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 Preface to the Issue, "Artificial Intelligence"

 hat's in a name? In certain circumstances, as this issue
 of Dcedalus suggests, a great deal. Had the term artificial
 intelligence never been created, with its implication that a

 machine might soon be able to replicate the intelligence of a human
 brain, there would have been less incentive to create a research
 enterprise of truly mythic proportions. In a very fundamental sense,
 AI is something of a myth. Had the name not existed, certain
 consequences might have been averted?for example, in the early AI
 community a tendency to exaggerate what might be impending,
 showing?however unwittingly?a kind of hubris that, in retrospect,
 seems both unbecoming and unnecessary. In suggesting that a

 machine with vast intellectual capability was in the offing and that
 this new intelligence might quickly be attained, these advocates made
 themselves hostage to critics, who, increasingly aware of the limita
 tions of certain of the theories being advanced, insisted on their
 inadequacies. The critics resented the exaggeration implicit in the
 claims of those who saw only the promise of quick results and the
 epistemological assumptions implicit in the name the field had