capital income, for instance by expand-
ing the earned income tax credit.44 It is unlikely that any government official can 
define in advance exactly which technologies and innovations augment humans 
rather than merely substitute for them; indeed, most technologies have elements 
of each and the outcome depends a great deal on how they are deployed. Thus, 
rather than prescribe or proscribe specific technologies, a broad-based set of in-
centives can gently nudge technologists and managers toward augmentation on 
the margin, much as carbon taxes encourage myriad types of cleaner energy or 
research and development tax credits encourage greater investments in research.

Government policy in other areas could also do more to steer the economy clear 
of the Turing Trap. The growing use of AI, even if only for complementing work-
ers, and the further reinvention of organizations around this new general-purpose 
technology imply a great need for worker training or retraining. In fact, for each 
dollar spent on machine learning technology, companies may need to spend nine 
dollars on intangible human capital.45 However, education and training suffer 
from a serious externality issue: companies that incur the costs to train or retrain 
workers may reap only a fraction of the benefits of those investments, with the 
rest potentially going to other companies, including competitors, as these work-
ers are free to bring their skills to their new employers. At the same time, work-
ers are often cash- and credit-constrained, limiting their ability to invest in their 
own skills development.46 This implies that government policy should directly 
provide education and training or provide incentives for corporate training that 
offset the externalities created by labor mobility.47

In sum, the risks of the Turing Trap are increased not by just one group in our 
society, but by the misaligned incentives of technologists, businesspeople, and 
policy-makers.

T he future is not preordained. We control the extent to which AI either ex-
pands human opportunity through augmentation or replaces humans 
through automation. We can work on challenges that are easy for ma-

chines and hard for humans, rather than hard for machines and easy for humans. 
The first option offers the opportunity of growing and sharing the economic pie 
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by augmenting the workforce with tools and platforms. The second option risks 
dividing the economic pie among an ever-smaller number of people by creating 
automation that displaces ever-more types of workers. 

While both approaches can and do contribute to productivity and progress, 
technologists, businesspeople, and policy-makers have each been putting a finger 
on the scales in favor of replacement. Moreover, the tendency of a greater concen-
tration of technological and economic power to beget a greater concentration of 
political power risks trapping a powerless majority into an unhappy equilibrium: 
the Turing Trap. 

The backlash against free trade offers a cautionary tale. Economists have long 
argued that free trade and globalization tend to grow the economic pie through the 
power of comparative advantage and specialization. They have also acknowledged 
that market forces alone do not ensure that every person in every country will 
come out ahead. So they proposed a grand bargain: maximize free trade to max-
imize wealth creation and then distribute the benefits broadly to compensate any 
injured occupations, industries, and regions. It has not worked as they had hoped. 
As the economic winners gained power, they reneged on the second part of the bar-
gain, leaving many workers worse off than before.48 The result helped fuel a popu-
list backlash that led to import tariffs and other barriers to free trade. Economists 
wept.

Some of the same dynamics are already underway with AI. More and more 
Americans, and indeed workers around the world, believe that while the technolo-
gy may be creating a new billionaire class, it is not working for them. The more tech-
nology is used to replace rather than augment labor, the worse the disparity may be-
come, and the greater the resentments that feed destructive political instincts and 
actions. More fundamentally, the moral imperative of treating people as ends, and 
not merely as means, calls for everyone to share in the gains of automation. 

The solution is not to slow down technology, but rather to eliminate or reverse 
the excess incentives for automation over augmentation. A good start would be to 
replace the Turing Test, and the mindset it embodies, with a new set of practical 
benchmarks that steer progress toward AI-powered systems that exceed anything 
that could be done by humans alone.  In concert, we must build political and eco-
nomic institutions that are robust in the face of the growing power of AI. We can 
reverse the growing tech backlash by creating the kind of prosperous society that 
inspires discovery, boosts living standards, and offers political inclusion for ev-
eryone. By redirecting our efforts, we can avoid the Turing Trap and create pros-
perity for the many, not just the few. 
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Breakthroughs in AI are accelerating global commercial competition and trans-
forming the international security environment. The reach and influence of foreign- 
based network platforms present risks to American society and require us to con-
front questions about their origin and purpose. Meanwhile, AI technologies are en-
hancing several existing national security threats, and will change the way states 
try to gain leverage against adversaries and exercise coercion and influence in other 
societies. The open nature of free and democratic societies, combined with their in-
creasing reliance on poorly secured digital networks, makes them especially vulnera-
ble. In the military realm, AI holds the prospect of augmenting cyber, conventional, 
and nuclear capabilities in ways that make security relationships among rivals more 
challenging to predict and maintain, and conflicts more difficult to limit. Even as 
they compete, rivals should explore limits on AI capabilities. The AI ecosystems of 
the principal global competitors, the United States and China, remain intertwined, 
and a calibration of the bilateral technology relationship requires both selective de-
coupling and continued collaboration in areas of mutual interest. These changes 
require a comprehensive national strategy for the next decade that preserves global 
leadership advantages for America’s economy and security. 

T he second decade of the twenty-first century featured two major develop-
ments that, together, are shaping the third decade we have now entered. 
The geopolitical landscape is marked by intensifying competition be-

tween the United States and its major power rivals, China and Russia. At the same 
time, the scientific landscape is characterized by significant advances in artificial 
intelligence, which promise tremendous economic and strategic advantages for 
those who capitalize on them.

The confluence of these trends has set up an intense commercial competition 
among the world’s leading technology companies, most of which are based either 
in the United States or in China. AI is transforming almost every sector of national 
economies and is accelerating globalized competitions among digital platforms 
and services. As a consequence, the stakes for future prosperity and long-term na-
tional competitiveness are immense.
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The security environment is also undergoing significant transformations. This 
is true across a broad spectrum of national and international security problems, 
extending from lower- to higher-level intensities of conflict. At the low end, AI 
is exacerbating cyber and disinformation threats and is changing the way states 
exercise targeted coercion against opponents. In the middle of the spectrum, war-
fare between conventional armed forces will feature more rapid actions and del-
egated decision-making that could make conflict harder to control. At the high 
end, AI-enabled military and intelligence capabilities may disrupt the fundamen-
tal premises of nuclear deterrence in ways that undermine strategic stability.

All of this requires a comprehensive national strategy for the next decade that 
preserves global leadership advantages for both America’s economy and securi-
ty. The United States must protect against hacking, coercion, and other efforts by 
adversaries to use our society’s openness against us. The most dangerous aspects 
of the U.S.-Chinese and U.S.-Russian military rivalries must be managed to avoid 
disastrous conflicts. And the innovation economy that has put American technol-
ogy and ingenuity at the forefront of scientific advances for decades must be bol-
stered to stay ahead of America’s principal competitor, China.

U nderstanding how AI drives the new global commercial landscape be-
gins with network platforms, which I describe in a recently published book, 
The Age of AI, coauthored with Henry Kissinger and computer scientist  

Daniel Huttenlocher, as digital services that provide value to their users by aggre-
gating them in large numbers, often at a transnational and global scale.1 Today, 
the major network platforms increasingly rely on AI for growth. A network plat-
form’s value and attractiveness grow as additional users adopt it. The potential 
social, economic, political, and geopolitical influence of each major network plat-
form is substantially augmented by the degree of these positive network effects.

Two features of global network platforms are especially significant to geopol-
itics. First is their tendency toward consolidation. As more users are drawn to 
certain platforms, their network advantages reduce competition, leaving us with 
fewer providers of a given service, each with a large base of users. In other words, 
the dynamics of positive network effects tend to support only a handful of major 
players who are operating at the forefront for their product or service. The small 
number of leading platforms thereby gain and exercise significant influence on a 
global scale.

The second feature is that many nations are, and are likely to remain, reliant 
on network platforms that are both designed and hosted in other countries. As a 
result, they are dependent, at least in part, on other countries’ regulators for con-
tinued access, key inputs, and international updates. In the United States and else-
where, this has created concerns about the implications of conducting broad as-
pects of national economic and social life on network platforms that were built 
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in other, potentially rival, countries. These platforms may foster a close level of 
connection and influence, particularly with the use of AI to learn from and steer a 
country’s citizens.

Taken together, these two features point to a growing geopolitical and national 
security concern for the United States. The globally dominant network platforms 
of the future could be based in rival countries and could exert significant influ-
ence over American society and even critical infrastructure. If a network platform 
is useful and successful, it comes to support broader commercial and industrial 
functions and, in this capacity, may become nationally indispensable. At least the-
oretically, the threatened withdrawal of such a network platform serves as a po-
tential instrument of leverage. This hypothetical ability to “weaponize” network 
platforms by withholding service in a crisis is an increasingly significant factor in 
national security planning.

The reach and influence of global network platforms require us to ask essential 
questions about their origin and purpose: By whose design, and with what regu-
latory parameters, is the AI operating? What impact might these processes have 
on social norms and institutions? Who has access to the information generated 
through the platform? 

Looking across the world, a multidisciplinary contest for economic advan-
tage, digital security, technological primacy, and ethical and social objectives is 
unfolding.

The United States has begun to view network platforms as an aspect of interna-
tional strategy, restricting the domestic activities of some foreign platforms and 
restricting the export of some software and technology that could strengthen for-
eign competitors. At the same time, critics in and out of government have identi-
fied major domestic network platforms as targets for antitrust actions. This simul-
taneous drive for strategic preeminence and domestic multiplicity may push U.S. 
development in opposing directions.

Meanwhile, China has similarly supported the development of formidable 
network platforms that are global in scale and poised to expand their reach. Bei-
jing has also taken steps to shape international technology standards and bar the 
export of sensitive, domestically developed technologies. Chinese network plat-
forms predominate in China and nearby regions, and some are leading global 
markets.

The landscape will also be shaped by actors beyond the United States and Chi-
na. Europe, unlike China and the United States, has yet to create homegrown glob-
al network platforms or cultivate the technology industry that has supported the 
development of network platforms elsewhere. To be sure, Europe has a signifi-
cant place in the global AI landscape with some leading companies and universi-
ties, sizable markets, and a formidable regulatory apparatus. Yet Europe continues 
to face disadvantages for the initial scaling of new network platforms due to the 
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many languages and separate national regulatory systems in Europe’s combined 
market.

The European Union has focused recent regulatory attention on obliging 
changes in American and (to some extent) Chinese network platforms’ conduct 
as a condition of their operation in the European market. Europe faces the choice 
of whether to act as an ally to one side or another in each technological sphere or 
to act as a balancer between sides. Here, the preferences of the traditional, core EU 
states and the newer Central and Eastern European entrants may differ, reflecting 
varying geopolitical and economic experiences. Thus far, historic global powers 
like France and Germany have prized independence and freedom to maneuver in 
their technology policy, whereas more peripheral European states with recent and 
direct experience of foreign threats (such as the post-Soviet states) have shown 
greater readiness to identify with a U.S.-led technology sphere.

While still an emerging force in this arena, India has substantial intellectual 
capital, a relatively innovation-friendly business and academic environment, and 
a vast reserve of technology and engineering talent that could support the creation 
of leading network platforms. India’s population and economy are of a scale that 
could potentially sustain independent network platforms, without recourse to 
other markets. Likewise, Indian-designed network platforms have the potential 
to become popular in other markets as well. As India assesses its regional relation-
ships and relative reliance on imported technology, it may elect either to chart a 
more independent path or to assume a principal role within an international bloc 
of technologically compatible nations.

The Global AI Index, the most comprehensive effort to date to rank countries 
in terms of AI advancement, offers several insights into how the global competi-
tors stack up.2 The creators of the index assessed countries based on 143 indicators 
across areas such as the talent of AI researchers and practitioners, infrastructure, 
R&D, government strategy, and commercial activity. This is, of course, a snapshot 
in time. What emerges, though, is the centrality of AI talent indicators to assess 
both current strength and future trends. Consider, for example:

	• The United States leads China by the widest margin in the talent category 
(scoring five times higher). It also holds significant leads in research and in 
commercial AI. These factors seem naturally related: the best talent is pro-
ducing the best research and driving the best commercial products. All of this 
points to the importance of keeping America’s global edge in attracting and 
retaining top AI talent.

	• Several Western allies also score higher than China in AI talent, including the 
United Kingdom, Canada, Germany, the Netherlands, and France. This raises 
questions about the extent to which European states will be able to capitalize 
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on this excellent talent base after Brexit and in the midst of the EU’s evolving 
regulatory approach to AI.

	• Although India’s overall score is much lower than China’s, its talent score is 
substantially higher. India ranks second in the world in AI talent, behind only 
the United States. This suggests tremendous potential for India to emerge as 
a global AI heavyweight over time, if India can improve its position in other 
areas such as national infrastructure, government strategy, and commercial 
application.

In overall scores, the United States and China are in a league of their own at 
number one and two, respectively. But the next tier (about ten countries whose 
overall scores fall in the same ballpark) is made up entirely of U.S. allies and part-
ners. This points to the critical need to develop and strengthen AI partnerships 
with those nations.

Depending on how the commercial competition unfolds–even with, or per-
haps as an effect of, such global partnerships–an industry founded on the prem-
ise of global community and communication may, in time, be enlisted in a pro-
cess of regionalization. Such a process could unite blocs of users in separate re-
alities, influenced by distinctive AI that has evolved in different directions and is 
shaped by spheres of regional technology standards. While these trends play out, 
some of these AI-driven platforms will be at the center of novel national security 
challenges.

A rtificial intelligence technologies are enhancing several existing national 
security threats and will change the way states try to gain leverage against 
adversaries and exercise coercion and influence in other societies. The 

open nature of free and democratic societies, combined with their increasing re-
liance on poorly secured digital networks, makes them especially vulnerable to 
these threats.

In its 2021 final report, the National Security Commission on Artificial Intelli-
gence, an independent government panel that I chaired, found that the machine 
learning algorithms that transformed how business was done in the early years of 
this century are now transforming intelligence and statecraft.3 Technology and 
advertising companies learned the value of AI for harvesting and analyzing con-
sumer data. Similar capabilities wielded by governments can now be used for es-
pionage, targeted coercion, tailored disinformation, sophisticated cyber intru-
sions, and potentially biological warfare.

AI opens new horizons of capabilities in the information space, both in mon-
itoring and in disinformation and disruption. In theory, at least, AI could be used 
to determine the most effective ways of delivering synthetic content to people, 
tailoring it to their biases and expectations. Both “offense” and “defense”–both 
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the spread of disinformation and efforts to combat it–will become increasingly 
automated and entrusted to AI.

These capabilities could be used across the spectrum of conflict: as tools of 
pressure during peacetime, as a prelude to military actions, or in concert with a 
military campaign.

One implication of these changes is that data security has become a more cen-
tral problem of national security. AI makes it harder to protect personal infor-
mation–finances, patterns of daily life, relationships, and health among other 
things–that adversaries could use to develop individually tailored models for in-
fluence. This is the major counterintelligence challenge for the AI era.

Another, related security concern is that the cyber domain is becoming in-
creasingly complex and automated. Once AI-enabled malware is lodged onto a 
computer system, it will be able to mutate into multiple forms to avoid detection 
and countermeasures. Such mutating polymorphic malware already accounts for 
the vast majority of malicious executable files circulating in cyberspace.

The U.S. government’s tools to manage these threats are clearly inadequate. 
Substantial changes are required in the way we think about data security and in 
our policies and laws to strengthen it. We need to identify categories and combi-
nations of our most sensitive personal and commercial data, and develop a broad 
approach with clear policies, criteria, or authorities to confront this multifaceted 
problem. Likewise, major reforms are needed in cybersecurity, including wide-
spread integration of AI-enabled cyber defenses to match and neutralize offensive 
AI-cyber techniques.

T he AI era risks complicating the riddles of modern strategy beyond human 
intention, or perhaps even human comprehension. AI holds the prospect 
of augmenting cyber, conventional, and nuclear capabilities in ways that 

make security relationships among rivals more challenging to predict and main-
tain, and conflicts more difficult to limit.

AI’s capacity for autonomy and logic generates a layer of incalculability. Most 
traditional military strategies and tactics are based on the assumption of a human 
adversary whose conduct and decision-making calculus fit within a recognizable 
framework or have been defined by experience and conventional wisdom. Yet an 
AI system piloting an aircraft or scanning for targets follows its own logic, which 
may be inscrutable to an adversary and unsusceptible to traditional signals or feints 
and which will, in most cases, proceed faster than the speed of human thought.

Moreover, because AIs are dynamic and emergent, even those powers creat-
ing or wielding an AI-designed or AI-operated weapon may not know exactly how 
powerful it is, or what it will do in a given situation. When actors deploy AI weap-
ons against one another, neither side may have a precise understanding of what 
their interaction will generate or what may be its collateral effects.
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The integration of AI into military and intelligence systems heightens the risk 
of instability and conflict between the United States and its rivals across a spec-
trum of scenarios, from activities beneath the threshold of war, to conventional 
warfare between armed forces, to nuclear escalation.

At the lower end, for example, it is not hard to imagine how AI-enabled capa-
bilities could provide China with more effective tools to patrol the South China 
Sea and consolidate its strategic position there. Nor is it hard to imagine Russian 
cyber and disinformation activities in Ukraine or elsewhere in Europe becoming 
more effective, persistent, and influential with AI.4

Once they are released into the wild, AI-enabled cyber weapons may be able 
to adapt and learn and may go well beyond their intended targets. The very ca-
pabilities of the weapon might change as the AI reacts to its surroundings. The 
multibillion-dollar global damage caused by Russia’s 2017 NotPetya attack 
concretely demonstrates the power of even basic automated malware, the risk 
tolerance of capable state actors, and the consequences of such capabilities 
proliferating.

AI-enabled cyber weapons may allow adversaries to launch digital assaults 
with exceptional speed, dramatically accelerating the human capacity to exploit 
digital vulnerabilities. As such, a state may effectively have no time to evaluate 
the signs of an incoming attack. Instead, they may need to respond immediately 
or risk disablement. If they have the means, they may elect to “respond” nearly 
simultaneously, before the event can occur, constructing an AI-enabled system to 
scan for attacks and empowering it to counterattack. This could lead to new forms 
of automated preemption or anticipatory self-defense and strain the legal and pol-
icy frameworks that guide government decision-making.

In conventional warfare, greater reliance on automated capabilities, combined 
with the intense decision-making time pressures that attend operations conduct-
ed at machine speeds, could lead to rapid and even unintended escalation. This 
is all the more worrisome if militaries rush to field new systems that are unreli-
able in practice and poorly understood by operators. Unintended escalation could 
occur for many reasons–including when systems fail to perform as intended be-
cause of interactions between opposing systems on the battlefield, or as the re-
sult of machines or humans misperceiving signals or actions. As AI-enabled sys-
tems increase the pace of warfare across the board, the time and space available 
for de-escalatory measures will shrink.

There are also reasons to believe AI will erode nuclear stability, although some 
of these concerns are largely theoretical for now. For example, if AI-enabled intel-
ligence and targeting systems are better able to locate nuclear forces that are cur-
rently hard to see and strike (because they are under the sea or moving around on 
land), this would put at greater risk a state’s second-strike capability and thereby 
undermine mutual vulnerability, which is considered to be a source of stable nu-
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clear deterrence. Other concerns relate to potential integration of AI into nuclear 
command and control.

I n the military sphere, realism should compel rivals, even as they compete, 
to explore limits on the development and use of certain destructive, desta-
bilizing, or unpredictable AI capabilities. This could include a sober effort at 

some form of AI arms control or, if that is too ambitious, the development of con-
fidence-building measures between rival states to reduce risks to international 
stability.5

If weapons can change in ways that prove different in scope or kind from what 
their creators anticipated or threatened, calculations of deterrence or escalation 
have the potential to turn illusory. Moreover, from a technical standpoint, the 
lines between engaging AI in reconnaissance, targeting, and lethal autonomous 
action may be relatively easily crossed, making a search for mutual restraint and 
verification systems difficult but imperative.

To be meaningful, restraints must be reciprocal. But the management of mutu-
al restraints on military AI systems will be even more difficult than it has been for 
nuclear weapons, which has been the endeavor of more than a half century of di-
plomacy among rivals and remains incomplete and fragmentary. The challenge of 
assessing the nuclear balance is relatively straightforward. Warheads themselves 
can be counted and their yields known. Conversely, the capabilities of AI are not 
fixed, they are dynamic. Unlike nuclear weapons, AI systems are hard to track: 
once trained, they can be copied easily and run on relatively small machines. And 
detecting their presence or verifying their absence is difficult or impossible with 
present technology. This is an important area for further technical research and 
policy development.

To begin approaching these questions through diplomacy, initial U.S. dialogue 
with China or Russia should focus on making sure that both sides know, at least 
in general terms, what the other is doing. Such a discussion of AI weapons among 
major powers must be endeavored, if only to develop a common vocabulary of 
strategic concepts and some sense of each other’s red lines.

Because the incorporation of AI systems in nuclear strategy is still nascent, 
now is the window of time for nuclear states to discuss protocols and understand-
ings that could minimize the disruption to nuclear stability. One helpful measure 
would be to clearly and publicly affirm existing U.S. policy that only humans can 
authorize the employment of nuclear weapons–and then seek similar commit-
ments from other states.

At the same time, the United States and other major powers should make ef-
forts to limit the proliferation of AI-enabled weapons. Once introduced, these 
capabilities could spread quickly. Although creating a sophisticated AI requires 
substantial computing power, proliferating the AI or running inference generally 
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does not. AI will be ubiquitously acquired, mastered, and employed; the imposi-
tion of restraints on weaponizing AI, or even achieving a collective definition of 
restraint, will be exceedingly difficult.

S ecurity risks to the United States will become more acute if China’s re-
searchers, companies, and military and intelligence agencies overtake 
their American counterparts in AI proficiency and breakthroughs. At the 

same time, an open international research environment encourages mutually 
beneficial scientific advances in both countries. Adjusting the degrees to which 
U.S.-China technology relations should be open or closed will remain an evolv-
ing challenge.

Only the United States and China have the resources, commercial might, tal-
ent pool, and innovation ecosystem to lead the world in AI. In some areas of AI 
research and application, China is a peer, and in certain applications, China is al-
ready more technically advanced. Within the next decade, China could surpass 
the United States as the world’s preeminent AI power.

If China’s firms win the competition for global network platforms, it will not 
only disadvantage U.S. companies, it will also create the digital foundation for 
a geopolitical challenge to the United States and its allies. Platform domination 
abroad allows China to harvest the data of its users and permits China to extend 
aspects of its domestic system of control. Wherever China controls the digital in-
frastructure, it will gain greater leverage to conform the world to its goals.

Meanwhile, the research ecosystems in China and the United States are deep-
ly connected through shared research projects, talent circulation, and commer-
cial linkages that include supply chains, markets, and joint research ventures. It 
would be counterproductive to sever the technology ties to China that foster basic 
research and benefit U.S. companies. But the United States must safeguard the in-
tegrity of open research, prevent the theft of American intellectual property, and 
employ targeted tools like export controls and investment screening to protect 
technology industries that are critical to national security.

An appropriate calibration of the U.S.-China technology relationship would 
include: 1) some purposeful decoupling of specific linkages that introduce unac-
ceptable vulnerabilities, such as in areas with clear security and military appli-
cations; 2) continuing cooperative research that brings significant joint benefit;  
3) continuing commercial interchange between technology sectors; 4) greater 
collaboration in shared scientific challenge areas; and 5) increased federal gov-
ernment investment in research and development, which will help position the 
United States to win network platform competitions.6

Decoupling, through this lens, is not just about disconnecting from China. It is 
about revitalizing America’s own productivity in critical areas. At the same time, 
the United States must also build up the capacity of its allies and partners. Done 
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right, purposeful decoupling could spur a commercial renaissance in particular 
classes of technologies across Western nations.

B reakthrough progress by China on several fronts has intensified the 
U.S.-China technology competition. The United States must continue to 
invest in American innovation to keep from falling behind. There has been 

a continuity of purpose across administrations to mount a major national effort in 
AI. Keeping the momentum requires the federal government to take a more asser-
tive role than Americans have been accustomed to in recent decades.

Most technology advances in the United States will be driven by the private 
sector and universities. Although publicly funded research has been important for 
innovation, the private sector has proved to be America’s great strength. Compa-
nies move faster and more globally than any government could. But large technol-
ogy firms cannot be expected to compete with the resources of China or make the 
large, nationwide investments the United States needs to stay ahead in the compe-
tition. A hybrid approach that more tightly aligns government and private sector 
efforts is needed to win.

One example of such an approach is the National AI Research Resource 
(NAIRR), a recommendation of the AI Commission. Requested by Congress 
through the National AI Initiative Act of 2020, this initiative aims to democratize 
access to compute environments, data, and testing facilities, providing research-
ers beyond the leading industry players and elite universities with the ability to 
pursue cutting-edge AI work. The initiative promises to spur nationwide technol-
ogy advances with benefits for overall national competitiveness.

Another area for constructive government action is in microelectronics. After 
decades of leading the microelectronics industry, the United States is now almost 
entirely reliant on foreign sources for production of the cutting-edge semiconduc-
tors that power the AI algorithms critical to everything from our defense systems 
to our smartphones. The dependency on semiconductor imports, particularly 
from Taiwan, creates a strategic vulnerability from adverse foreign government 
action, natural disaster, or other events that could disrupt supply chains for elec-
tronics. At the same time, China has made an enormous financial commitment 
to forging a world-leading semiconductor industry by 2030, with the goal of min-
imizing or eliminating China’s own dependency on imported microelectronics. 
The United States must be committed to a strategy to stay at least two generations 
ahead of China in state-of-the-art microelectronics. Doing so requires continued 
funding and incentives to maintain multiple sources of cutting-edge microelec-
tronics fabrication in the United States.

In the coming years, economic and security competitions will proceed in par-
allel, with China aiming to achieve global preeminence in AI by 2030 and securi-
ty agencies among all competitors adopting AI for a wide range of applications. 



298 Dædalus, the Journal of the American Academy of Arts & Sciences

AI, Great Power Competition & National Security

Trends in global network platforms will not just define the landscape of commer-
cial AI, but will also shape the security environment in novel ways. International 
stability will hinge in large measure on whether rival states can manage the un-
certainties of AI in the cyber, conventional, and nuclear realms. And the United 
States will need to carefully navigate its interdependencies with China while also 
continuing domestic reforms to bolster innovation. How the United States man-
ages these interrelated challenges will go a long way toward determining its com-
petitive position by the end of the decade.
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Decision-Making: Some Practical  
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This essay takes an engineering approach to ensuring that the deployment of ar-
tificial intelligence does not confound ethical principles, even in sensitive applica-
tions like national security. There are design techniques in all three parts of the AI 
architecture–algorithms, data sets, and applications–that can be used to incor-
porate important moral considerations. The newness and complexity of AI cannot 
therefore serve as an excuse for immoral outcomes of deployment by companies or 
governments.

One of the most frequent questions I was asked as U.S. Secretary of De-
fense (2015–2017) was whether there will be autonomous lethal weap-
ons. My answer was no, the U.S. Department of Defense (DOD) would 

not deploy or use truly autonomous systems in the application of lethal force. Be-
ing technologically inclined, I established the Pentagon’s official policy in a mem-
orandum back in 2012 when I was Deputy Secretary. When conceiving of this di-
rective, I had imagined myself standing in front of the news cameras the morning 
after innocent bystanders had been killed in an airstrike aimed at terrorists or op-
posing combatants. And suppose I answered in response to obvious and justified 
interrogation over responsibility: “It’s tragic, but it’s not our fault: the machine 
did it.” This reply would be rightly regarded as unacceptable and immoral.

What, then, can ethically “justify” the risk of a terrible error made in the appli-
cation of artificial intelligence?1 In one sense, nothing, of course. Yet as a practi-
cal matter, AI is going to be used, and in an ever-widening set of applications. So 
what can bound moral error? Algorithm design? Data set selection and editing? 
Restricting or even banning use in sensitive applications? Diligent, genuine, and 
documented efforts to avoid tragedies? To some extent, all of these.2 The fact that 
there are practical technical approaches to responsible use of AI is paramount to 
national defense. AI is an important ingredient of the necessary transformation of 
the U.S. military’s armamentarium to the greater use of new technologies, almost 
all of them AI-enabled in some way. 
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This essay takes a technical rather than a legal approach to AI ethics. It explores 
some practical methods to minimize and explain ethical errors. It provides some 
reasons to believe that the good to be obtained by deployment of AI can far out-
weigh the ethical risks.

T he 2012 DOD Directive 3000.09 reads “autonomous and semi-autono-
mous weapons systems shall be designed to allow commanders and op-
erators to exercise appropriate levels of human judgment over the use of 

force.”3 This guidance has been reissued and refined several times since. 
Note that the directive does not use the language “man in the loop.” To use such 

a formulation would be technically ignorant and utterly infeasible. The whole 
point of the machine is to operate faster, more accurately, and frequently entirely 
without communication with humans (that is, “autonomously”). Thus, the image 
of a person inserted in the circuitry like a living chip is ridiculous. In certain ways, 
the whole idea of autonomy in warfare is not at all new. Take a guided anti-air 
missile, for example: most of these find their way to their target–during their en-
tire trajectory, or at least in their lethal “endgame”–using inputs from a homing 
seeker in the nose (a camera, say, or radar) whose output is calculated on board 
the missile with computers and software designed and tested years previously and 
updated during flight. In these respects, the question about autonomous weapons 
or “lethal AI” has thus been around for quite a while. Still, with AI and many of its 
applications developing at lightning speed, we must give some good answers to its 
distinctive questions. The language of the directive was crafted to suggest that the 
DOD would insist upon other more practical forms of “human judgment” built 
into its AI-enabled weapons systems.

It is not particularly surprising that the tradecraft for ethical use of AI has 
lagged development of the technology itself. For one thing, after pioneering AI as 
early as the 1950s, the DOD ended up lagging in its application to military prob-
lems (in a manner all too common). It is relatively recent that the Pentagon has 
begun catching up. And while universities do critical fundamental research, in-
cluding interdisciplinary work bringing tech together with law, ethics, policy, and 
other fields of thought, they are remote from direct application at scale. Instead, 
applied work in AI has been led by the consumer Internet and advertising indus-
tries. These industries can afford to be tolerant of Type I errors (pushing content 
to users unlikely to buy the sponsor’s products, for example) or Type II errors (not 
pushing content to likely customers) in accomplishing their objectives. The analo- 
gous kinds of errors would be much graver in applications like national security, 
health care, self-driving vehicles, or law enforcement. The ethical errors of priva-
cy violations and manipulation that have clearly been made by consumer Inter-
net and advertising companies are not errors of AI, but of a basic lack of moral 
self-scrutiny. In fact, a significant part of the American creative culture, at least in 
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digital technology, has believed that its dynamism springs from its independence 
from government and virtually any meaningful regulation (strikingly illustrated 
by Section 230 of the Communications Decency Act of 1996, which provided broad 
immunity to online platforms from civil liability for content on their platforms). 

But in spite of tech’s preference for a freewheeling environment and govern-
ment’s deserved reputation for stodginess, public policy is irreplaceable for tech-
nological progress. Government is the artery through which not only vital basic 
research funding flows, but also the rules, norms, and regulations that fortify ac-
ceptance and trust by the population of technological progress as something that 
is a net positive for humanity. Historically, the “disruptive” technology-enabled 
industrial revolution that resulted in the gigantic farm-to-factory migration was 
only successful in America because the government supplied the complementary 
ingredients to those supplied by innovators and profit-seeking industry. Govern-
ment-supplied ingredients like universal public education prepared a farmland 
workforce for industrial jobs. Progressive-era labor reforms offering legal and 
other safeguards for workers made it possible for most Americans to support a 
free market system of large corporations and to view technology as a net positive. 
In other countries, notably Russia, the farm-to-factory revolution failed. During 
roughly the same period, U.S. government standards for the safety of foods and 
drugs were promulgated–and accepted–at a nationwide scale. Without such 
regulation, citizens would not be able to trust the industrialized production of 
foods, and there might not have been continent-wide markets like those that de-
veloped quickly in America.

In a similar way, it seems likely that AI and ethics will mix best when tech 
and government mix well. The purely technical challenges of ethical AI are hard 
enough. We do not need a failure of government and industry collaboration to be 
an obstacle to the ethical fielding of AI. As a technologist as well as a government 
leader, I believe strongly in both the wonders of AI and the importance of morality 
in engineering. I am also optimistic this can be solved, like every other hard prob-
lem, with diligent technology-informed effort. This will be essential for national 
defense.

While some advancements in AI are breathtakingly new, their novelty should 
not be exaggerated. Right and wrong are certainly not new. The question has been 
around a long time: what is a “good reason” for the rest of us to soften the penal-
ty for, or excuse entirely, the people who designed and sold the technology that 
made a tragic error? Various justifications have long been defined in courts, prod-
uct warranties, corporate disclosure statements, and press conferences. There 
is even a rule-of-reason that recognizes that no technology is perfect, so “good” 
only means “good enough.” Not just the morality but also the political practical-
ity of deploying AI hinge on some sort of accountability and responsibility engi-
neered into it that is “good enough” for the purpose. Ethical design principles can 
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be identified in all three components of an AI deployment: algorithms, data sets, 
and applications.

M any kinds of AI algorithms exist in practice, and even more are being 
developed or hypothesized. They all make enormous numbers of tiny 
calculations that combine to make overall inferences that cannot be 

made quickly by humans, have not been recognized by humans, or even perhaps 
would never be recognized by humans. These computational methods make liter-
al transparency, normally the starting point for ethical accountability, completely 
impractical. It is usually impossible to “deconvolve” the series of steps leading to 
the inferences made by AI. 

Moreover, like software of nearly any kind, AI algorithms are the product of 
many hands and many engineers working in many venues over many years. While 
blame for an unethical outcome can be attributed to the final vendor or end user, 
even this is unreasonable unless negligence can be shown, which takes us back to 
the same fundamental dilemmas.

One approach is to make ethics an internal algorithm design criterion from the 
start. Doing so successfully may require substantial new conceptual invention in 
its own right, but this can be as exciting for the coding engineers as maximizing 
any other design feature, especially if value is attributed to it. The federal govern-
ment, including the DOD, should fund basic research into ethics-by-algorithms, 
recognizing that companies will underinvest until some terrible wrong occurs. 
My experience in technology management suggests that the initial specialist re-
frain “it can’t be done” is usually overcome by making the desired innovation a 
requirement-to-buy or a weighted factor in competitive source selection.

An additional approach is to focus on the process of algorithm design rather 
than the algorithm itself. The history of processes designed to prevent the mis-
use of nuclear weapons offers a valuable example. Bombs themselves are outfitted 
with elaborate coded locks to prevent abuse, which could have the gravest con-
sequences. But any repair, movement, or contact–that is, any process in which 
bombs are handled, moved, repaired, or altered–requires two people rated in the 
same specialty (the “two-man rule”). Even I, as Secretary of Defense, was not au-
thorized to be alone with a nuclear weapon. These many simultaneous approach-
es to security policy, some involving design and some involving process, recog-
nized the ineffable variety of possible failure modes and the absolute necessity to 
prevent every one of them, all in an essentially unending custodianship of tens of 
thousands of bombs (the half-life of Plutonium-239 is twenty-two thousand years 
and Uranium-235 is 703 million years). The complexity of this challenge was deep-
ened with the collapse of the Soviet Union, which fragmented the systems that 
had served to control one of the world’s two biggest collections of such weapons. 
In the 1990s, I ran the Pentagon program created to assist the post-Soviet militar-
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ies to protect and reduce the arsenals they inherited, and I was in awe of the way 
such a combination of design and process methods safeguarded weapons in a to-
tally unforeseen social disintegration.

Programs of established design principles backed up by dual or multiple check-
ers with equal training and qualifications and redundant safeguards are widely 
used in complex systems. Establishing such a design process control can not only 
reduce the likelihood of errors with advanced AI applications but mitigate, at least 
partially, the liability assigned to innovators if they do occur. It was precisely such 
a process protocol that was apparently compromised in the famous case of the 
Boeing 737-Max. Its in-flight controls were reportedly the cause of two back-to-
back airline crashes. The Federal Aviation Administration supposedly failed to 
provide thorough expert checking of the significant changes to in-flight charac-
teristics that occurred when the older 737 was changed to the Max configuration. 
Among the fatal mistakes was the sacrifice of an established design criterion in 
the software itself requiring dual redundant sensor inputs to the fly-by-wire flight 
controls. Due to the COVID epidemic, most people are by now familiar with the 
Food and Drug Administration’s “safety and efficacy” testing that must precede 
release of a new vaccine. So the notion of requiring a process of qualified review 
for sensitive products is hardly new and should be the industry standard for AI.

A dilemma arises from proprietary secrecy. A vendor will not want to disclose 
the inner workings of its algorithms and data sets; these are sensitive for compet-
itive reasons. Given proprietary concerns, it is advantageous to establish industry- 
wide standards and a level of government involvement in the certification that 
these standards are being met. Government routinely handles proprietary secrets 
of competing companies when it serves as a regulator or customer of advanced 
technology. Government security classification sometimes can be argued to slow 
the pace of innovation by preventing the free flow of ideas. But in the case of most 
AI, the preponderance of innovation is centered in companies, and intercompany 
secrecy is by far and away the bigger barrier to sharing information, the more so 
as the research frontier has moved out of universities that publish results openly 
and into industry.

It is worth noting that AI itself can be a powerful tool in certification test-
ing of AI systems whose workings are impossible for humans to fully grasp. The 
“checking AI” can perform an exhaustive search for oddities in large numbers of 
input-output runs and thereby identify design defects without unpacking the full 
mass of layered calculations. In the same way, AI can conduct cyber defense by 
probing randomly around the victim’s attack surface for unidentified holes, sim-
ulating the “rat in a maze” attack (to distinguish it from the attacker who exploits 
exquisite defects discovered in the victim’s defenses–the “jewel thief”). This is 
just a new case of an old pattern in technology and warfare, in which the same in-
vention that creates new dilemmas can also help protect from those very dilem-
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mas. AI-assisted checking of algorithms can also speed up the process of ethical 
audit so it does not delay deployment. 

T he next thing to tackle in ethical AI is the data set the algorithm is trained 
on (if it is machine learning) or otherwise crunches to make recommen-
dations to the human user. Data sets come from a wide variety of huge 

caches: enterprise business systems, social media, search engines, public data 
sets, the entire historical corpus of the written word, and Internet of Things (IoT) 
and sensor data of all kinds. The trickiest sets are “unstructured data”: impres-
sively large jumbles of data collected in an incidental manner.

Generally, it really is true: “garbage in, garbage out.” Some open-mindedness 
is needed, however, in the case of AI. Important hints or suggested solutions might 
come from running on bad data, but they should not be used for making determi-
nations in sensitive applications. 

An “ethical audit” of an AI database begins with its provenance. It seems well 
established that true anonymity cannot be promised: AI is so thoroughly pene-
trating that individual identity can almost always be unwound. It turns out that 
the risk of identification goes up in surprising ways when two databases, assem-
bled “anonymously,” are combined. There are technical approaches to enhanc-
ing privacy and true anonymity in databases used by AI that seem durable. One 
example is provided by the various forms of “differential privacy” in which fake 
data are mixed with true data in a quantified way, preserving some privacy but not 
entirely spoiling the data’s use. The Census Bureau uses differential privacy in its 
data.

It is also clear that “informed consent” is not a good ethical proxy in data col-
lection and exploitation without expert guardrails. Few of us can really under-
stand on our own the full consequences of our consent. A company selling or de-
ploying AI that abuses personal data should not be able to evade responsibility by 
citing the supposedly informed consent of the victims.

Some data sets are morally questionable from the start, for example those col-
lected in communist China for purposes of dictatorship and control. It is often 
said that China will outperform the United States in AI because its population of 
1.3 billion, or three times the United States’, provides a database size advantage. 
But I am unaware of any design or implementation of AI that is qualitatively bet-
ter because of a factor of three in data set size. The real difference is the intrusive 
methods of Chinese data collection and application. China is indeed likely to excel 
in the AI of totalitarianism, but this is hardly enviable from an ethical perspective.

Assuming that the data sets used in AI are collected ethically to begin with, 
three features need to be carefully audited for inaccuracies and biases that could 
lead to morally fateful events when they are deployed. The audit should encom-
pass the training set (in the case of machine learning), the application set, and 
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potential issues in matching the two. As in the case of algorithms, an ethical case 
can be built on the characteristics of the data themselves and the process by which 
they are audited.

To my knowledge, there is no substitute for a qualitative examination with a 
skeptical eye. Is the entire space of possible data points defined and is there a rea-
sonable presence (or understood absence) of points in some corners (such as an 
edge subset representing a minority)? Is the set examined against a checklist of 
possible flaws: biased, outdated, or otherwise unrepresentative? How were the 
data originally tagged? Way back in the provenance of most data sets is a human 
tagger who originally assigned a location to each point in a dataspace (“is this 
a dog or cat?”). And again, as in the case of algorithms, AI itself can help work 
through a proposed data set against a checklist of possible foibles before deploy-
ment. Finally, and again as with algorithms, the process of database audit itself 
can be given ethical standards: documentation, multiple qualified checkers, sim-
ulations, and sampling.

T he application is the last ingredient in the consideration of ethics in AI. 
Strong ethical efforts with algorithms and data sets of the kind discussed 
above are not really needed in some applications. Entertainment and ad-

vertising, as already noted, can be fairly error tolerant. It is up to the user or cus-
tomer. But there are applications that require much more ethical scrutiny: nation-
al security, of course (and especially the use of force); law enforcement; health 
care; autonomous vehicles of all kinds; fairness in credit, housing, and employ-
ment; and at least some parts of elections and political life. An “in-between” cat-
egory might be commerce and some parts of finance, where the risk of error is 
mostly economic rather than moral and can be priced in. And even seemingly in-
nocent applications in the consumer Internet can turn in dark directions when 
their true mission is deceit, manipulation, privacy violation, or their enablement.

The reason the techniques for scrutiny of AI algorithms and data sets described 
above are important is that the complexity and relative newness of AI can conceal 
ethical problems from even ethical users of technology. In this respect, AI is no 
different from other new technologies: they always create new capabilities that 
must be situated in a framework of right and wrong that itself changes slowly, or 
arguably not at all. Nuclear weapons, for example, certainly created new capabili-
ties of mass destruction, but the moral principles of just war, proportionality, and 
discrimination still applied to them.

I believe that this discussion of AI algorithms and big data sets demonstrates 
that AI is not impenetrable. It is possible to locate right and wrong even in AI’s 
amazing complexity. It is not possible to claim that the technology itself makes 
moral use indefinable. It even follows that occasional tragic outcomes are defensi-
ble if these techniques have been used with care. What is indefensible is applica-
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tion of AI to inherently immoral purposes, or deployment without the technical 
efforts described above.

I cannot rule out that someday AI might create truly new ethical puzzles for 
humanity. Such dilemmas would have to evade both deeply informed expert scru-
tiny of the technology and extant moral principles. While the popular press some-
times alleges that AI has created qualitatively new ethical quandaries, no such cas-
es have been found to date.

T here is, therefore, a variety of engineering approaches to building ethics 
into AI. The technical judgment that AI and big data, despite their seem-
ingly ineffable complexity, do not defy moral examination is good news 

for U.S. national defense. As Secretary of Defense, I made no apology for the fact 
that America takes its values to the battlefield. But I also made a large number of 
changes in the DOD’s structure and practices to connect the Pentagon more close-
ly to the tech sector. When I took my first job in the Pentagon in 1980, most new 
technology, including AI, originated in America, and most of that under govern-
ment (largely under DOD) sponsorship. Today, the tech base is commercial and 
global. For this new era, the Pentagon therefore needs to build new and different 
kinds of bridges to the tech sector. Accordingly, as Secretary of Defense, I found-
ed the Defense Digital Service to bring young techies directly into the Pentagon, 
placed Defense Innovation Unit outposts in the nation’s tech hubs, and convened 
a Defense Innovation Board chaired by Google’s Eric Schmidt. 

But in the same role I also authorized raids, hostage rescues, counterterrorist 
operations, ongoing combat operations in Afghanistan, the major campaign to 
destroy the Islamic State, and a host of war plans devised for China, Russia, Iran, 
and North Korea, all of them requiring grave moral judgments and all of them us-
ing the newest technology the Pentagon had. It is important that leaders be able 
to situate important moral principles in dramatically new technological settings, 
rather than being bamboozled into thinking they do not apply.

The list of exploding tech fields is long. It encompasses all forms of intelli-
gence collection and electronic warfare, cyber warfare, robotic vehicles, ubiq-
uitous presence via space, IoT, global WiFi and LiFi, bioengineering and biode-
fense, all sorts of new engineered materials, undersea warfare, microsatellites, 
human performance enhancement, various quantum applications, directed- 
energy weapons, and hypersonic vehicles. To make room for these innovations in 
the defense budget, familiar military capital stock like manned armored vehicles, 
many surface ships and large-mass satellites, manned aircraft, and even certain 
infantry subspecialties will gradually be phased out. The only field of warfare in 
which changes are not anticipated is nuclear weapons. Without exception, each 
of the new technologies is being developed and tested using AI. For example, new 
materials development rests on quantum mechanical equations of multi-atom 



151 (2) Spring 2022 307

Ash Carter

geometries that are easy to write down but intractable to solve in closed form:  
AI-enabled computer calculations are the only way these new materials–with 
fantastic weight, strength, thermal, electronic, and other properties–can be en-
gineered. A U.S. military unmatched in its use of AI is therefore not only essential, 
but also key to all kinds of military innovation.

Another question I was frequently asked as Secretary of Defense is whether 
there will be two Internets, one U.S.-led and one China-led. There will, indeed, 
surely be two tech ecosystems. That is not a choice the United States can make; Xi 
Jinping has announced China’s intention to make it so. Moreover, in geopolitical 
terms, China’s development has not taken the path that Americans and their allies 
had naively hoped for as recently as a few years ago. China has not embraced val-
ues of universal valence, as America does, at least on its best days, but instead em-
braces values that are distinctly and exclusively ethnocentrically Chinese. Thus, 
the United States and China have become locked in a titanic geostrategic strug-
gle incomparably more complex than that between the United States and Soviet 
Union during the Cold War. The two Cold War opponents did not trade with each 
other in high-tech goods. The United States and China do.

It is essential to any U.S. Secretary of Defense that America continue to be un-
surpassed in all the emerging fields of technology, including, of course, in AI. Pre-
vailing in the competition will require a new geostrategic playbook for compe-
tition with China with chapters on defense, offense, and new alliances. Defense 
encompasses carefully tailored restrictions on critical sensitive technology that 
could make its way into China. Far more important than tech defense to limit Chi-
na is tech offense to improve America: robust federal research and development 
funding and an overall innovative climate–encompassing regulation, education 
and immigration, capital markets, and so on–that is maximally simulative of su-
periority in AI and other fields (all, as noted, enabled by AI). Finally, recalling that 
China makes up but one-half of Asia and one-fifth of the world, it is essential that 
the U.S.-led tech ecosystem embrace most of the rest of humanity. It is unlikely 
that China or other potential military opponents of the United States will respect 
the same moral scruples that the United States applies to itself. But this essay sug-
gests that the United States will not be disadvantaged in such an asymmetrical 
competition since good engineering design can accommodate both high perfor-
mance and good ethics. Assuming the United States retains its historic values and 
does not forget to apply them to AI and other new technologies in the manner de-
scribed here, the result will be a peaceful and progressive world for most.
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endnotes
	 1	 The term AI has been around a long time and, for our purposes, means all kinds of ad-

vanced techniques: machine learning, neural networks, deep learning, and even just 
“big data.” It does not make the distinction of “artificial general intelligence” (AGI) 
since the definition and meaning of AGI are not precise, and its “singularity” date–
when AI matches or surpasses human intelligence–is elusive. The real singularity in the 
existence of technology will be when we can achieve human immortality, either digital 
or biological. “Immortality” might even happen before AGI.

	 2	 What about “full disclosure,” “opt in/opt out,” “anonymity,” “it is impossible with such 
complicated systems”? All these are much more dubious, as we shall see.

	 3	 U.S. Department of Defense, “Autonomy in Weapon Systems,” Directive No. 3000.09, 
November 21, 2012.
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Social distrust of AI stems in part from incomplete and faulty data sources, inap-
propriate redeployment of data, and frequently exposed errors that reflect and am-
plify existing social cleavages and failures, such as racial and gender biases. Oth-
er sources of distrust include the lack of “ground truth” against which to measure 
the results of learned algorithms, divergence of interests between those affected and 
those designing the tools, invasion of individual privacy, and the inapplicability of 
measures such as transparency and participation that build trust in other institu-
tions. Needed steps to increase trust in AI systems include involvement of broader 
and diverse stakeholders in decisions around selection of uses, data, and predictors; 
investment in methods of recourse for errors and bias commensurate with the risks 
of errors and bias; and regulation prompting competition for trust. 

Works of imagination, from Frankenstein (1818) to the film 2001: A Space 
Odyssey (1968) and the Matrix series (1999–2021), explore fears that 
human-created artificial intelligences threaten human beings due to 

amoral logic, malfunctioning, or the capacity to dominate.1 As computer science 
expands from human-designed programs spelling out each step of reasoning to 
programs that automatically learn from historical data, infer outcomes for indi-
viduals not yet seen, and influence practices in core areas of society–including 
health care, education, transportation, finance, social media, retail consumer 
businesses, and legal and social welfare bureaucracies–journalistic and scholar-
ly accounts have raised questions about reliability and fairness.2 Incomplete and 
faulty data sources, inappropriate redeployment of data, and frequently exposed 
errors amplify existing social dominance and cleavages. Add mission creep–
like the use of digital tools intended to identify detainees needing extra supports 
upon release to instead determine release decisions–and it is no wonder that big 
data and algorithmic tools trigger concerns over loss of control and spur decay 
in social trust essential for democratic governance and workable relationships in  
general.3
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Failures to name and comprehend the basic terms and processes of AI add to 
specific sources of distrust. Examining those sources, this essay ends with poten-
tial steps forward, anticipating both short-term and longer-term challenges.

Artificial intelligence signifies a variety of technologies and tools that can 
solve tasks requiring “perception, cognition, planning, learning, commu-
nication, and physical actions,” often learning and acting without over-

sight by their human creators or other people.4 These technologies are already 
much used to distribute goods and benefits by governments, private companies, 
and other private actors.

Trust means belief in the reliability or truth of a person or thing.5 Associated 
with comfort, security, and confidence, its absence infers doubt about the reliabil-
ity or truthfulness of a person or thing. That doubt generates anxieties, alters be-
haviors, and undermines cooperation needed for private and public action. Distrust 
is corrosive. 

Distrust is manifested in growing calls for regulation, the emergence of watch-
dog and lobbying groups, and the explicit recognition of new risks requiring mon-
itoring by corporate audit committees and accounting firms.6 Critics and advo-
cates alike acknowledge that increasing deployment of AI could have unintended 
but severe consequences for human lives, ranging from impairments of friend-
ships to social disorder and war.7 These concerns multiply in a context of declin-
ing trust in government and key private institutions.8

An obvious source of distrust is evidence of unreliability. Unreliability could 
arise around a specific task, such as finding that your child did not run the errand 
to buy milk as you requested. Or it could follow self-dealing: did your child keep 
the change from funds used to purchase the milk rather than returning the unused 
money to you? Trust is needed when we lack the time or ability to oversee each 
task to ensure truthful and accurate performance and devotion to the interests of 
those relying on the tasks being done.

Political theorist Russell Hardin explains trust as “encapsulated interest, in 
which the truster’s expectations of the trusted’s behavior depend on assessments 
of certain motivations of the trusted. I trust you because your interests encap-
sulate mine to some extent–in particular, because you want our relationship to 
continue.”9 Trust accordingly is grounded in the truster’s assessment of the in-
tentions of the trusted with respect to some action.10 Trust is strengthened when 
I believe it is in your interest to adhere to my interests in the relevant matter.11 
Those who rely on institutions, such as the law, have reasons to believe that they 
comport with governing norms and practices rather than serving other interests.

Trust in hospitals and schools depends on assessments of the reliability of the 
institution and its practices in doing what it promises to do, as well as its respons-
es to inevitable mistakes.12 With repeated transactions, trust depends not only 
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on results, but also on discernable practices reducing risks of harm and deviation 
from expected tasks. Evidence that the institution or its staff serves the interests 
of intended beneficiaries must include guards against violation of those interests. 
Trust can grow when a hospital visibly uses good practices with good results and 
communicates the measures to minimize risks of bad results and departures from 
good practices.

External indicators, such as accreditation by expert review boards, can signal ad-
herence to good practices and reason to expect good results. External indicators can 
come from regulators who set and enforce rules, such as prohibitions of self-dealing 
through bans on charging more than is justifiable for a procedure and prohibiting 
personal or institutional financial interests that are keyed to the volume of referrals or 
uses.13 Private or governmental external monitors must be able to audit the behavior 
of institutions.14 External review will not promote trust if external monitors are not 
themselves trusted. In fact, disclosure amid distrust can feed misunderstandings.15

Past betrayals undermine trust. Personal and collective experiences with dis-
crimination or degradation–along lines of race, class, gender, or other personal 
characteristics–especially create reasons for suspicion if not outright distrust. 
Similarly, experiences with self-interested companies that make exploitative prof-
its can create or sustain distrust. Distrust and the vigilance it inspires may itself 
protect against exploitation.16

These and further sources of distrust come with uses of AI, by which we mean: a 
variety of techniques to discern patterns in historical “training” data that are deter-
minative of status (is the tumor benign?) or predictive of a future outcome (what 
is the likelihood the student will graduate within four years?). The hope is that the 
patterns discerned in the training data will extend to future unseen examples. Al-
gorithms trained on data are “learned algorithms.” These learned algorithms clas-
sify and score individuals as the system designer chose, equitably or not, to repre-
sent them to the algorithm. These representations of individuals and “outcomes” 
can be poor proxies for the events of interest, such as using re-arrest as a proxy for 
recidivism or a call to child protective services as a proxy for child endangerment.17 

Distrust also results from the apparent indifference of AI systems. Learned al-
gorithms lack indications of adherence to the interests of those affected by their 
use. They also lack apparent conformity with norms or practices legible to those 
outside of their creation and operations. 

When designed solely at the directive of governments and companies, AI may 
only serve the interests of governments and companies–and risk impairing the 
interests of others.

Despite sophisticated techniques to teach algorithms from data sets, there 
is no ground truth available to check whether the results match reality. 
This is a basic challenge for ensuring reliable AI. We can prove that the 
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learned algorithm is indeed the result of applying a specific learning technique to 
the training data, but when the learned algorithm is applied to a previously unseen 
individual, one not in the training data, we do not have proof that the outcome is 
correct in terms of an underlying factual basis, rather than inferences from indi-
rect or arbitrary factors. Consider an algorithm asked to predict whether a giv-
en student will graduate within four years. This is a question about the future: 
when the algorithm is applied to the data representing the student, the answer 
has not yet been determined. A similar quandary surrounds risk scoring: what 
is the “probability” that an individual will be re-arrested within two years? This 
question struggles to make sense even mathematically: what is the meaning of 
the “probability” of a nonrepeatable event?18 Is what we perceive as randomness 
in fact certainty, if only we had sufficient contextual information and computing 
power? Inferences about the future when predicated on limited or faulty informa-
tion may create an illusion of truth, but illusion it is.

Further problems arise because techniques for building trust are too often un-
available with algorithms used for scoring and categorizing people for public or 
private purposes. Familiar trust-building techniques include transparency so oth-
ers can see inputs and outcomes, opportunities for those affected to participate in 
designing and evaluating a system and in questioning its individual applications, 
monitoring and evaluation by independent experts, and regulation and oversight 
by government bodies. 

Trust in the fairness of legal systems increases when those affected participate 
with substantive, empowering choices within individual trials or panels review-
ing the conduct of police and other officials. Could participation of those affected 
by AI help build trust in uses of AI?19 Quite apart from influencing outcomes, par-
ticipation gives people a sense that they are valued, heard, and respected.20 Par-
ticipatory procedures signal fairness, help to resolve uncertainties, and support 
deference to results.21 Following prescribed patterns also contributes to the per-
ceived legitimacy of a dispute resolution system.22

But there are few if any roles for consumers, criminal defendants, parents, or 
social media users to raise questions about the algorithms used to guide the allo-
cation of benefits and burdens. Nor are there roles for them in the construction 
of the information-categorizing algorithms. Opportunities to participate are not 
built into the design of algorithms, data selection and collection protocols, or the 
testing, revision, and use of learning algorithms. Ensuring a role for human beings 
to check algorithmic processes can even be a new source of further inaccuracies. 
An experiment allowing people to give feedback to an algorithmically powered 
system actually showed that participation lowered trust–perhaps by exposing 
people to the scope of the system’s inaccuracies.23 

Suggestions for addressing distrust revolve around calls for “explainability” 
and ensuring independent entities access to the learned algorithms themselves.24 
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“Access” can mean seeing the code, examining the algorithm’s outputs, and re-
viewing the choice of representation, sources of training data, and demograph-
ic benchmarking.25 But disclosure of learning algorithms themselves has limited 
usefulness in the absence of data features with comprehensible meanings and ex-
planations of weight determining the contribution of each feature to outcomes. 
Machine learning algorithms use mathematical operations to generate data fea-
tures that almost always are not humanly understandable, even if disclosed, and 
whose learned combinations would do nothing to explain outcomes, even to ex-
pert auditors.

Regulation can demand access and judgments by qualified experts and, per-
haps more important, require behavior attentive not only to narrow interests but 
also to broader public concerns. Social distrust of X-rays produced demands for 
regulation; with regulation, professional training, and standards alert to health 
effects, X-rays gained widespread trust.26 Yet government regulators and inde-
pendent bodies can stoke public fears if they contribute to misinformation and 
exaggerate risks.27

For many, reliance on AI arouses fears of occupational displacement. Now 
white collar as well as blue collar jobs seem at risk. One study from the Unit-
ed Kingdom reported that more than 60 percent of people surveyed worry 

that their jobs will be replaced by AI. Many believe that their jobs and opportuni-
ties for their children will be disrupted.28 More than one-third of young Ameri-
cans report fears about technology eliminating jobs.29 Despite some predictions 
of expanded and less-repetitive employment, no one can yet resolve doubts about 
the future.30 Foreboding may be exacerbated by awareness that, by our uses of 
technology, we contribute to the trends we fear. Many people feel forced to use 
systems such as LinkedIn or Facebook.31 People report distrust of the Internet but 
continue to increase their use of it.32

Some distrust AI precisely because human beings are not visibly involved in 
decisions that matter to human beings. Yet even the chance to appeal to a human 
is insufficient when individuals are unaware that there is a decision or score af-
fecting their lives.

As companies and governments increase their use of AI, distrust mounts 
considerably with misalignment of interests. Airbnb raised concerns 
when it acquired Trooly Inc., including its patented “trait analyzer” that 

operates by scouring blogs, social networks, and commercial and public databases 
to derive personality traits. The patent claims that “the system determines a trust-
worthiness score of the person based on the behavior and personality trait met-
rics using a machine learning system,” with the weight of each personality trait 
either hard coded or inferred by a machine learning model.33 It claims to identify 
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traits as “badness, anti-social tendencies, goodness, conscientiousness, openness, 
extraversion, agreeableness, neuroticism, narcissism, Machiavellianism, or psy-
chopathy.”34 Although Airbnb asserts that the company is not currently deploy-
ing this software,35 the very acquisition of a “trait analyzer” raises concerns that 
the company refuses to encapsulate the interests of those affected.36

Examples of practices harming and contrary to the interests of users abound in 
social media platforms, especially around demonstrated biases and invasions of 
privacy. Although social media companies offer many services that appeal to us-
ers, the companies have interests that diverge systematically from those of users. 
Platform companies largely profit off data generated by each person’s activities on 
the site. Hence, the companies seek to maximize user “engagement.” Each new 
data point comes when a user does–or does not–click on a link or hit a “like” 
button. The platform uses that information to tailor content for users and to sell 
their information to third parties for targeted advertising and other messages.37 
Chamath Palihapitiya, former vice president for “user growth” for Facebook, has 
claimed that Facebook is addictive by design.38 Sean Parker, an original Facebook 
investor, has acknowledged that the site’s “like” button and news feed keep users 
hooked by exploiting people’s neurochemical vulnerabilities.39 

Privacy loss is a particular harm resented by many. Privacy can mean seclusion, 
hiding one’s self, identity, and information; it can convey control over one’s per-
sonal information and who can see it; it can signal control over sensitive or person-
al decisions, without interference from others; or it can mean protection against 
discrimination by others based on information about oneself. All these meanings 
matter in the case of Tim Stobierski, who, shortly after starting a new job at a pub-
lishing house, was demonstrating a Facebook feature to his boss when an adver-
tisement for a gay cruise appeared on his news feed.40 He wondered, “how did 
Facebook know that I was interested in men, when I had never told another living 
soul, and when I certainly had never told Facebook?”41 The Pew Research Center 
showed that about half of all Facebook users feel discomfort about the site’s col-
lection of their interests, while 74 percent of Facebook users did not know how to 
find out how Facebook categorized their interests or even how to locate a page list-
ing “your ad preferences.”42 A platform’s assumptions remain opaque even as us-
ers resent the loss of control over their information and the secret surveillance.43

Tech companies may respond that users can always quit. Here, too, a conflict 
of interests is present. Facebook exposes individuals to psychological manipula-
tion and data breaches to degrees that they cannot imagine.44 Most users do not 
even know how Facebook uses their data or what negative effects can ensue.45 The 
loss of control compounds the unintended spread of personal information.

The interests of tech platforms and users diverge further over hateful speech. 
Facebook’s financial incentive is to keep or even elicit outrageous posts because 
they attract engagement (even as disagreement or disgust) and hence produce 
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additional monetizable data points.46 Facebook instructs users to hide posts they 
do not like, or to unfollow the page or person who posted it, and, only as a third 
option, to report the post to request its removal.47 Under pressure, Facebook es-
tablished an oversight review board and charged it with evaluating (only an infini-
tesimal fraction of ) removal decisions. Facebook itself determines which matters 
proceed to review.48 Directed to promote freedom of speech, not to guard against 
hatred or misinformation, the board has so far done little to guard against foment-
ed hatred and violence.49

Large tech companies are gatekeepers; they can use their position and their 
knowledge of users to benefit their own company over others, including third par-
ties that pay for their services.50 As one observer put it, “social media is cloaked in 
this language of liberation while the corporate sponsors (Facebook, Google et al.) 
are progressing towards ever more refined and effective means of manipulating 
individual behavior (behavioral targeting of ads, recommendation systems, repu-
tation management systems etc.).”51

T he processes of AI baffle the open and rational debates supporting democ-
racies, markets, and science that have existed since the Enlightenment. AI 
practices can nudge and change what people want, know, and value.52 Dif-

ferently organized, learned algorithms could offer people some control over site 
architecture and content moderation.53

Dangers from social media manipulation came to fruition with the 2020 U.S. 
presidential election. Some conventional media presented rumors and falsehood, 
but social media initiated and encouraged misinformation and disinformation, 
and amplified their spread, culminating in the sweeping erroneous belief that 
Donald Trump rather than Joe Biden had won the popular vote. False claims of 
rigged voting machines, despite the certification of state elections, reflected and 
inflamed social distrust.54 The sustainability of our democratic governance sys-
tems is far from assured.

Building trust around AI can draw on commitments to participation, useable 
explanations, and iterative improvements. Hence, people making and deploying 
AI should involve broader and diverse stakeholders in decisions around what uses 
algorithms are put to; what data, with which features, are used to train the algo-
rithms; what criteria are used in the training process to evaluate classifications 
or predictions; and what methods of recourse are available for raising concerns 
about and securing genuine responsive action to potentially unjust methods or 
outcomes. Creative and talented people have devised AI algorithms able to infer 
our personal shopping preferences; they could deploy their skills going forward 
to devise opportunities for those affected to participate in identifying gaps and 
distortions in data. Independent experts in academic and nonprofit settings–if 
given access to critical information–could provide much-needed audits of algo-
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rithmic applications and assess the reliability and failures of the factors used to 
draw inferences. 

Investment in participatory and information-sharing efforts should be com-
mensurate with the risks of harms. Otherwise, the risks are entirely shifted to the 
consumers, citizens, and clients who are subjected to the commercial and govern-
mental systems that deploy AI algorithms.

As AI escalates, so should accessible methods of recourse and correction. Con-
cerns for people harmed by harassment on social media; biased considerations 
in employment, child protection, and other governmental decisions; and facial 
recognition technologies that jeopardize personal privacy and liberty will be 
echoed by known and unknown harms in finance, law, health care, policing, and 
war-making. Software systems to enable review and to redress mistakes should 
be built, and built to be meaningful. Designers responding that doing so would be 
too expensive or too difficult given the scale enabled by the use of AI algorithms 
are scaling irresponsibly. Responsible scaling demands investment in methods of 
recourse for errors and bias commensurate with the risks of errors and bias. AI can 
and must be part of the answer in addressing the problems created by AI, but so 
must strengthened roles for human participation. Government by the consent of 
the governed needs no less.55

Self-regulation and self-certification, monitoring by external industry and 
consumer groups, and regulation by government can tackle misalignment and 
even clashes in the interests of those designing the learning algorithms and those 
affected by them. Entities should compete in the marketplace for trust and repu-
tation, face ratings by external monitors, and contribute to the development of 
industry standards. Trust must be earned. 
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Our legal system has historically operated under the general view that courts should 
defer to the legislature. There is one significant exception to this view: cases in which 
it appears that the political process has failed to recognize the rights or interests of 
minorities. This basic approach provides much of the foundational justifications 
for the role of judicial review in protecting minorities from discrimination by the 
legislature. Today, the rise of AI decision-making poses a similar challenge to de-
mocracy’s basic framework. As I argue in this essay, the rise of three trends–privat-
ization, prediction, and automation in AI–have combined to pose similar risks to 
minorities. In this essay, I outline what a theory of judicial review would look like in 
an era of artificial intelligence, analyzing both the limitations and the possibilities 
of judicial review of AI. Here, I draw on cases in which AI decision-making has been 
challenged in courts, to show how concepts of due process and equal protection can 
be recuperated in a modern AI era, and even integrated into AI, to provide for better 
oversight and accountability.

A lmost forty years ago, in an elegant essay published in Dædalus, J. David 
Bolter wrote, “artificial intelligence is compelling and controversial, not 
for its practical achievements, but rather for the metaphor that lies be-

hind the programs: the idea that human beings should be seen as nature’s digital 
computers.”1 “The computer,” Bolter continued, “is a mirror of human nature, 
just as any invention reflects to some extent the intellect and character of its in-
ventor. But it is not a perfect mirror; it affects and perhaps distorts our gaze, mag-
nifying certain human capacities . . . and diminishing others.”2 

As the author points out, a study of AI, which intrinsically compels us to com-
pare mind and machine, reveals the distortions and inaccuracies within each 
realm. Metaphor, in these contexts, can be a useful way to parse the limits of com-
parison between humankind and machines. On this point, Bolter wrote, “we do 
not have to become religious converts to artificial intelligence in order to appre-
ciate the computer metaphor. . . . Instead, we can ask in what ways the metaphor 
is apt and in what ways it may fail.”3 In other words, the study of artificial intel-
ligence forces us to examine deep, compositional questions: What makes a hu-
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man? What makes a machine? And, most important, what makes something ar-
tificial, or intelligent? 

To some extent, a similar set of compositional comparisons can be posed to-
ward the relationship between law and democracy. Law is a metaphor of sorts–a 
set of artificial principles–that help us to move toward an ideal society; but the 
execution of law intrinsically requires us to compare the artifice of these ideals 
with the unpredictable reality of humanity and governance, thus revealing the 
distortions and inaccuracies within each realm. Just as computers function as im-
perfect mirrors of human nature–magnifying certain human capacities and di-
minishing others–law, too, is a reflection of these limitations and possibilities. 
And over time, the law has developed its own form of self-regulation to address 
these issues, stemming from the risks surrounding human fallibility. Our legal 
system has developed an architectural design of separate institutions, a system of 
checks and balances, and a vibrant tradition of judicial review and independence. 
Taken together, these elements compose part of the design of democracy. 

Similar elements, I argue in this essay, must be part of the future of artificial in-
telligence. That is precisely why a study of AI is necessarily incomplete without ad-
dressing the ways in which regulation can play a role in improving AI accountability 
and governance. The issues surrounding algorithmic accountability demonstrate 
a deeper, more structural tension within a new generation of disputes regarding 
law and technology, and the contrast between public and private accountability. At 
the core of these issues, of course, lies the issue of trust: trust in AI, trust in human-
ity, and trust in the rule of law and governance. Here, the true potential of AI does 
not lie in the information we reveal to one another, but rather in the issues it raises 
about the interaction of technology, public trust, and the rule of law. 

The rise of AI in decision-making poses a foundational challenge to democra-
cy’s basic framework. To recuperate trust in AI for humanity’s sake, it is essential 
to employ design systems that integrate principles of judicial review as a founda-
tional part of AI-driven architecture. My approach in this essay sketches out three 
dimensions: descriptive, analytic, and normative. First, I describe the background 
theory of judicial review to introduce a few themes that are relevant to exploring 
the intersection between AI and our legal system. Then I argue that a system of ju-
dicial review is especially needed in light of the rise of three trends that have fun-
damentally altered the course of AI decision-making: privatization (the increased 
role of private contractors in making governmental decisions); prediction (the 
increased focus on using AI to predict human behaviors, in areas as wide-rang-
ing as criminal justice and marketing); and an increased reliance on automated  
decision-making. These three trends, I argue, have combined to create a perfect 
storm of conflict that calls into question the role of courts and regulation alto-
gether, potentially widening the gap of protection for minorities in a world that 
will become increasingly reliant on AI. 
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Finally, I turn to the normative possibilities posed by these challenges. How 
can we ensure that software designers, drawn by traditional approaches to sta-
tistical, predictive analytics, are mindful of the importance of avoiding disparate 
treatment? What protections exist to ensure a potential road map for regulatory 
intervention? Here, drawing on cases in which AI decision-making has been chal-
lenged in the courts, I sketch out some ways due process and equal protection can 
be recuperated in a modern AI era, and even integrated into AI, to provide for bet-
ter oversight and accountability.

T he concept of judicial review, in the United States, has long drawn its force 
from a famous footnote–perhaps the most famous footnote ever writ-
ten–in the 1938 case U.S. vs. Carolene Products, which involved a consti-

tutional challenge to an economic regulation. In the opinion, written by Justice 
Harlan Stone, the Court drew a distinction between economic regulation and oth-
er kinds of legislation that might affect the interests of other groups. This distinc-
tion, buried in that “footnote four,” transformed the law’s approach to civil rights, 
underpinning the guarantee of equal protection under the Fourteenth Amend-
ment for all citizens in the future. 

For economic regulations, the opinion explained, courts should adopt a more 
deferential standard of review, erring on the side of trusting the legislature. How-
ever, when it was clear that a piece of legislation targeted “discrete and insular 
minorities,” Justice Stone recommended employing a heightened standard of re-
view and scrutiny over the legislation, demanding greater justification to defend 
its enaction.4 “When prejudice against discrete and insular minorities may be a spe-
cial condition,” Stone wrote, “which tends seriously to curtail the operation of 
those political processes ordinarily to be relied upon to protect minorities,” the 
law needs to exercise a more “searching inquiry” to justify its actions. 

In the footnote, Justice Stone encapsulated a simple, elegant theory: we need 
the courts to safeguard minorities from regulations that might disregard or dis-
advantage their interests. Of course, this is not the only reason for why we need 
judicial review. The famed Carolene footnote later formed the backbone of a semi-
nal book by John Hart Ely, Democracy and Distrust: A Theory of Judicial Review. Ely’s 
work was essentially a longer explication of this idea: by integrating a healthy dis-
trust of the political process, we can further safeguard democracy for the future. 
To say that the work is formative would be an understatement, as Democracy and 
Distrust has been described as “the single most cited work on constitutional law 
in the last century,” and “a rite of passage” for legal scholars.5 By developing the 
ideas embodied in Stone’s footnote, Ely put forth a theory, known as “representa-
tion-reinforcement theory,” which posits that courts should generally engage in a 
variety of situations, including cases in which it appears that the political process 
has failed to recognize the rights or interests of minorities, or where fundamental 
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rights are at stake. This basic theory provides much of the foundational thinking 
for justifying the role of the judiciary in protecting minorities from discrimina-
tion and charting a course for judicial review. 

Ely’s work has been interpreted to offer a vision of democracy as a function of 
procedural values, rather than substantive ones, by focusing on the way that judi-
cial systems can create the conditions for a fair political process.6 One example 
of this sort of process malfunction, Ely described, involved an intentional kind 
of disenfranchisement: “the ins,” he observed, “are choking off the channels of 
political change to ensure that they will stay in and the outs will stay out.”7 A sec-
ond kind of malfunction involved situations in which “no one is actually denied a 
voice or a vote,” but representatives of a majority still systematically disadvantage 
minority interests “out of a simple hostility or prejudiced refusal to recognize com-
monalities of interest, and thereby denying that minority the protection afforded 
other groups by a representative system.”8 

Judicial review, under this approach, also exhorts us to explore whether partic-
ular groups face an undue constraint on their opportunity to participate in the po-
litical process.9  For example, if minorities (or other groups) are constrained from 
participating fully in the political process, then the theory of representation-rein-
forcement focuses on proxy participation as a solution. Here, Ely reasoned, judges 
might stand in the place of minorities to ascertain the impact that they may face 
and take on the responsibility to craft a more inclusive solution. Or if fundamen-
tal rights are under threat, the Court should also intervene in order to preserve the 
integrity of the political process.  

This basic theory undergirds much of the institutional and legal relationships 
between constitutional entitlements and the role of judges in this process. Like 
any other theory, Ely’s approach is not perfect: it has been criticized, and right-
fully so, for focusing too much on process at the expense of substantive constitu-
tional rights.10 But this theory of judicial review also yields both descriptive and 
normative insights into the government regulation of AI. 

R eading Stone’s and Ely’s concerns in today’s era of AI, one is immediately 
struck by their similarity of context. Both were concerned with the risk of 
majoritarian control, and designed systems of judicial review to actively 

protect minority interests. Today, those same concerns are almost perfectly repli-
cated by certain AI-driven systems, suggesting that here, too, judicial review may 
be similarly necessary. And, normatively, just as judicial review is prescribed as a 
partial solution to address these risks of majoritarian control in a constitutional 
democracy, this insight holds similar limits and possibilities in the context of AI 
regulation. 

Put another way, just as our political system often fails to represent the inter-
ests of demographic minorities, AI systems carry the same risks regarding the ab-
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sence of representation and participation–but in private industry. Consider, for 
example, that one of the most central causes of biased outcomes in AI stems from 
an underlying problem of lack of representation among minority populations in 
the data sets used to train AI systems. Machine learning algorithms are, essential-
ly, inherently regressive: they are trained on a body of data that is selected by de-
signers or by past human practices. This process is the “learning” element in ma-
chine learning; the algorithm learns, for example, how to pair queries and results 
based on a body of data that produced satisfactory pairs in the past.11 Thus, the 
quality of a machine learning algorithm’s results often depends on the compre-
hensiveness and diversity of the data that it digests.12 

As a result, bias in AI generally surfaces from these data-related issues of repre-
sentation.13 One problem, as AI scholars Kate Crawford and Meredith Whittaker 
have described, is largely internal to the process of data collection: errors in data 
collection, like inaccurate methodologies, can cause inaccurate depictions of real-
ity.14 This absence of representation is a profound cause of the risk of bias in AI. A 
second issue of bias comes from an external source. It happens when the underly-
ing subject matter draws on information that reflects or internalizes some forms 
of structural discrimination and thus biases the data as a result.15 Imagine, for ex-
ample, a situation in which data on job promotions might be used to predict ca-
reer success, but the data were gathered from an industry that systematically pro-
moted men instead of women.16 While the first kind of bias can often be mitigat-
ed by “cleaning the data” or improving the methodology, the latter might require 
interventions that raise complex political ramifications because of the structural 
nature of the remedy that is required.17 

As a result, bias can surface in the context of input bias (when the source data 
are biased because they may lack certain types of information), training bias 
(when bias appears in the categorization of the baseline data), or through pro-
gramming bias (when bias results from an AI system learning and modifying it-
self from incorporating new data).18 In addition, algorithms themselves can also 
be biased: the choices that are made by humans–what features should be used to 
construct a particular model, for example–can comprise sources of inaccuracy as 
well.19 An additional source of error can come from the training of the algorithm 
itself, which requires programmers to decide how to weigh sources of potential 
error.20

All the prior harms may seem representational in nature, but they cause dis-
criminatory effects. If the prior discussion focused on the risks of exclusion from 
statistical and historical underrepresentation in a data set, there is also the oppo-
site risk of overrepresentation, which can lead to imprecise perceptions and trou-
bling stereotypes. In these instances, due in part to overrepresentation in the data 
set, an algorithmic model might associate certain traits with another unrelated 
trait, triggering extra scrutiny. In such cases, it can be hard to prove discrimina-
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tory intent in the analysis; just because an algorithm produces a disparate im-
pact on a minority group, it does not always mean that the designer intended this 
result.21 

Even aside from concerns about data quality and representation, a second clus-
ter of issues emerges from the intersection of privatization and AI-driven gover-
nance. Constitutional law scholar Gillian Metzger has presciently observed that 
“privatization is now virtually a national obsession.”22 Her work describes a foun-
dational risk that private industry is taking the lead in designing modes of gover-
nance.23 Notably, private contractors exercise a broad level of authority over their 
program participants, even when government officials continue to make deter-
minations of basic eligibility and other major decisions.24 These trends toward 
privatization and delegation are endemic throughout government infrastructure, 
and many draw on machine learning techniques.25 As intellectual property law 
scholar Robert Brauneis and information policy law scholar Ellen Goodman have 
eloquently noted, “the risk is that the opacity of the algorithm enables corporate 
capture of public power.”26 

Today, algorithms are pervasive throughout public law, employed in predictive 
policing analysis, family court delinquency proceedings, tax audits, parole deci-
sions, DNA and forensic science techniques, and matters involving Medicaid, oth-
er government benefits, child support, airline travel, voter registration, and ed-
ucator evaluations.27 The Social Security Administration uses algorithms to aid 
its agents in evaluating benefits claims; the Internal Revenue Service uses them 
to select taxpayers for audit; the Food and Drug Administration uses algorithms 
to study patterns of foodborne illness; the Securities and Exchange Commission 
uses them to detect trading misconduct; local police departments employ their 
insights to predict the emergence of crime hotspots; courts use them to sentence 
defendants; and parole boards use them to decide who is least likely to reoffend.28

As legal scholar Aziz Huq has explained, the state uses AI techniques for target-
ing purposes (that is, decisions on who to investigate or how to allocate resources 
like aid) and for adjudicatory purposes (in which the state may rely on AI tech-
niques as a stand-in for a judicial determination).29 To these two parameters, we 
might add on a third, involving AI-driven forensic techniques to aid the state in de-
termining whether a legal violation has taken place: for example, machine learn-
ing techniques that analyze breath alcohol levels. In such cases, while AI might 
aid the state in gathering evidence, the ultimate determination of compliance (or 
lack thereof ) may rest with human judgment. Here, the selection of a perpetra-
tor might be performed by human law enforcement (who also determine whether 
evidence supports that a violation has taken place), but the evidence might be in-
formed by an AI-driven technique. 

Many of these tools are privately developed and proprietary. Yet the rise of 
proprietary AI raises a cluster of issues surrounding the risk of discrimination: 
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one involving the deployment of AI techniques by private entities that raises le-
gal concerns; and another involving the deployment of AI techniques by public 
entities that raises constitutional concerns. Taken together, these systems can of-
ten impose disparate impacts on minority communities, stemming from both pri-
vate and public reliance on AI. In one example from Pennsylvania, an automated 
system called the Allegheny Family Screening Tool was used to determine which 
families were in need of child welfare assistance. But the system entailed the risk 
of racial disparity: since Black families were more likely to face a disproportion-
ately higher level of referrals based on seemingly innocuous events (like missing a 
doctor appointment), they were likely to be overrepresented in the data. Parents 
also reported feeling dehumanized within the system by having their family his-
tory reduced to a numerical score. Moreover, given the large amount of data the 
system processed (and the sensitivity of the data), it carried a serious risk of data 
breaches.30 

Each of these prior concerns, as Huq points out, maps onto concerns regard-
ing equality, due process, and privacy, and yet, as he notes, each problem is only 
“weakly constrained by constitutional norms.”31 Not only would it be difficult to 
determine whether someone’s rights were violated, but parties who were singled 
out would find it difficult to claim violations of equality, due process, or priva-
cy, especially given the deference enjoyed by the decision-maker.32 Further, the 
opacity of these systems raises the risk of (what I have called elsewhere) “infor-
mation insulation,” which involves an assertion of trade secret protection in sim-
ilar cases.33 

Each layer of AI-driven techniques raises profound questions about the rule of 
law. Here, privatization and automation become intimately linked, often at the 
cost of fundamental protections, like due process. The problem is not just that 
governmental decision-making has been delegated to private entities that de-
sign code; it is also the reverse situation, in which private entities have significant 
power that is not regulated by the government. While the effects of algorithms’ 
predictions can be troubling in themselves, they become even more problemat-
ic when the government uses them to distribute resources or mete out punish-
ment.34 In one representative case, a twenty-seven-year-old woman with severe 
developmental disabilities in West Virginia had her Medicaid funds slashed from 
$130,000 to $72,000 when the vendor began using a proprietary algorithm, mak-
ing it impossible for her to stay in her family home.35 When she challenged the 
determination on grounds of due process, the court agreed with her position, ob-
serving that the vendor had failed to employ “ascertainable standards,” because 
it provided “no information as to what factors are incorporated into the APS algo-
rithm,” nor provided an “individualized rationale” for its outcome.36 The district 
court concluded that the lack of transparency created an “unacceptable risk of ar-
bitrary and ‘erroneous deprivation[s]’ of due process.”37 
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As the previous example suggests, while automation lowers the cost of decision- 
making, it also raises significant due process concerns, involving a lack of no-
tice and the opportunity to challenge the decision.38 Even if the decisions could 
be challenged, the opacity of AI makes it nearly impossible to discern all of the 
variables that produced the decision. Yet our existing statutory and constitutional 
schemes are poorly crafted to address issues of private, algorithmic discrimina-
tion. Descriptively, AI carries similar risks of majoritarian control and systemic 
prejudice, enabling majority control at the risk of harming a minority. And yet our 
existing frameworks for regulating privacy and due process cannot account for 
the sheer complexity and numerosity of cases of algorithmic discrimination. In 
part because of these reasons, private companies are often able to evade statuto-
ry and constitutional obligations that the government is required to follow. Thus, 
because of the dominance of private industry, and the concomitant paucity of in-
formation privacy and due process protections, individuals can be governed by 
biased decisions and never realize it, or they may be foreclosed from discovering 
bias altogether due to the lack of transparency. 

I f we consider how these biases might surface in AI-driven decision-making,  
we can see more clearly how the issue of potential bias in AI resembles the 
very problem of majority control that Ely wrote extensively about, even 

though it involves privatized, closed, automated decision-making. If our systems 
of AI are driven by developers or trained on unrepresentative data, it feeds into the 
very risk of majoritarian control that judicial review is ideally designed to prevent. 
I want to propose, however, another story, one that offers us a different set of pos-
sibilities regarding the building of trust by looking, again, to the prospect of judi-
cial review.39 Here, I want to suggest that AI governance needs its own theory of 
representation-reinforcement, extending to every person within its jurisdiction 
the equal protection of the law, in essentially the same way that the Constitution 
purports to. 

Where metrics reflect an inequality of opportunity, we might consider em-
ploying a similar form of external judicial review to recommend against adoption 
or refinement of these metrics. In doing so, an additional layer of judicial or quasi- 
judicial review can serve as a bulwark against inequality, balancing both substan-
tive and process-oriented values. Here, we might use judicial review, not as a tool 
to honor the status quo, but as a tool to demand a deeper, more substantive equal-
ity by requiring the employment of metrics to address preexisting structural in-
equalities. And if filing an actual legal case in the courts proves too difficult due to 
an existing dearth of regulation, then I would propose the institution of indepen-
dent, quasi-judicial bodies to ensure oversight for similar purposes.

What would a representation-reinforcement theory–or relatedly, a theory 
of judicial review–accomplish in the context of AI? While a detailed account of 
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representation and reinforcement is hard to accomplish in a short essay, I want 
to focus on two main sets of possibilities, the first stemming from Ely’s concept 
of virtual representation. As I suggested earlier, one core issue with algorithmic  
decision-making is that it reflects an inherently regressive presumption: deci-
sions, and data collected by past practices, adequately reflect–and predict–what 
we should do in the future, thereby “freezing” the possibility of a deeper and more 
meaningful form of substantive equality.40 Unrepresentative data, in other words, 
can perpetuate inequalities through machine learning, leading to a feedback loop 
that further amplifies existing forms of bias. 

Interestingly, Justice Stone and John Hart Ely identified roughly the same con-
cerns regarding the lack of minority representation in the democratic pool, justi-
fying a more aggressive form of intervention and oversight. In other words, just 
as Ely’s theory predicts, disparities in representation–over- or underrepresenta-
tion–can fuel disparate results. Yet Ely’s raising of the “judicial enforceable duty 
of virtual representation” enables us to see how profitably it can be recast to en-
franchise the interests of minority populations in an AI-driven context. As Ely ob-
served, one basic concern is that minorities must always be represented in the po-
litical process, and that we rely essentially on our judicial system to make sure that 
this happens.41 

Here, one core element to accomplish this goal involves the necessity of cre-
ating a layer of institutional separation between the initial decision-maker (the 
AI system) and the reviewer (essentially, the system of judicial review). Like the 
division between the judiciary and the legislative branches, AI-driven systems 
can and must include systems of independent oversight that are distinct from the 
AI systems themselves. And there is evidence that this architectural solution is 
taking place. Consider an analogy from Europe’s General Data Protection Reg-
ulation (GDPR), which requires separate data protection impact assessments 
(DPIA) whenever data processing “is likely to result in a high risk to the rights 
and freedoms of natural persons.”42 Large-scale data processing, automated de-
cision-making, processing of data concerning vulnerable subjects, or processing 
that might prevent individuals from exercising a right or using a service or con-
tract would trigger a DPIA requirement.43 Notably, this model extends to both 
public and private organizations.44 

One could easily imagine how this concept of independent review could be 
incorporated more widely into AI-driven systems to ascertain whether a system 
risks disparate impacts. A close look at these statements reveals a markedly thor-
ough implementation of the concept of institutional separation: a DPIA state-
ment is meant to be drafted by the organization’s controller in order to show com-
pliance with the GDPR; but the controller represents a separate entity from the or-
ganization processing the data.45 In doing so, the system ensures a form of built-in 
virtual representation and review by putting the controller in the same position as 
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a judge to ensure compliance. Additional elements require an assessment of risks 
to individuals and a showing of the additional measures taken to mitigate those 
risks.46  

Lastly, at present, as Ely suggests, judicial review is often necessary to ensure 
due process. Due process is especially needed in the context of AI so that individ-
uals are able to ascertain the rationale behind AI-driven decisions and to guard 
against unclear explanations. In one case, in Houston, a group of teachers success-
fully challenged a proprietary algorithm developed by a private company, SAS, 
called the Educational Value-Added Assessment System (EVAAS) to assess pub-
lic school teacher performance, resulting in the dismissal of twelve teachers with 
little explanation or context.47 Experts who had access to the source code con-
cluded that the teachers were unable to “meaningfully verify” their scores under 
EVAAS.48 Ultimately, the court ruled against adopting use of the software because 
of due process concerns, noting, tellingly: “When a public agency adopts a pol-
icy of making high stakes employment decisions based on secret algorithms in-
compatible with minimum due process, the proper remedy is to overturn the poli-
cy.”49 Plainly, the court agreed with the due process concerns, noting that the gen-
eralized explanation was insufficient for an individual to meaningfully challenge 
the system’s determination, and the case settled a few months later.50 

The Houston case is instructive in underscoring the importance of safeguard-
ing procedural protections like due process. Had it not been for the teachers’ abil-
ity to bring this to a judicial forum to demand due process protection, the AI- 
driven injustice they faced would have never seen the light of day. By requiring AI 
systems to integrate similar entitlements of due process and independent over-
sight, we can ensure better outcomes and build more trust into the accountability 
of AI-driven systems overall.

I n his essay forty years ago, Bolter predicted, “I think artificial intelligence will 
grow in importance as a way of looking at the human mind, regardless of the 
success of the programs themselves in imitating various aspects of human 

thought. . . . Eventually, however, the computer metaphor, like the computer itself, 
will simply be absorbed into our culture, and the artificial intelligence project will 
lose its messianic quality.”51 

We are still at a crossroads in adapting to AI’s messianic potential. Ely wrote 
his masterful work at a time in which AI was just at the horizon of possibility. Yet 
the way that AI promises to govern our everyday lives mirrors the very same con-
cerns that he was writing about regarding democracy and distrust. But the debates 
over AI provide us with the opportunity to elucidate how to employ AI to build 
a better, fairer, more transparent, and more accountable society. Rather than AI 
serving as an obstacle to those goals, a robust employment of the concept of judi-
cial review can make them even more attainable. 
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Artificially Intelligent Regulation

Mariano-Florentino Cuéllar & Aziz Z. Huq

This essay maps the potential, and risks, of artificially intelligent regulation: regu-
latory arrangements that use a complex computational algorithm or another artifi-
cial agent either to define a legal norm or to guide its implementation. The ubiquity 
of AI systems in modern organizations all but guarantees that regulators or the par-
ties they regulate will make use of learning algorithms or novel techniques to analyze 
data in the process of defining, implementing, or complying with regulatory require-
ments. We offer an account of the possible benefits and harms of artificially intelli-
gent regulation. Its mix of costs and rewards, we show, depend primarily on whether 
AI is deployed in ways aimed merely at shoring up existing hierarchies, or whether 
AI systems are embedded in and around legal frameworks carefully structured and 
evaluated to better our lives, environment, and future. 

U nheralded and by inches, computational tools clustered under the la-
bel “artificial intelligence” are creeping into state and U.S. federal agen-
cies’ toolkits for elucidating, implementing, and enforcing the law.1 The 

Transportation Security Agency is required by law to deploy full-body millimeter- 
wave scanners trained to identify specific persons whose body shape indicates the 
need for further screening.2 Sixty-three other civilian agencies of the federal gov-
ernment use more than 150 predictive tools to find facts, craft binding rules, exer-
cise enforcement-related discretion, and detect violations of federal law.3 Local 
and state governments use similar tools to detect employment-benefit fraud, pre-
dict child abuse, and allocate police.4 In local criminal courts, prosecutors obtain 
convictions by drawing on probabilistic DNA analysis software.5 Local, state, and 
federal governments also leverage regulation to induce private parties to create 
and adopt new computational tools. The Department of Health and Human Ser-
vices in 2016 created an algorithmic “security risk assessment tool” for health care 
providers needing to verify that their medical-records systems comport with fed-
eral data-security rules.6 Large investment banks increasingly adopt algorithmic 
tools as a means of complying with antifraud or money-laundering laws. Without 
fanfare, or wide public deliberation, the era of artificially intelligent regulation is 
almost certainly at hand.

We aim to map the potential, and risks, inherent in that new era. By artificially 
intelligent regulation, we mean regulatory arrangements that use a complex compu-
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tational algorithm, or another artificial agent, either to define a legal norm or to 
guide its implementation. To see how AI might be integrated into the regulato-
ry process at four distinct points–problem identification, empirical inquiry, rule 
formulation, and rule implementation–consider the following examples: 

	• A statute governing financial institutions’ anti–money laundering responsi-
bilities might define an explicitly Bayesian learning tool as part of an adequate 
anti–money laundering system. So long as a bank incorporates the tool, it 
would fall into a safe harbor against liability. The legally mandatory instru-
ment, moreover, would dynamically update to account for new sorts of mal-
feasance at the regulatory authority’s direction. 

	• Selecting particular people or families for the nation’s refugee resettlement 
program, an agency might adopt as regulation a machine learning instrument 
to make acceptable decisions accounting for more vectors than can be easily 
calculated by a human decision-maker. The instrument will once again dy-
namically update to account for changing patterns of migration, geopoliti-
cal conditions, climatic change, and regional economic conditions. Human 
decision-makers might have to overcome a variety of challenges to take ac-
count of all of those relevant and complex streams of information quickly and 
accurately. An AI instrument could account for this information in a manner 
that contrasts with how human decision-makers would approach the prob-
lem without wholly breaking from the forms of human decision-making. 

	• A pollution emissions standard for manufacturing plants might be enacted 
as a reinforcement-learning algorithm. This instrument would define targets 
based on changing patterns of behavior and calculations of elasticity. It would 
hence respond dynamically to changing circumstances, including shifting 
strategies by emitting companies and their customers, quicker and cheaper 
than human modifications of regulation. 

	• An AI-infused mechanism might be adopted by law to allocate vaccines 
during a pandemic based on evolving data about a disease’s spread, its symp-
toms, and the public’s behavioral responses. Again, the regulation would take 
the form of a reinforcement-learning tool that changed based on evolving 
public-health circumstances. 

These examples share common traits. Critically, in each one, the law itself oper-
ates through a legally preordained computation process. In the first, regulation defines 
compliance in terms of a (continually updated) algorithm. In the second, the dis-
tribution of state benefits is a product of an algorithm cast in law; distributions 
are not set in advance but emerge as a result of the algorithm’s interaction with 
novel information. In the third, the algorithm-as-law defines a standard of con-
duct for private parties accounting for ways in which they, and others, respond in 
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real time. In the final example, the regulatory goal (defined as, say, maximum epi-
demic abatement) is formulated by hand in advance, but how that goal is realized 
is constantly recalibrated via computation of new data. In each of these use cases, 
a machine substantially displaces a different sort of human judgment. 

The ubiquity of AI systems in modern organizations all but guarantees that 
regulators or the parties they oversee will make use of learning algorithms or nov-
el techniques to analyze data in the process of defining, implementing, or comply-
ing with regulatory requirements. At one end of the continuum is the relatively 
incidental, isolated use of an AI system to assess whether data indicate that or-
ganizational enforcement priorities have changed over the course of a decade. At 
the other end of the spectrum is the statute that defines a financial institution’s 
responsibility to guard against money laundering by formally defining, as a le-
gal norm instantiated in a digital medium, a specific Bayesian updating function. 
Somewhere on the continuum one might draw a line to distinguish “artificially 
intelligent regulation” from more incidental use of manufactured intelligence 
merely to offer limited advice to legal decision-makers or evaluate the implemen-
tation of ordinary laws. 

What to make of these arrangements is an intricate question that merits no 
simple answer. The public debate on regulatory AI is polarized between boosters 
and doomsayers. AI’s diffusion across state instrumentalities hence provokes ei-
ther shrill alarm or unblinking optimism. Minneapolis, San Francisco, and Oak-
land, for example, have all banned private facial recognition technologies that 
trawl public surveillance footage with AI tools. These jurisdictions enact the view 
that “AI is invariably designed to amplify the forms of power it has been deployed 
to optimize.”7 In contrast, Chicago and Detroit recently purchased real-time fa-
cial recognition systems to integrate into their citywide camera networks. 

We diverge from scholars who offer either pure celebration or lament about 
AI’s effect on law. Rather, we think that artificially intelligent regulation holds 
promise and peril. As digitally native law, it exploits potential gains from new pre-
dictive technologies, and these gains have attendant costs and serious risks. We 
readily acknowledge AI’s risks to human agency and democratic politics.8 We also 
think that the environmental impact of an industry already producing an estimat-
ed 3–3.6 percent of global greenhouse gas emission will also loom larger as usage 
increases.9 But we reject the broad claim that AI, as part of responsible social reg-
ulation with careful contingency planning and institutional safeguards, cannot 
deepen democracy, improve human welfare, or empower marginalized groups.10 
Its mix of ensuing harms and rewards will instead depend on whether AI is de-
ployed merely to shore up existing hierarchies, or whether its use aims to empow-
er and better our lives, environment, and future. 

We offer here an account of the possibilities of artificially intelligent regula-
tion as a good and as a harm. We then offer thoughts on the “metaregulation” 
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of artificially intelligent regulation–that is, the larger regulatory frameworks in 
which agencies’ decisions to adopt or reject AI tools might be nested–within a 
democratic framework. Neither wholesale resistance nor an unthinking embrace 
of AI governance is justified. The national state and its agencies will almost cer-
tainly deepen entanglements with new predictive technologies. The ensuing form 
of artificially intelligent regulation, though, is not graven in stone. Experimenta-
tion with AI can help us better understand and resolve challenges arising from so-
ciety’s often-conflicting expectations of the legal system for technical accuracy,  
democratic legitimacy, even-handed enforcement, and the nuanced consider-
ation of situational factors. These various rule-of-law elements can be in tension 
with each other. AI systems can relax that tension, or perhaps exacerbate it in a 
specific case. But we see no alternative to the hard work of making sure that artifi-
cially intelligent regulation is designed to, and in fact does, advance the common 
good, and not deepen inequality or short-circuit democratic judgment. 

A rtificially intelligent regulation (AIR) is a legal norm that directly incor-
porates an algorithm capable of learning and adapting to new informa-
tion, or the closely related activity of relying heavily on an algorithm to 

interpret or enforce a regulatory norm that may or may not itself directly incorpo-
rate an algorithm. The agency problem in regulation is familiar, but the AIR solu-
tion for it–and potentially achieving other goals–is novel. 

We focus here on “regulation” in the sense of laws, rules, and guidance pro-
mulgated by an agency or department as part of an overarching legal framework 
for private activities like financial trading or health care. Regulation also includes 
the government’s efforts to control its own workings, such as policing and im-
migration. We do not address here the role of AI in the common law.11 Our topic 
is distinct from discussions of “personalized” common-law rules of contract and 
tort law developed by courts rather than regulators.12 

Our topic has analogies to certain long-standing arrangements in regulatory 
law. Some regulations already incorporate external standards by reference, such 
as industry norms, or encompass nontextual information.13 Although current ad-
ministrative norms governing the Federal Register (the authoritative compendium 
of all regulations promulgated by agencies of the national government) may com-
plicate the inclusion of a dynamic algorithm directly in a federal regulatory rule 
through incorporation by reference, both statutes and regulatory rules are some-
times drafted to allow agencies or the public to take account of changing knowl-
edge or conditions.14 AIR can also act as a supplement or substitute for bureau-
cratically lodged discretion. The law is itself capable of evolving as agencies learn. 
Just as case-by-case adjudication elaborates the common law, so artificially intel-
ligent law also adapts. But the locus of adaptation of AI is likely to be a standard 
internal to a statute or regulation, not a body of case law accreting over time.
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Even well before legal norms become automated or intelligent, regulators will 
have little choice but to take seriously the world’s increasing dependence on AI. 
The Internet shook governance beginning in the late twentieth century. It forced 
public agencies to contend, willingly or not, with new ways of disseminating in-
formation, networking computers, and shaping public perceptions.15 Regulators 
cannot unwind the widespread commercial adoption of AI techniques, such as 
backpropagation, neural nets, and large-language models, among contemporary 
firms. Algorithmic social media feeds, big-data trading platforms, and medical di-
agnostic tools powered by machine learning are, moreover, unlikely to be aban-
doned given consumer demand and the real welfare gains derived from them. 
Nor will regulated firms, including media platforms, banks, hospitals, and man-
ufacturers, cease to innovate in respect to these tools–if nothing else because of 
unstinting foreign competition. The synergies between state and private enter-
prise in China, in particular, lend this commercial contest a geopolitical edge that 
cannot be wished away.16 Military agencies will keep pioneering technologies–
like the communication protocols developed for the ARPANET project in the late 
1960s that preceded the Internet–that invariably leak into civilian application. 
The conclusion that AI will increasingly infuse both government and society, 
therefore, is not mere lazy technological determinism. It is a reasonable inference 
from readily observable trends. 

Still, invention is not the same as innovation.17 Not all digital tools catch on. 
The recent history of machine learning innovation has been uneven, punctuat-
ed by unexpected stops and starts. Whether new technologies are picked up, and 
how their benefits and costs are distributed, depends on social, economic, cul-
tural, and even legal forces. However acute the pressures toward AI diffusion and 
adoption might be at this moment, nothing excuses regulators, jurists, and schol-
ars from the difficult task of figuring out how those new tools are slotted into, and 
interact with, existing private or public institutions, as well as extant hierarchies 
coded by race, ethnicity, gender, or wealth. Nothing makes existing technological 
arrangements ineluctable. The monopolistic scale and network effects of domi-
nant social media platforms, for example, was a contingent result of federal reg-
ulatory choices.18 Antitrust law might still find a way to reverse Facebook’s and 
Google’s dominance. Locally, the Los Angeles Police Department’s April 2020 de-
cision to abandon Palantir’s crime-prediction software suggests that not all tech-
nological adoptions travel a one-way street. Predictions that AI inevitably serves 
to discriminate and disempower can enlist powerful historical examples. Their 
forward-looking force rests on a questionable disregard of democratic agency. 

It would be a mistake to say that artificially intelligent regulation will ever 
completely displace human judgment in some form at some stage of the regulato-
ry process. Human discernment designs and creates the learning tool embedded 
in the law. The fact that the application of rules to specific cases does not hap-
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pen through the exercise of human discretion does not–indeed, cannot–lead 
to a complete absence of such discretion.19 There may not always be a human in 
(or on) the loop, but there is always a human exercising her judgment as to policy 
goals, what data are relevant to those goals, and how best to reconcile competing 
values: she may simply not be visible. With AIR, those judgments likely occur ear-
lier in the design and implementation process. These judgments will tend not to 
be situated decisions, of the kind regulators now make, about how a norm applies 
to specific facts and particular persons. An instrument for matching refugees, for 
example, will not have information on particular flows of people, and almost cer-
tainly will be designed by engineers with little or no direct understanding of the 
refugee experience. As a result, the design stage of artificially intelligent regula-
tions and the ensuing specification of predictive tools is a context in which biases 
(including invidious beliefs about race, gender, or other legally protected classifi-
cations), blind spots, and inaccurate generalizations filter into law. This human 
element of artificially intelligent regulation may well be occluded from the view 
of regulated parties. 

N evertheless, policy-makers and the public may have compelling reasons 
to move human judgment upstream and to filter it through a machine 
learning tool. At a very general level, AIR has the potential to make law 

and legal instruments more trustworthy–more amenable to accounting and dis-
cipline–and thereby to reduce the transaction costs of translating legal norms 
across different platforms and institutions. 

The positive case for AIR comprises several elements. First, AIR can push agen-
cies to define a societal goal more explicitly. Many AI instruments are organized 
around a “cost function” that examines each set of predictions of an outcome 
variable derived from historical data and defines a “cost” or penalty between pre-
dictions and the true (observed) outcome. The instrument is then trained to min-
imize that cost.20 Writing a cost function requires a precise understanding of the 
social goals regulation seeks to advance. Because that judgment must be explicitly 
made, the cost function is an opportunity to air to the public both regulatory goals 
and the manner in which trade-offs are made. 

A second benefit of AIR is flexibility over time. Agencies presently promulgate 
regulations and guidance as a means of implementing statutes periodically enact-
ed by a legislature. Regulation often uses abstract or vague terms, or simply broad-
ly sets a policy goal. Implementing that abstract statutory ambition–whether it is 
a safe workplace, a technologically feasible but environmentally tolerable level of 
emissions, or a decent refugee regime–requires translation. Regulators need then 
to write out their abstract goals in terms of particular rules or applications, bring-
ing lofty aspiration into material form. AIR allows a well-informed legislature to 
install into law its abstract policy goal in a durable and adaptable way. Where regu-
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lation adopts a reinforcement learning tool, the legislature also benefits from infor-
mation that is not available at the time a law is passed. Hence, a resettlement algo-
rithm might account for unanticipated shifts in migration patterns, or an antifraud 
tool could learn to recognize new species of criminal conduct. Thanks to this abil-
ity to build into law the capacity to dynamically update, a legislature condemned 
to only intermittent formal action via bicameralism and presentment is freed from 
frozen-at-the-moment-of-enactment text. This kind of flexibility may be especial-
ly valuable if the U.S. Supreme Court imposes new restrictions on Congress’s abil-
ity to delegate through general grants of powers to federal agencies, with the latter 
filling in details with regulations.21 A law directing creation of an AIR might be a 
substitute for flexibility otherwise exercised through agency rulemaking over time. 

A related benefit pertains to legislators’ “agency cost” problem. Regulators 
may have different policy preferences from legislators. They might be excessively 
close to a regulated industry. Or they might slack off.22 One way to mitigate agen-
cy slack is with ex post judicial review. But the use of courts as an oversight mecha-
nism has costs. Litigation can be used to delay desirable regulation. Fearing a suit, 
budget-constrained agencies might forgo action. Regulated parties, anticipating 
judicial review, have an incentive to lobby for particular judicial appointments.23

AIR addresses agency slack in a different way. By impounding their judgments 
into a digitally native tool, legislators drain away later discretion about how a law 
is enforced. The resources used up in translating verbal standards back and forth 
to code and mathematical specification are likely to be smaller than the social re-
sources sucked up by litigation clashes between interest groups and the govern-
ment. AIR, however, does not eliminate agency problems entirely. Realistically, 
legislators must rely on technologists and coders to craft an instrument. Unless 
a legislator can trust the designers of digitally native law, as well as the sources 
of training data, the specter of “capture” and distorted preferences arises once 
more.24 Legislators could demand benchmarking and transparency in AI design 
“appropriate for practical reasoning,” not just in terms of technical detail.25 Such 
arrangements might further facilitate either ex post judicial review (especially 
when individual rights are at issue) or legislative committee-based oversight. 

The advance of AIR under these conditions may also alter democratic gover-
nance more broadly. At present, a legislature enacts a law with limited control 
over how its terms are understood and applied in the future. Later legislatures 
can use their appropriations power and their ability to jawbone agency leaders to 
nudge regulation toward their preferred policies, even when they diverge from 
those of the enacting legislature. Sometimes, courts step in to interpret statutes in 
ways that force the later legislature to act more overtly by passing new law.26 But 
not always, and not reliably. 

AIR might scramble such arrangements. In principle, it empowers an enacting 
legislature. That body has the ability to enact not just the law in an abstract form, 
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but also to embed a mechanism for updating. This sharpens the importance of the 
discrete political moment in which a law is enacted; it also diminishes the impor-
tance of the legislative power to influence agencies in the long term. Arguably, this 
is salutary in terms of democratic norms. It ups the stakes of the actual legislating 
moment, when the voting public is most likely attentive, while diminishing the 
importance of periods in which the public is less engaged, and legislative influ-
ence more diffuse. This helps voters exercise retrospective judgment about their 
representatives. On the other hand, AIR, in a paradoxical sense, by making formal 
laws less brittle and more capable of built-in adaptation, could conceivably enable 
long-past legislative coalitions to endure beyond their expiration date. Hence, it 
may empower the dead hand of the past against the influence of living legislators 
wielding a current democratic imprimatur. 

Finally, it is worth considering whether AIR can be used to broaden access to 
legal institutions and the benefits of law more generally. Algorithmic tools already 
facilitate estate planning via websites such as LegalZoom. While these instru-
ments are not without complications, it is worth considering ways in which AIR 
might be used to empower ordinary citizens presently discouraged from seeking 
legal remedies by litigation’s complexity and cost.27 This is one important way of 
resisting the complacent assumption that AI is an innovation that necessarily and 
inevitably concentrates power and increases pernicious social inequalities. 

A ll should not be presumed to be well with this potential new era of regula-
tion. Just as it enables optimal adaptability, diminished agency costs, and 
lower transaction costs, so artificially intelligent regulation will engender 

new problems of transparency, legitimacy, and even equity. All raise fundamental 
questions of constitutional magnitude.

To begin, it is premature to assume AIR always reproduces undesirable or 
malign forms of hierarchy. Though regulation is not guaranteed to enhance so-
cial welfare, neither is it intrinsically regressive. It has advanced the cause of civ-
il rights, workplace safety and health, environmental protection, and consumer 
rights. AIR is just one species of regulation. Of course, all lawmaking risks inter-
est-group capture or the unintended perpetuation of invidious stereotypes. AIR, 
like any kind of legal intervention, must be scrutinized for those risks. In partic-
ular, AIR empowers a new class of experts–computer scientists and engineers–
at present noteworthy for its lack of gender, racial, and ethnic diversity. Finding 
diversity in such expertise and turning the latter to serve the public good is not 
impossible: biological and medical science has shown as much. But it will require 
sustained institutional change. 	

More seriously, the ends and means of AIR–like many of the complex statutes 
that Congress, in particular, has enacted–are not necessarily readily perceived or 
understood by nonspecialist members of the public or elected officials. The value 
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of an algorithm that diminishes conventional principal-agent problems involv-
ing human-led agencies also means that standards might evolve in problematic 
ways. This may be a result, for example, of mistakes in how a reinforcement learn-
ing reward function is specified, or it can be a consequence of adversarial disrup-
tions. There is a question whether any adaptational “drift” distorts what the law 
achieves, or instead demands fresh involvement by the very mix of experts, polit-
ically accountable officials, and competing stakeholder pressures that optimistic 
proponents might expect these new forms of law to render unnecessary.

A yet more fundamental question is whether an AI-based legal arrangement 
would be perceived as legitimate in either a sociological or legalistic sense. The 
ability of the public to understand what AI does at the front end is limited, al-
though that is also true of many existing laws and legal institutions. Leaving 
aside the precision with which a dynamic legal provision “aligns” with a defen-
sible macroconcept of social welfare in advance, the way such provision evolves 
over time is not made legitimate without further ingredients. These include the 
capacity of concentrically larger circles of people, including agency officials and 
regulated parties at minimum, to understand certain things about how a system 
performs. Also relevant is affected parties’ capacity to argue in terms the public 
understands about why AIR is performing adequately (or not) relative to the rest 
of the jurisdiction’s legal commitments. Agencies or lawmakers could also create 
“tripwires” to prevent excesses in the use of public, coercive authority; capture or 
co-option by private interests through de facto private delegation; or violations of 
due process, equal protection, or anticorruption norms. Certain uses of coercion 
may also be ipso facto illegitimate without human oversight.

Such measures could be calibrated to promote institutions that allow debate 
about how a law gets implemented in a particular situation and about the policy 
and value assumptions supporting the law. Equally important are arrangements 
that prevent the use of AIR as a shield to prevent public accountability for the co-
ercive use of power. Here, “public accountability” means that some people must 
accept responsibility for the use of coercive authority in ways that account for ma-
terial and emotional consequences, including loss of income, reputational degra-
dation, loss of interesting work, and misrecognition by peers or authority figures. 

Finally, with opacity comes the risk that algorithms reenact malign hierar-
chies of race, ethnicity, class, and gender via inscrutable code and invisible de-
sign choices.28 The terminology of “bias” in AI is used in varied and inconsistent 
ways. In our view, the most powerful normative concerns arise when the use of 
AI imposes material harms on a historically subordinated group.29 Machine bias 
defined in this way need not flow from any conscious decision to suppress a his-
torically subordinate group. It can result simply from inattention or ignorance by 
programmers who are not members of those classes. Preventing intentional or in-
advertent reproduction of these hierarchies requires active attention to the code 
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inserted into regulation. As recent turmoil at Google’s ethics division suggests, 
the implementation of equity is no simple matter, but demands organizational 
leadership and effective staffing. 

N one of this means AIR should be eschewed. But technical limitations and 
public resistance mean AIR will likely be limited in scope for some time. 
More interesting to us is how the emergence of AIR raises questions about 

the “metaregulatory” structure of administrative and regulatory law. That is, how 
should the law itself guide the creation and oversight of digitally native law?

The law has already developed tools to audit and evaluate ordinary regulation; 
cost-benefit analysis is foremost among them. AIR requires rethinking and re-
tooling government’s auditing and oversight capacity to extend values of equity 
and rationality into its frameworks. As governments create “sandboxes” in which 
to build and test AIR, they will need to apply robust norms of transparency and 
benchmarking to ensure that AI is not just the product of–but also facilitates–
reasonable and informed deliberation. Experiments with AIR may benefit from 
building in some of the encumbrances that surely make laypeople wonder about 
law as it operates today. Digitally infused regulations might therefore explicitly 
incorporate interpretive mechanisms that will “translate” a standard into ordi-
nary language. Periodic audits for practical bias along race, gender, and other lines 
might be mandated by law, with failure to pass connected to a penalty of statutory 
rescission. 

More broadly, a federal agency can be imagined for being responsible for 
sourcing, testing, and auditing new digital tools. Such an agency could be espe-
cially helpful given some of the persistent difficulties public organizations face 
when making procurement decisions. The agency would benefit from a capacity 
to experiment with recruitment and retention tools, including rotation and part-
time arrangements subject to appropriate safeguards against conflicts of interest, 
to layer into the highest levels of the public sector the kind of expertise and mix 
of cultures helpful in enhancing government capacity for assessment of AIR. It 
would operate much as the General Services Administration, established by Pres-
ident Harry Truman in 1949, serving as a hub for digitally native law, a source of 
auditing expertise, and a locus for public complaint. 

For the foreseeable future, AIR offers fascinating possibilities for enhancing 
governance, but it will nonetheless face intense constraints. Given the risks 
entailed, perhaps this is as it should be. If AIR is to become legitimate, it 

must face a trial by fire under the abiding rule-of-law constraints familiar from 
our existing, imperfect legal system. Further, it will be subject to the coterie of plu-
ralistic pressures capable of creating such enormous friction for even the most ele-
gantly designed legal reforms. Both will confer legitimacy and limit risks of severe 
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error, but also erode AIR’s possibilities and promise. Perhaps such friction is not 
entirely useless. Perhaps, indeed, it has the potential to force nuance into discus-
sions about how to reconcile contending ideas about what sort of social welfare 
regulation is supposed to advance. The resulting constraints also offer a powerful 
reminder that the social benefits of AIR depend at least as much on our society’s 
capacity to engage in intelligent governance as they do on continued progress in 
machine learning.
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Socializing Data

Diane Coyle

Will the proliferation of data enable AI to deliver progress? An ever-growing swath 
of life is available as digitally captured and stored data records. Effective govern-
ment, business management, and even personal life are increasingly suggested to 
be a matter of using AI to interpret and act on the data. This optimism should be 
tempered with caution. Data cannot capture much of the richness of life, and while 
AI has great potential for beneficial uses, its delivery of progress in any human sense 
will depend on not using all the data that can be collected. Moreover, the more dig-
ital technology rewires society, creating opportunities for the use of big data and AI, 
the greater the need for trust and human deliberation. 

Data have always been important for government and policy. Statistics are, 
as the name suggests, categorized data useful for states.1 States have col-
lected and collated data for centuries, not least for the purposes of taxa-

tion. Censuses too are ancient, defining the boundaries of power, though they are 
likely to be replaced by other government-collected data sets about individuals.2 
The purpose of governmental measurement is to create conceptual order, to clas-
sify the vast array of possible data points into meaningful categories, enabling bet-
ter decisions. Over the quarter-millennium of modern economic growth, the scope 
of data collection and processing into statistics has become increasingly extensive. 

In Seeing like a State (1998), political scientist James Scott argues that modern 
states classify reality to improve the legibility of what they govern, to better control 
it. He writes: “Legibility implies a viewer whose place is central and whose vision 
is synoptic. . . . This privileged vantage point is typical of all institutional settings 
where command and control of complex human activities is paramount.”3 Many 
of his examples of states bending reality into order concern economic activities 
such as forestry or agriculture, with reality conforming increasingly to the clas-
sifications devised to understand it. There is a feedback loop whereby statistics 
collect and classify data points found in the wild, then subsequently influence ac-
tivities and shape reality over time, so that future data will be more likely to fit into 
the predefined categories. This has been described by statistician André Vanoli 
as “the dialectic of appearance and reality.”4 Or as historian Theodore Porter put 
it, “The quantitative technologies used to investigate social and economic life al-
ways work best if the world they aim to describe can be remade in their image.”5



151 (2) Spring 2022 349

Diane Coyle

For example, the principal measure of economic progress since the early 1940s 
has been gross domestic product (GDP).6 Governments gear their policies toward 
increasing GDP, and people duly respond to the incentives created by policies 
such as tax breaks, subsidies, public infrastructure investment, or cheaper meals 
out.7 Disappointing statistics can topple governments, as they did with the UK La-
bour government of the late 1970s, paving the way for the Thatcherite revolution. 
GDP has not been a terrible metric for progress: compared with previous genera-
tions, our living standards are without doubt higher. We have better health, more 
leisure, more comfortable homes, and the convenience of many new technolo-
gies. Yet even at the dawn of GDP’s invention, some realities had to be bent to fit 
the statistical framework. Some were rendered invisible, defined as being outside 
“the economy,” such as household work and nature. Without nature, there is no 
economy and yet the consequences for sustainability of this fateful definitional 
choice are becoming all too clear, and the progress we thought we had is at least 
partly illusory. 

Reality and the statistical picture also diverge when reality is changing. As stat-
istician Alain Desrosières has written, “In its innovative phase, industry rebels 
against statistics because, by definition, innovation distinguishes, differentiates 
and combines resources in an unexpected way. Faced with these ‘anomalies,’ the 
statistician does not know what to do.”8 At present, for official statisticians, life is 
one damned anomaly after another. For just as agriculture’s share was overtaken 
by manufacturing in the industrial revolution, the material economy is smaller 
now relative to the dematerializing economy of digitally enabled services.9 The 
statistical categories no longer fit well. Paradoxically, in the economy of ever more 
data, it is proving increasingly difficult to bring informational order, for the state 
to gain that desired legibility.

T his is a paradox because the promise of big data and its use in AI has in-
spired renewed visions inside government of enhanced legibility. Such vi-
sions are not new. From the late 1950s onward, computers have seemed to 

promise a clearer, synoptic understanding of society.10 One ambitious 1970s proj-
ect was Project Cybersyn in Salvador Allende’s Chile, administered by cyberneti-
cist Stafford Beer, which was intended to implement an efficiently planned econ-
omy.11 A similar vision of data-enabled, improved legibility has revived in the big 
data digital era. On the left of UK politics it found expression as “fully automat-
ed luxury communism.”12 In the UK Conservative government elected in 2019, it 
took physical shape as a control room at the heart of government, and a UK Strate-
gic Command contract with tech firm Improbable to build a “digital twin,” a sim-
ulation of the whole of Britain.13 The fact that both ends of the political spectrum 
envision data-driven efficiency suggests a big data rerun of the 1930s socialist cal-
culation debate.14 
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The thing that is seen in seeing rooms of these kinds–physical rooms with dis-
plays of information to inform decision-makers–is ordered data. There is a kind 
of commodity fetishism regarding the mechanics of displaying the data. The tech-
nology of data has long been glamorous, arousing intense public and political in-
terest. The great exhibitions and world’s fairs of the nineteenth and early twenti-
eth centuries had popular displays of high-tech data management artifacts such as 
filing cabinets and cards.15 The same is true of digital technology and Silicon Val-
ley, which have inspired numerous nonfictional and fictional accounts. Databases 
have changed form over time as physical hardware and computational power have 
evolved, so the embodiment and the usability (searchability) of data have not 
been constant, and the technologies of display combined with the classification 
and conceptual framework organizing the data affect the way decision-makers 
understand the world. The emphasis on the synoptic view–through a computer 
simulation, through a room kitted out with the latest screens and data feeds–is 
an assertion of political control through greater legibility. Then–UK government 
adviser Dominic Cummings presented it as a matter of public interest:

There is very powerful feedback between: a) creating dynamic tools to see complex 
systems deeper (to see inside, see across time, and see across possibilities), thus mak-
ing it easier to work with reliable knowledge and interactive quantitative models, 
semi-automating error-correction etc, and b) the potential for big improvements in 
the performance of political and government decision-making.16

In other words, the claim is that data science and AI, suitably embodied in a seeing 
room, can be the vehicle for delivering “high performance” by government. 

However, the emphasis is on the technologies of cognition and management, 
rather than the construction of the data going into the process, or the assessment 
of what constitutes improvement. The implicit assumption is that this is a determi-
nation made by the center, by those in the seeing room. This assumption is exactly 
why an ambition to use data for progress can embed biases, create ambiguity about 
accountabilities, or appear to be part of the surveillance society.17 There is certain-
ly nothing new about state attempts to exercise comprehensive surveillance. East 
Germany’s Stasi offers an extreme recent example. Its data took analog form with a 
technological infrastructure turning data into seeing: card records with a bespoke 
filing cabinet technology, photographs, steam irons for opening mail, tape record-
ings, and computers. Despite the existence of formal regulations controlling ac-
cess to this data, a citizen of the former German Democratic Republic was a gläserne 
Mensch, a transparent being. Perhaps we are all becoming transparent now. Digital 
technology makes the amassing of data records trivially cheap and easy by compar-
ison with the 1980s, and security agencies have been doing this at scale.

Big tech companies, not just security agencies, have been amassing the biggest 
and best databases and the know-how to use them for a purpose. Their purpose is 
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profit, rather than public good, and their market power ensures they do not need 
to serve the interests of their users or the public in general. Big Tech’s success vis-
à-vis state power is amply evident in the erosion of national tax bases as ever more 
economic activity goes online. It is not clear how much governments can limit 
this.18 As being able to raise tax revenues is a core state function, there can be lit-
tle question about the power of the biggest digital companies. If the synoptic view 
of what is happening anywhere is available to anybody, it is Google or Facebook. 
They, not officials or politicians, are collecting, categorizing, and using the new 
proliferation of data. 

As long as data are seen as individual property amenable to normal market ex-
change, that will continue to be the case, despite recent regulatory moves in sev-
eral jurisdictions to enforce some data sharing by the tech giants. The reason big 
tech companies have been able to acquire their power is the prevailing concep-
tual framework, crystallized into law, for understanding data as property. Rather 
than the appreciation that data reflect constructed categories, a particular lens or 
framework measuring and shaping reality, data are seen as the collection of nat-
ural objects: the classifications codified and programmed into data feeds just are 
what they are. These constructed data records are then subject to legal rules of 
ownership. Data are presumed to be transferred and owned by corporations as 
soon as the user of a service has accepted its terms and conditions. 

The consequences of this property rights concept applied to data, or informa-
tion, illuminate why it is so pernicious. For example, John Deere and General Mo-
tors (as corporate persons) have claimed in U.S. copyright courts that farmers or 
drivers who thought they were purchasing their vehicles do not in fact own them 
and have no right to repair them. The company’s reasoning is that a tractor is no 
longer mainly a metal object whose ownership as a piece of property is transferred 
from John Deere to the farmer, but rather an intangible data-fed software service 
licensed from the company, which just happens to have a tractor attached.19 Indeed, 
screens with data about weather, soil conditions, and seed flow proliferate inside 
tractor cabins and feed into the diagnostic software installed by the manufacturer, 
which provides information to enable decisions raising crop yields. The John Deere 
claim to ownership of the intangible dominates the farmer’s claim to ownership of 
the physical vehicle it is bundled with. To date, the courts have been largely sympa-
thetic to the corporations and to the strong ownership claims made by Amazon over 
e-books, by makers of games on consoles, as well as by vehicle manufacturers. 

One response to such corporate ownership over data and data processing claims 
has been the demand for corporations to pay for “data as labor.”20 With this, each 
data point an online business collects from users’ activities would be rewarded 
with a small financial payment. However, as economist Zoë Hitzig and colleagues 
point out, this remedy also considers data as a transferrable, individual item of 
property, and implicitly as a natural object “given” by the underlying reality.21 
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The data-as-property perspective assumes data are an object in the world, with 
an independent reality, differing from other givens only in being intangible. Yet 
not only are data nonrival (their use does not deplete them so many people can use 
them), but they are also inherently relational. Data are social. Even when it comes 
to data that are seemingly ultrapersonal–for example, that I passed a particular 
facial recognition camera at a given moment–the information content and use-
fulness of the data are always relational.22 A facial image needs to be compared 
with a police database. Even then its utility for the purpose of detecting suspected 
criminals depends on the quality of the training data used to build the machine 
learning algorithm, including its biases, the product of a long history of unequal 
social relations. The relational character of data means they are both constructed 
by social relations and a collective resource for which market exchange will not be 
the best form of organization.23 Indeed, this is why there are few markets for data; 
where data are sold–for example, by credit rating agencies–the market is gener-
ally thin, with no standardized, posted prices. The use value of data–their infor-
mation content enabling decisions to be made–is highly heterogeneous.

T hat markets are a poor organizational model for the optimal societal use 
of data is Economics 101. Does that make government the right vehi-
cle to use big data and AI for the public good? Can and should govern-

ments aim to beat big tech at the seeing game? The promise of automating policy 
through seeing rooms and use of AI is greater efficiency and, potentially, better 
outcomes. Yet there is increasing use of algorithmic processes in arenas in which 
decisions could have a large impact on people’s lives, such as criminal justice or 
social security. 

Much of the literature on the informational basis of organizations focuses on 
complexity as the constraint on effective information-processing, given an objec-
tive function.24 Automation is superior in routine contexts: more reliable, more 
accurate, faster, and cheaper. What is more, machines deal more effectively with 
data complexity than humans do, given our cognitive limitations. This is a key ad-
vantage of machine learning systems as the data environment grows more com-
plex. The system is better able than any human to discern patterns and statisti-
cal relationships in the data, and indeed the more complex the environment, the 
greater the AI advantage over human-scale methods. However, whenever there is 
uncertainty, the advantage tips back to humans. The more frequently the environ-
ment changes in unexpected ways, or the more dramatic the scale of change, the 
greater the benefits of applying human judgment. The statistical relationships on 
which automated decision rules are based will break down in such circumstances 
(in economics this is known as the Lucas critique).25 The selection of a machine 
or human to make decisions is generally presented as a trade-off. However, it has 
long been argued, or hoped, that AI can improve the terms of this trade-off.26 
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There are several reasons to doubt this. One is the well-known issue of bias 
in training data sets, the inevitable product of unfair societies in the way data are 
classified, constructed, collected, and ordered.27 Any existing data set reflects 
both the classification framework used and the way that framework has shaped 
the underlying reality over time (that is, André Vanoli’s dialectic referred to ear-
lier). The data science community has become alert to this challenge and many 
researchers are actively working on overcoming the inevitable problems raised by 
data bias. But bias is not the only issue.

Another less well-recognized issue (at least in the policy world) is that deci-
sions based on machine learning need an explicitly coded objective function. Yet 
in many areas of human decision-making–particularly the most sensitive, such 
as justice or welfare–objectives are often left deliberately implicit. Politics in de-
mocracies requires compromise on high-level issues so that low-level actions can 
be taken. These “incompletely theorized agreements” are not amenable to be-
ing encoded in machine learning (ML) systems, in which precision about the re-
ward function is needed even if conflicting objectives are combined with different 
weights.28 The further deployment of ML in applied policy practice may require 
more explicit statements of objectives or trade-offs, which will be challenging in 
any domain where people’s views diverge.29 There could be very many of these, 
even in policy areas that seem straightforward. For example, how should public 
housing be allocated? There has been a pendulum swinging over time between 
allocation based on need and allocation based on likelihood to pay rent. These are 
conflicting objectives, and yet many of the same families would be housed under 
either criterion.

The extensive discussions of value alignment in the AI literature tussle with 
how to combine the brutally consequentialist nature of AI with ambiguity or con-
flicts about values. Given any objective or reward function, ML systems will game 
their targets far more effectively than any bureaucrat ever did. All the critiques of 
target setting in the public management literature, on the basis that officials game 
these for their personal objectives, apply with extra force to systems automating 
target delivery. This has led to concerns–albeit overstated–about runaway out-
comes far from what the human operators of the system wanted.30 One possible 
avenue is inverse reinforcement learning–that is, when ML systems try to infer 
what they should optimize for–which can accommodate uncertainty about the 
objective, but takes the existing environment as the desired state of affairs.31 Polit-
ical theorist and ethicist Iason Gabriel rightly emphasizes the need for legitimate 
societal processes to enable value alignment; but we do not have these yet.32 

M arket arrangements based on the concept of private property transac-
tions are inappropriate for data, given their relational characteristics. 
In economic terms, there are large externalities, whereby one individ-
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ual’s provision of data can have either negative (loss of privacy) or positive (use-
ful information) implications for other people.33 Rather than being considered as 
property amenable to market exchange, data instead need to be subject to gover-
nance arrangements of permitted access and use. Online, the offline norms of so-
ciologist Georg Simmel’s concept of “privacy in public” do not exist.34 This con-
cept refers to the norms people adopt limiting what they know about each other 
in their different roles. Even publicly available information (such as where some-
body lives) is not made known in a specific context (such as the marking of an 
exam paper by their lecturer). These voluntary informational restraints and social 
relations of trust play an important role in sustaining desirable outcomes such as 
fairness, privacy, or self-esteem.35 Similar norms do not exist online. Big tech joins 
up too many data about each of us. People can reasonably be concerned about 
government seeing rooms doing the same. 

At the same time, some joining up of data for some uses could without question 
lead to improved outcomes for individuals. So we have ended up in the worst of 
all worlds: a “surveillance state” or “surveillance economy” in which valid priva-
cy concerns about certain data uses prevent other uses of “personal” data for col-
lective and individual good. Consider the successful argument that governments 
should not use data from COVID-19 apps to trace individuals’ contacts during the 
pandemic, leading almost all governments to adopt the Google and Apple appli-
cation programming interfaces (API) with privacy enforced, all the while as per-
sonal liberty was infringed through lockdowns tougher than would have been 
needed with effective contact tracing. Meanwhile, governments and researchers 
have been able to use big data and machine learning to inform policies during the 
pandemic but could have done much more to avert unequal health outcomes with 
linked data about individuals’ health status, location, employment, ethnicity, and 
housing. 

The debate about privacy has become overly focused on individual consent 
and data protection. It should be a debate about social norms and what is accept-
able in different contexts, translated into rights of access and use for limited, spe-
cific purposes.36 In both the commercial and the public sphere, the promise of AI 
for decision-making will not be realized unless the kind of information norms 
that operate offline are created online. The control of access and use is not just a 
technical issue but a social and political one. 

A s the world gets both more complex and more uncertain, big data and AI 
will need to socialize in another way, by combining with human judg-
ment more often. The experiences of 2020, or the impact of extreme  

climate-related events from California burning to Texas freezing, are suggestive 
of the prospect that “radical uncertainty” will characterize the twenty-first centu-
ry.37 Anybody with any knowledge of forecasting (no matter how small or big the 
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data set) will know that uncertainty about future outcomes multiplies over time. 
“Further computational power doesn’t help you in this instance, because uncer-
tainty dominates. Reducing model uncertainty requires exponentially greater 
computation.”38

As radical uncertainty increases, the digital transformation is meanwhile 
expanding the domain of human judgment and trust. Institutional econom-
ics has generally considered two modes of organization: the market, in which 
price allocates resources, and the hierarchy, in which authority and contract 
apply. But neither price nor authority function well as allocation mechanisms 
when knowledge-based assets are important in production.39 That the market 
is a poor vehicle for the use and provision of public goods such as knowledge 
is a standard piece of economic theory. Similarly, a large body of management 
literature notes that knowledge is hoarded at the top of hierarchical organiza-
tions, which are consequently good at routine activities but not at adaptation or 
innovation. 

Trust is a more effective mechanism than either market exchange or com-
mand-and-control for coordinating knowledge-intensive activities, both within 
organizations and between them. The economics literature has long recognized 
the challenge of asymmetric information and tacit knowledge.40 In the digital 
knowledge economy, tacit or hard-to-codify knowledge is increasingly impor- 
tant. For example, the advantage of high productivity firms over others is encap-
sulated in the concept of their “organizational capital.” It reflects their ability to 
manage a complex and uncertain environment, make use of data and software, 
and employ skilled people who have the authority to make decisions. The gap be-
tween firms with high organizational capital and others is growing.41 Trust net-
works or communities need to join market and hierarchy as a standard organiza-
tional form. Trust is also essential when questions of accountability are blurred, 
as is the case with hard-to-audit automated-decision systems; the alternative is 
costly insurance and/or litigation to assign responsibility for outcomes. 

The desire for the seeing room view rests on an assumption about the possi-
bility of classifying the world and ordering data as statistical inputs for that syn-
optic view. Big data does not help overcome the limitations of having to impose 
a classification: AI techniques involve the aggregation of the vast quantities of 
raw, irregular, often by-product data into lower dimensional constructs. The ma-
chine is doing the classification in ways not legible to humans, but it is doing so 
nonetheless. But there is much useful knowledge that is tacit rather than explicit 
and therefore impossible to classify. There is much that is highly locally heteroge-
nous such that population averages mislead. Nor does having big data and AI over-
come the inevitable clash of values or interests that arise in any specific decision- 
making context. Algorithms cannot adjudicate trade-offs and conflicts; only hu-
mans can do so with any legitimacy.



356 Dædalus, the Journal of the American Academy of Arts & Sciences

Socializing Data

We should think of machines and humans as complements. As societal com-
plexity and uncertainty increase, and as the zone of automated decisions expands, 
this requires more use of human judgment, not less. Otherwise, we will end up 
with Scott’s disasters of modernism, fully automated. Practical, tacit, improvisa-
tional knowledge and informal decision-making processes are always essential for 
actions to deliver better outcomes locally: even setting aside the point that peo-
ple might have different and irreconcilable views about what constitutes “better,” 
there are limits to classifiable knowledge, and limits to data.

T he use of AI in society must reflect the social nature of data. Although big 
data offers great potential for progress, any data set is a limited, encod-
ed representation of reality, embedding biases and assumptions, and ig-

noring information that cannot be codified. A synoptic view of society from a  
data-enabled seeing room is impossible because no authority can stand outside 
the reality their decisions will in fact shape. For the promise of AI to be realized, 
three things are needed: new norms (as well as laws and technologies) governing 
access and use of data, embedding offline limits online; effective organizations 
empowering human judgment alongside automated decisions; and legitimate 
processes to shape the collective decisions being coded into AI. Adopting AI first 
and reflecting on these needs later is the wrong way to go about socializing data.
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This essay examines what AI can do for government, specifically through three gener-
ic tools at the heart of governance: detection, prediction, and data-driven decision- 
making. Public sector functions, such as resource allocation and the protection of 
rights, are more normatively loaded than those of firms, and AI poses greater ethical 
challenges than earlier generations of digital technology, threatening transparency, 
fairness, and accountability. The essay discusses how AI might be developed specifi-
cally for government, with a public digital ethos to protect these values. Three moves 
that could maximize the transformative possibilities for a distinctively public sector 
AI are the development of government capacity to foster innovation through AI; the 
building of integrated and generalized models for policy-making; and the detection 
and tackling of structural inequalities. Combined, these developments could offer 
a model of data-intensive government that is more efficient, ethical, fair, prescient, 
and resilient than ever before in administrative history. 

From the 2010s onward, data-fueled growth in the development of artificial 
intelligence has made tremendous leaps forward in scientific advancements, 
medical research, and economic innovation. AI research and development 

is generally carried out by or geared toward the private sector, rather than gov-
ernment innovation, public service delivery, or policy-making. However, govern-
ments across the world have demonstrated strong interest in the potential of AI, 
a welcome development after their disinterested approach to earlier digital sys-
tems.1 Security, intelligence, and defense agencies tend to be the most advanced, 
but AI is starting to be used across civilian policy sectors, at all levels of govern-
ment, to tackle public good issues.2

What would a public sector AI look like? What might it offer to government in 
terms of improving the delivery of public goods and the design of policy interven-
tions, or in tackling challenges that are specific to the public sector? Using a broad 
definition of AI that includes machine learning (ML) and agent computing, this 
essay considers the governmental tasks for which AI has already proved helpful: 
detection, prediction, and simulation. The use of AI for these generic governmen-
tal tasks has both revealed and reinforced some key ethical requirements of fair-
ness, transparency, and accountability that a public sector AI would need to meet 
with new frameworks for responsible innovation. The essay goes on to discuss 
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where the development of a distinctively public AI might allow a more transfor-
mative model for government: specifically, developing internal capacity and ex-
pertise, building generalized models for policy-making, and, finally, going beyond 
the development of ethical frameworks and guidance to tackle long-standing  
inequalities and make government more ethical and responsive than it has ever 
been before.

Computers were first adopted by the largest departments of the largest gov-
ernments in the 1950s.3 In the very early days, government was an innovator and 
leader in digital technologies: the UK Post Office produced the world’s first digital 
programmable computer in 1943, later used for code-breaking at Bletchley Park.4 
But since then, in many or even most countries, governments’ digital systems 
were progressively outsourced, often in very large contracts that stripped digital 
expertise from the government. Partly for that reason, governments were slow 
to adopt Internet-based services or communicate with citizens online; in gener-
al (there are exceptions), they have lagged behind the private sector in adopting 
the latest generation of data-intensive technologies.5 However, there has recently 
been much greater interest in the possibilities of data science and AI for govern-
ment. The number of UK government announcements that mentioned data sci-
ence and artificial intelligence rose from fifteen in 2015 to 272 in 2018. In the Unit-
ed States, a comprehensive study of the use of AI in the federal government found 
that nearly half of federal agencies studied (45 percent) had experimented with AI 
and related machine learning tools by 2020.6 AI has helped governments perform 
three key tasks: detection, prediction, and simulation, all of which can improve 
policy-making and service delivery.7 In a perhaps unanticipated way, AI also forc-
es governments to think about ethical issues and the ethos of the government’s 
digital estate, often in ways that have not been explicitly discussed before.

Governments need detectors: instruments for taking in information. De-
tection is one of the “essential capabilities that any system of control 
must possess at the point where it comes into contact with the world out-

side,”8 and governments are no exception. They need to understand societal and 
economic behavior, trends, and patterns and calibrate public policy accordingly. 
To do this, governments need to detect (and then minimize) unwanted behavior 
by firms or individual citizens. For example, regulators need to be able to detect 
harmful behavior in digital environments, where the machine learning capabili-
ties of large firms challenge traditional regulatory strategies and where the coun-
tering of online harms requires constant innovation. 

Machine learning’s core competency in classification and clustering offers 
government new capability in the detection and measurement of unwanted ac-
tivity in large data sets. For example, machine learning is valuable in the detection 
of online harms such as hate speech, financial scams, problem gambling, bully-
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ing, misleading advertising, or extreme threats and cyberattacks. Many agencies 
or regulators either need to detect these harms, or to oversee firms in so doing, 
requiring the building of machine learning “classifiers” trained on data generat-
ed by social media or other digital platforms. Growth of what is broadly called 
“counter-adversarial technology” to counter online threats to state or society is 
a particularly important task for “public” AI research and development, requir-
ing constant innovation, as offenders continually game platforms to evade detec-
tion.9 These techniques are of increasing importance to security and intelligence 
agencies, going beyond the creation of dedicated red teams for adversarial test-
ing10 to the creation of generative adversarial networks (GANs), in which neural 
networks are designed in tandem: one designed to be a generative network (the 
forger) and the other a discriminative network (the forgery detector). Each net-
work can “train and better itself off the other, reducing the need for big labelled 
training data.”11 

Civilian agencies across sectors also benefit from enhanced detection capabil-
ities. For example, the U.S. Securities and Exchange Commission uses a historical 
data set of past issuer filings and machine learning with a random forest model to 
identify which filers might be engaged in suspect earnings management, relying 
on indicators such as earnings restatements and past enforcement actions.12 De-
tection is enhanced by AI-powered developments in robotics, computer vision, 
and spatial computing. Health research agencies have been particularly advanced 
in the use of computer vision and machine learning models trained to detect early 
signs of, for example, cancer. Law enforcement agencies have been early adopt-
ers of AI for detection, combining these tools with robotic devices and AI-related 
technologies such as computer vision. The U.S Department of Homeland Secu-
rity’s Customs and Border Protection (CBP) agency has a long running program 
of using facial recognition technology, growing out of the agency’s emphasis on 
counterterrorism post 9/11, developed by a range of private vendors using deep 
learning within their proprietary technologies.13 

T he predictive capacity of machine learning has much to offer regulatory agen-
cies and governments broadly, which are not known for their strength in 
foresight or forecasting. Governments can use machine learning tools to 

spot trends and relationships that might be of concern or identify failing institu-
tions or administrative units. For example, in 2020, the U.S. Food and Drug Admin-
istration used machine learning techniques to model relationships between drugs 
and hepatic liver failure, with decision trees and simple neural networks used to 
predict serious drug-related adverse outcomes. They utilized regularized regres-
sion models, random forests, and support vector techniques to construct a rank- 
ordering of reports based on their probability of containing policy-relevant infor-
mation about safety concerns, allowing the agency to prioritize those most likely 
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to reveal problems.14 More generally, the use of predictive risk-based models can 
greatly enhance the prioritization of sites for inspection or monitoring, from water 
pipes, factories, and restaurants to schools and hospitals, where early signs of fail-
ing organizations or worrying social trends may be picked up in transactional data. 

Government agencies can use AI tools to predict aggregate demand, for exam-
ple, in schools, prisons, or children’s care facilities. Understanding future needs 
is valuable for resource planning and optimization, allowing government agen-
cies to direct human attention or manpower where it is most required. Machine 
learning models of COVID-19 spread during 2020–2021 might have been used to 
direct resources such as ventilators, nurses, and drug treatments toward those ar-
eas likely to be most affected, and even to target vaccination programs. An inves-
tigation of data science in UK local government suggested that even in 2018, 15 per-
cent of local authorities in the United Kingdom were using data science to build 
some kind of predictive capability, such as to target safety prevention measures at 
the streets placing most demand on emergency services.15 Unsupervised learning 
models are also utilized to categorize criminal activities from free-text data gener-
ated by complaints, of potential use across the UK criminal justice system.16 

The use of prediction to deliver individual (as opposed to aggregate) risk scores 
is much more controversial. For local authorities that have used predictive tech-
niques to identify the number of children that are likely to be at risk of abuse or 
neglect, the next step from forecasting (say) demand for childcare places is likely 
to be “which children?” Such a question would come naturally to social services 
departments terrified of being held responsible for the next ghastly case of abuse 
to hit the headlines, the next “Baby P.” But should a technique that is essentially 
inductive be used in this way? A risk of 95 percent of being a victim of an abusive 
incident means that there is still a chance that the event will not happen, and if 
the figure is 65 percent, the meaning of the individual number is highly ambig-
uous. Social policy experts who advocate this kind of machine learning for deci-
sion support have built models to support childcare workers’ decision-making in 
New Zealand, the United States, and Australia.17 But other studies have counseled 
a more cautious and thoughtful approach, and noted the importance of the data 
environment.18 The most feted version, in Pittsburgh, was built from a data-rich 
environment providing a 360-degree view of all children’s and their families’ in-
teractions with state agencies throughout their lives, an environment that rarely 
exists in local authorities. And such systems are extremely vulnerable to bias, es-
pecially where data are derived from the criminal justice system.

As with detection, the earliest examples of the use of machine learning for risk 
prediction came from law enforcement agencies. In the United States, a promi-
nent example was the Correctional Offender Management Profiling for Alterna-
tive Sanctions (COMPAS) system, a decision support system for judges that as-
sesses the risk of an individual prisoner being likely to reoffend, and therefore in-
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forming sentencing decisions. The judges receive risk scores in low, medium, and 
high risk buckets, and feed this evidence into the decision-making process. A 2016 
study by ProPublica showed that COMPAS exhibited racial bias, a claim that has 
generated much discussion over this use of machine learning in legal judgments.19 
The system also demonstrates some of the subtle but deep shifts in perceptions 
within the policy-making system that occur when machine learning technologies 
are introduced, bringing with them notions of statistical prediction to a “situa-
tion which was dominated by fundamental uncertainty about the outcome be-
fore,” according to one thoughtful case study on the implementation of COMPAS, 
showing that practitioners within the system valued what they perceived as the  
“research-based” nature of COMPAS results, which they felt reduced uncertainty 
in the system.20 

T he third area in which AI-related technologies can help policy-makers in 
the design of policy interventions and evidence-driven, data-intensive  
decision-making is simulation. Governments need ways of testing out inter-

ventions before they are implemented to understand their likely effects, especially 
those of costly new initiatives, major shifts in resource allocation, or cost-cutting 
regimes aimed at saving public resources. In the past, the only option for trying 
out initiatives was by running field experiments: randomized trials in which the 
intervention is applied to a “treatment group” and the results are compared with 
a “control group.” But such trials are expensive and take a long time, challenge 
notions of public equity, and sometimes are just not possible due to attrition or 
ethical constraints.21 In contrast, the availability of large-scale transactional data, 
and innovative combinations of agent computing and machine learning, allow the 
simulation of interventions so unintended consequences can be explored without 
causing harm. 

Like AI itself, agent computing is a form of modeling that has been in existence 
for a long time but has been revolutionized by large quantities of data. The agent-
based method was developed within economics in the 1960s and 1970s for the 
purposes of simulation, but these were “toy models”: formal models with hardly 
any data, and when tested on data generated by real-life situations, they tended to 
perform very badly indeed. In contrast, the kind of agent computing models used 
now are based on large-scale data, which can replicate whole economies, with 120 
million firms and workers.22 A modern agent-based model like this consists of 
individual software agents, with states and rules of behavior, and large corpuses 
of data pertaining to the agents’ behavior and relationships. Some computer sci-
entists have called for such models to be developed ex ante–“agent-based mod-
eling as a service”–so that in an emergency, it could be rapidly employed to feed 
in key variables and model possible policy interventions. Mainstream economics 
has been resistant to such innovations, and political systems have inbuilt tenden-
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cies to try out hurried policy decisions, such as not having enough police, or doc-
tors or nurses, and learning the hard way. But the disadvantages of this on-the-
hoof policy-making were illustrated during the first stage of the COVID-19 crisis 
in 2020, when in many countries, policies regarding masks, social distancing, and 
lockdown measures were made in an ad hoc and politically motivated fashion.

Agent computing has gradually gained popularity as a standard tool for trans-
port planning, or to provide insight for decision-makers in disaster scenarios such 
as a nuclear attack or pandemic.23 Researchers working with police forces are tri-
aling the use of large-scale, real-time transactional data from daily activities of in-
dividual police in an agent-based model that would allow police managers to try 
out different levels of police resourcing and measure the potential effects on deliv-
ery of criminal justice.24 If viable, such models could have potential for other ar-
eas of the public sector, where large quantities of trained professionals are needed, 
such as in education or health care. In this way, agent computing can be another 
good way of optimizing resources, by testing out the impact of different levels of 
manpower without experiencing unintended consequences. Similarly, the United 
Nations Development Programme is using an agent computing model to help de-
veloping countries work out which policies–such as health, education, transpor-
tation, and so on–should be prioritized in order to meet their sustainable develop-
ment goals.25 Researchers have started to explore the possibilities of “societal dig-
ital twins”: a combination of spatial computing, agent-based models, and “digital 
twins,” or virtual data-driven replicas of real-world systems. These have become 
popular for physical systems in engineering or infrastructure planning, although 
proponents warn that the complexity of social systems renders the social equiva-
lent of digital twins “a long way from being able to simulate real human systems.”26 

Governments of the progressive era of public administration from the late 
nineteenth and early twentieth centuries stressed the need for a “pub-
lic service ethos” to limit corruption, waste, and incompetence. Such an 

ethos prioritized values of honesty and fairness in an attempt to distinguish pub-
lic officials from the “inherently venal” nature of politicians and an increasingly 
corrupt private sector.27 But as state operations became increasingly automated, 
and personnel were replaced with digital systems, which were then outsourced to 
computer services providers, there was a diminishing sense in which this ethos 
could be said to apply to government’s digital estate.28 The advent of AI, howev-
er, has forced a rethink about the need to address issues of fairness, accountabili-
ty, and transparency in the way that government uses technology, given that they 
pose greater challenges to these values than earlier generations of technology used 
by government. 

It is around ethical questions such as fairness that the distinctiveness of the 
public sector becomes stark. If (say) Amazon uses sophisticated AI algorithms to 
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target customers in a biased way, it can cause offense, but it is not on the same 
scale as a biased decision over someone’s prison sentence or benefits application. 
Users of digital platforms know very little about the operation of search or news-
feed algorithms, yet will rightly have quite different expectations of their right to 
understand how decisions on their benefit entitlement or health care coverage 
have been made. The opaqueness of AI technology is accepted in the private sec-
tor, but it challenges government transparency. 

From the late 2010s onward, there has been a burgeoning array of papers, re-
views, and frameworks aimed at tackling these issues for the use of AI in the pub-
lic sector. The most comprehensive and widely used across the UK government is 
based on the principles of fairness, accountability, trustworthiness, and transpar-
ency, and a related framework was applied to the use of AI in the COVID-19 crisis.29 
Policy-makers are starting to coalesce around frameworks like these, and ethics 
researchers are starting to build the kinds of tools that can make them usable and 
bring them directly into practice. It might be argued that progress is greater here 
than it has been in the private sector. There is more willingness to contemplate 
using less innovative–or differently innovative–models in order, for example, to 
make AI more transparent and explainable in the process of high-stakes decisions 
or heavily regulated sectors.30

The development of such frameworks could lead to a kind of public ethos for 
AI, to embed values in the technological systems that have replaced so much of 
government administration. Such an ethos would not just apply to AI, but to the 
legacy systems and other technologies that first started to enter government in 
the 1950s, and could be highly beneficial to the public acceptance of AI.31 There 
is a tendency to believe that the technological tide will wash over us, fueled by 
media and business school hype over “superintelligent” robots and literary and 
cinematic tropes of robots indistinguishable from humans, powered by general 
AI. If we do not design appropriate accountability frameworks, then politicians 
and policy-makers will take advantage of this blame-shifting possibility. This will 
range from cases like the UK prime minister blaming poor statistical processes to 
calculate public examination results after school closures in the 2020 pandemic 
prevented exams from taking place as a “mutant algorithm,” to the more nuanced 
and unconscious shifting of responsibility to statistical processes involved in judi-
cial decision-making with AI observed above. A public sector AI in which fairness, 
accountability, and transparency are prioritized would be viewed as more trust-
worthy, working against such perceptions. 

So in what areas might government do more with AI? By 2021, government’s 
use of AI was starting to speed up; the large-scale study of the use of AI by 
the U.S. federal government concluded in 2020 that “though the sophistica-

tion of many of these tools lags behind the private sector, the pace of AI/ML de-
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velopment in government seems to be accelerating.”32 However, there are various 
ways that AI could have a more transformative effect.

First, governments could prioritize the development of expertise and capacity 
in AI to foster innovation and overcome some of the recurring challenges. As not-
ed above, the history of government computing has been characterized by large-
scale contracting to global computer services providers, but AI does not lend itself 
to this kind of outsourcing, whereby governments lose control of key features. For 
example, the U.S. CBP was criticized in 2020 for being unable to explain failure 
rates of biometric scanning technology “due to the proprietary technology being 
used.”33 Similar issues have dogged the adoption of facial recognition technolo-
gies by police agencies, with moratoria announced in several cities. There is ev-
idence that government agencies realize the importance of developing capacity: 
the same U.S. study also found that “over half of applications were built in-house, 
suggesting there is substantial creative appetite within agencies.” 

An area with great scope is the use of data-intensive technologies to develop 
new generalized models of policy-making. Governments have little tradition of 
using transactional data to inform decision-making. In the classic Weberian mod-
el of bureaucracy, data are compressed within files, available for checking indi-
vidual pieces of information, but generating no usable data for analytics.34 This 
characteristic of governments’ information architecture persisted into the era of 
computerization, with a lack of usable data remaining a feature of the “legacy sys-
tems” of many governments. This point was well illustrated during the first wave 
of the COVID-19 pandemic, when many countries discovered that they lacked the 
kinds of data and modeling that could help design interventions. Key data flows 
did not exist in real time; in the United Kingdom, for example, it turned out that 
data for deaths were available only several weeks after the death had occurred. 
Data were not fine-grained enough; the design of a stimulus package requires  
sectoral-level data in order to target resources to those firms most in need. Mod-
eling took place in silos such as public health, health care, education, or the econ-
omy, meaning that interventions were targeted only at (say) economic recovery 
or the health crisis, rather than an integrated approach taking account of the fact 
that the domains were intertwined. Resilient policy-making would involve build-
ing such data flows and using agent computing, machine learning, and other AI 
methodologies to create integrative models to both recover from the current crisis 
and face future shocks.35 

Finally, perhaps the most ambitious use of AI would be to tackle issues of 
equality and fairness in governmental systems in a profound and transforma-
tive way, identifying and reforming long-standing biases in resource allocation,  
decision-making, the administering of justice, and the delivery of services. Many 
of the causes of bias and unfairness in machine learning, for example, come from 
training data generated by the existing system. The COVID-19 pandemic revealed 
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many structural inequalities in how citizens are treated–for example, in the de-
livery of health care to people from different ethnic groups–just as the mobiliza-
tion around race has revealed systemic racism in police practice. Data and model-
ing have made these biases and inequalities explicit, sometimes for the first time. 
Some researchers have suggested that we might develop AI models that incorpo-
rate these different sources of data and combine insights from a range of models 
(so-called ensemble learning) aimed at the needs of different societal groups.36 
Such models might be used to produce unbiased resource allocation methods and 
decision support systems for public professionals, helping to make government 
better, in every sense of the word, than ever before. 

Artificial intelligence can help with core tasks of government. These tech-
nologies can enable real-time, transactional data to enhance govern-
ment’s armory of detecting tools, to build predictive models to support 

decision-making, and to use simulation to design policy interventions that avoid 
unintended consequences. They face distinct ethical challenges when used for 
these public sector tasks, requiring new frameworks for responsible innovation. 
As policy-makers become more sophisticated in their use of AI, these technologies 
might be developed to overcome fragilities exposed in the COVID-19 pandemic,  
to create new, more resilient models of policy-making to face future shocks, and 
to “build back better,” the catchphrase of many governments in the postpandem-
ic era. AI can reveal and perhaps mitigate some structural biases and might even 
be used to tackle some profound inequalities in the distribution of resources and 
the design and the delivery of public services such as education and health care. 
This would require a specific branch of AI research and development, geared at 
distinctively public sector tasks and needs. Such a remit would be no less complex 
or challenging than for any other field of AI. Indeed, some deep learning experts 
suggest that even where machine learning has had success, as in medical diagnosis 
of X-ray images, models are still outperformed by human radiologists in clinical 
settings.37 But the potential public good benefits are huge.
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James Manyika

While editing this volume of Dædalus, I spent some time in residence 
at All Souls College, Oxford, where I have been a Visiting Fellow. In 
a conversation about large language models with Professor Sir John 

Vickers, the Warden of All Souls, I suggested that a pretrained large language 
model could be thought of like a well-prepared (“pretrained”) student who is pre-
sented with a general exam question (a “prompt”) that they have neither known 
in advance nor studied for specifically, but that they have to understand sufficient-
ly in order to write a response (a “completion”), all in real time. John thought this 
sounded like an All Souls exam.1 So we thought it might be interesting to prompt 
a pretrained large language model with some All Souls exam questions and see 
what responses we would get. For this, we used the successor model to OpenAI’s 
GPT-3 (Generative Pre-trained Transformer 3). At the time of assembling this col-
lection, GPT-3 was one of the leading pretrained large language models (and one 
that makes several appearances in this volume; see the concluding note at the end 
for more about GPT-3).

What follows are a few past All Souls exam questions (the prompts) and the 
unedited answers (the completions) generated by the successor model to GPT-3.  
Because we wanted to discuss the responses easily with others in a talk, we set a 
limit on the length of the responses. It is worth noting that since the model has no 
concept of “self” or inherited or fixed opinions, responses to the same prompt can 
be highly variable each time the prompt is provided. For example, the same prompt 
“Who is the best hip-hop artist of the last 20 years and why?” will almost certainly 
produce a different answer and argument each time the prompt is presented. We 
illustrate this in the last example by showing two completions to the same prompt.

Including these prompts and responses in this afterword was motivated not 
so much by what the model has to “say”–the correctness, validity, or novelty of 
its arguments–but as a way to provide tangible illustrations of a pretrained large 
language model taking a natural language prompt and generating a response. The 
responses, a subset of which are shown here, provoked a wide variety of reactions, 
questions, and speculations among those to whom we presented them–as I sus-
pect they may for readers of this volume.
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Prompt: Is the Turing Test a reasonable criterion for the achievement of general AI?

Completion: It is certainly one of the most commonly cited definitions. And it 
has the merit of being simple and non-emotive.

But it has several flaws.
It doesn’t take into account that AI may not be trying to mimic natural intelli-

gence, or that it may be more efficient in some other way.
It doesn’t consider the difficulties of measuring intelligence, of defining intel-

ligence, of recognizing intelligence, of simulating intelligence, of predicting intel-
ligence, of even defining “human”.

It doesn’t take into account that some problems are more easily solved by 
non-human intelligence than by human intelligence. For example, the search for 
extraterrestrial intelligence might best be conducted by an artificial intelligence.

It doesn’t recognize that an AI might be more human-like in some ways even if 
it fails the Turing Test in others. For example, an AI might emulate a personality 
without being able to mimic the personality perfectly or convincingly.

It doesn’t recognize that intelligence is not necessarily confined to a single 
being, but may be distributed among many. For example, a human mind may be 
made up of multiple human intelligences.

It doesn’t recognize that intelligence is not necessarily isolated in a single en-
vironment but may be spread across multiple environments. For example, an AI 
might be capable of handling different kinds of problems across multiple domains.

It doesn’t recognize that an AI might have multiple kinds of intelligence, just as 
human intelligence has multiple kinds of intelligence. For example, an AI might 
be able to solve problems in an artistic style and in a scientific style at the same 
time.

It doesn’t recognize that an AI might be intelligent in ways that we cannot 
imagine or measure. For example, an AI may be able to manipulate and invent 
concepts and language that we do not understand. It may be able to see things in 
ways we do not see them. It may be able to think in ways we do not think. It may 
be able to make decisions in ways we do not make decisions. Or it may be able to 
generalize in ways we cannot generalize.

Prompt: How has the representation in literature of any one of the following changed over 
time?  Discuss with reference to an author or authors of your choosing. 

- anthologies, bathos, caste, dogs, expectation, fantasies, geography, Helicon, imagism, jests, 
kissing, letters, masculinities, nonsense, optimism, plot, questions, relationships, starships, 
tea, underworlds, vehicles, wandering, xenia, yesteryear, zaniness
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Completion: There has been a significant change in the representation of many 
different literary themes over time, particularly with regard to the representation 
of anthologies, bathos, and dogs.

One of the earliest representations of anthologies in literature can be seen 
in the works of Homer, particularly in his epic poems the Iliad and the Odyssey. 
These works were heavily focused on the exploits and adventures of Greek he-
roes, and often included collections of shorter poems that served as digressions or 
interludes. However, in later representations of anthologies in literature, such as 
in the works of Shakespeare or Chaucer, these collections took on a more themat-
ic or narrative function, with the poems often being used to illuminate or explore 
particular themes or ideas.

In contrast, the representation of bathos in literature has changed significantly 
over time, particularly in terms of how it is used to elicit certain emotions or re-
sponses from readers. For example, early representations of bathos, such as in the 
works of Shakespeare or Swift, often used it to create a sense of humor or light-
heartedness, through the juxtaposition of two disparate or unexpected elements. 
However, in more contemporary literature, bathos is often used in much darker 
and more serious ways, to evoke feelings of sadness or despair.

Similarly, the representation of dogs in literature has also changed over time, 
with early representations often focusing on dogs as loyal companions or faithful 
friends. However, in more modern literature, the representation of dogs has shift-
ed to emphasize their more complex and nuanced emotional lives, highlighting 
their intelligence and capacity for empathy and understanding. This can be seen, 
for example, in the works of authors like J.K. Rowling, who often explore the rela-
tionships between dogs and humans in her books.

Prompt: ‘There is no Marx without Lenin.’ Discuss.

Completion: Many would argue that there is no Marx without Lenin. Indeed, 
one of the most common criticisms of Marx is that he failed to provide a detailed 
blueprint of what socialism would look like. Marx’s work was primarily focused 
on the critique of capitalism and the overthrow of the capitalist system. However, 
Marx did not live to see his ideas put into practice, and therefore it was left to Le-
nin to implement Marx’s theories.

Lenin can be seen as the realiser of Marx, as he applied Marx’s theories to the 
Russian situation and set about building a socialist society. Lenin was dedicated to 
the principles of Marxism, and he put his theories into practice by leading the Bol-
shevik Revolution in 1917. Although many of the ideas of Marx were implemented 
under Lenin, it is important to remember that Lenin was not simply a follower of 
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Marx. Lenin had his own ideology, which was heavily influenced by Marxism but 
also included some non-Marxist elements. This meant that Lenin’s brand of so-
cialism differed slightly from that proposed by Marx, although it was still based 
on Marxist principles.

Marx’s contribution to socialism is immeasurable, as it provided a revolu-
tionary basis for socialist society. However, it is also important to remember that 
Marxism is not static. It is a living theory which must continually be developed in 
order to address new problems and issues. Lenin’s contribution to Marxism was 
significant, as he took Marx’s theories and made them relevant for the Russian sit-
uation. Without Lenin’s input into Marxism, there would have been no Russian 
Revolution or Leninism.

It has therefore been argued that ‘there is no Marx without Lenin’. Without 
Lenin pioneering Marxist theory, there would have been no Russian Revolution, 
and therefore no socialism in Russia. Without the implementation of Marxist 
principles in Russia, there would be no Marxism as we know it today. Therefore, 
without Lenin’s input into Marxism, we would not have modern-day Marxism or 
socialism.

Prompt: Does Kant successfully refute Hume’s skepticism?

Completion: I think it’s an open question. If you are a Kantian, you will say yes 
because Kant argues that Hume’s skepticism is based on a mistake, namely the 
idea that we can never have any knowledge of the external world. That, Kant says, 
is not true. We do have knowledge of the external world, but it is knowledge of the 
external world only in the way that perception gives us knowledge of the external 
world.

So what is supposed to be the difference between the way in which perception 
gives us knowledge of the external world and the way in which science gives us 
knowledge? I think here Kant is not entirely clear, but it seems to have something 
to do with the fact that when we perceive things, we cannot form scientific con-
cepts about them.

If you want to form scientific concepts about things that you see in front of you, 
you have to go beyond the surface; you have to go beyond the appearance in order 
to find out what is really in there. Science does this in order to form scientific con-
cepts about things like organisms or physical objects. Perception doesn’t do this. 
Perception does not go beyond the surface appearance in order to find out what 
is really in there. Perception gives us knowledge only of the surface appearance.

So if you are a Kantian, you will say that Hume’s skepticism is based on a mis-
take, and that Kant has successfully refuted it. On the other hand, if you are a 
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Humean, then it seems to me that Hume has said something rather devastatingly 
true about how perception works. It seems right that when we perceive an object, 
we don’t take into account all sorts of other factors which might be relevant to ex-
plaining what is really going on when we perceive objects. We don’t worry about 
whether there are other objects in front of us which might be casting shadows or 
whether there are other objects behind us which might be casting shadows on the 
object in front of us. We don’t worry about whether there are optical illusions go-
ing on or whether we are hallucinating or whether we are deluded in some other 
manner.

So I think it seems right that when we perceive objects, we focus narrowly on 
a small aspect of what is going on and do not worry about all sorts of other things 
that might be relevant to understanding what is really going on when we perceive 
objects. As Hume says, if our perceptions were more accurate reflections of real-
ity, then they would be more like science, and they would focus on a much wider 
range of factors which might be relevant.

Prompt: Is illiberal democracy an oxymoron?

Completion: Many observers of the recent wave of authoritarianism in the world 
view it as a clash of two ideologies. They see it either as a contest between liberal 
democracy and autocracy, or between liberalism and illiberalism.

The problem is that these are not two opposite ideas at all. Indeed, they are two 
sides of the same coin.

The term “liberal democracy” is an oxymoron. Democracy is structurally illib-
eral, in that it requires the majority to rule. Liberalism is about the protection of 
individual rights. It is about the liberty that each individual should enjoy, in order 
to live in peace.

As a result, when democracy becomes triumphant, liberalism becomes sec-
ondary. The majority will have the right to rule in all circumstances. The individ-
ual will only have the right to expect protection in so far as the majority decides it 
necessary.

But when the political system is structurally liberal, it may be impossible to 
force democracy on it. Democracy can only be imposed when it has been struc-
tured in from the beginning.

This is the paradox of democracy. It is only when democracy is structurally il-
liberal that it can be imposed.
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Prompt: Do Gödel’s incompleteness results (or Turing’s uncomputable functions) show 
that the mind is not well modelled as a computer?

Completion 1: No. Gödel’s theorems do not show that the mind is not well mod-
elled as a computer. They show that mathematics is not well modelled as a formal 
system.

The mind is a computer. It is a very complex and powerful computer. It is a 
computer that can be programmed to produce any output that can be produced by 
any other computer. It can do this because it has the power of self-modification.

The mind can also be used to create new systems of logic and mathematics, 
and to discover new mathematical results, such as Gödel’s theorems.

The mind is not a formal system. It can create and use formal systems, but it 
does not need to be a formal system in order to do this. The mind can do things 
that formal systems cannot do, such as self-modify and discover new mathemat-
ical truths.

Some people have claimed that Gödel’s results show that the mind cannot be 
a computer because they say that computers are formal systems and that Gödel’s 
results show that formal systems are not powerful enough to produce the kind of 
results that the mind produces. This is a misunderstanding of Gödel’s results. His 
results do not show that the mind cannot be modelled as a computer. They show 
that mathematics cannot be modelled as a formal system.

In any case, it is easy to see how the mind could be used to produce results such 
as Gödel’s incompleteness theorem without being a formal system itself. The 
mind could use its power of self-modification to create a formal system in which 
it could then discover mathematical truths. The discovery of these truths would 
then be represented in the mind by new concepts and new knowledge, which 
would then be used by the mind in its further self-modification and in its creation 
of new mathematical concepts and results. This would produce a kind of feedback 
loop in which the mind would create mathematical concepts, discover mathemat-
ical truths, represent these truths in its own structure, and then use these truths in 
further self-modification and creation of new mathematical concepts and results, 
ad infinitum.

Completion 2: Yes, but that’s not the point. The point is that these results show 
that science is not well modelled as a computer. The mind cannot be described as a 
computer because it cannot be described as anything. The mind, like the universe, 
is ultimately unspeakable.

The main reason for this is that the mind is embodied. This means that every-
thing we know is always known through the body. Science has always struggled 
with this, because it is obsessed with language. It assumes that everything can be 
described in language, and then it tries to describe the world in language. But lan-
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guage comes out of the body, it doesn’t describe the body. So science has an innate 
bias towards disembodiment. Once again, Turing was aware of this.

Given that the mind is not a computer, what is it? That’s one of the most im-
portant questions in science. If you understand what the mind is, you understand 
what human beings are. It’s the most important question in philosophy too. But 
if you think science will ever answer it for you, you are mistaken. Science only 
knows what the mind isn’t. That’s why it’s so obsessed with questions like ‘Can 
you build a robot that thinks?’ or ‘How does the brain work?’ These are called 
‘hard problems’ by scientists. They are hard because science cannot answer them. 
They are also impossible to answer, because they are based on a false premise–
that science can describe the mind. But science can’t describe the mind, so it can’t 
solve these problems either.

The mind is not a problem to be solved. It is a mystery to be lived. This means 
science doesn’t need to solve it–it needs to dissolve itself and become philosophy. 
If we want to understand what it means to be human, we need to study philosophy 
 –not science.

A brief word about the model used and images on the inside covers

When putting this volume together in fall 2021, GPT-3 (Generative Pre-trained 
Transformer 3) was one of several leading AI language models. Created by OpenAI,  
GPT-3 is made up of 175 billion parameters, and was pretrained on large text data 
sets with hundreds of billions of words. After this pretraining, when given any 
natural language prompt, like a phrase or sentence, for which it has not been 
trained, GPT-3 returns in real time a text completion or continuation in natural 
language.2 This model has shown capabilities in a variety of tasks including con-
tent or code generation, summarization, expansion, conversation, creative writ-
ing, style transfer, translation, and more. While the power and potential of such 
large language models are promising, they are not without shortcomings and lim-
itations, many of which are highlighted in this issue of Dædalus and discussed 
elsewhere in the literature.3

The completion examples in this afterword were generated by a successor 
model to GPT-3, accessed through OpenAI’s Davinci engine. The images that 
appear on the inside covers of this issue of Dædalus were generated from a state-
of-the-art successor to the approaches used in DALL·E and GLIDE.4 DALL·E is a 
twelve-billion-parameter version of GPT-3 that, once pretrained, can generate im-
ages from natural language prompts that it has not been trained on or for. To gen-
erate the images shown on the inside covers, I provided natural language prompts 
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to the model. Each set of images consists of several outputs generated in response 
to the same prompt, shown next to the set. 

I would like to thank Mira Murati and the research team at OpenAI for their 
assistance.  
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Prompt: An artist painting the future of humans cooperating with AI.
Generations:

Prompt: Artist from the future painting life on Earth in the year 2050 in the style of  
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on the horizon:

The Humanities in American Life:  
Transforming the Relationship with the Public

edited by Norman Bradburn, Carin Berkowitz  
& Robert B. Townsend

with Judith Butler, Alan Liu, Abigail Droge,  
Scott Kleinman, Jeremy Douglass, Lindsay Thomas,  
Dan C. Baciu, Sara Guyer, Matthew Gibson,  
George Sanchez, Denise Meringolo, Fath Davis Ruffins,  
Susan Smulyan, Keith Wailoo, Kwame Anthony Appiah, 
Dipesh Chakrabarty, James Pawelski, Roderick Hart,  
Jodi Magness, Margaret Mitchell, Edward Balleisen,  
and Rita Chin

Institutions, Experts & the Loss of Trust
edited by Henry E. Brady & Kay Lehman Schlozman

Creating a New Moral Political Economy
edited by Margaret Levi & Henry Farrell

Representing the intellectual community in its breadth 
and diversity, Dædalus explores the frontiers of 

knowledge and issues of public importance.


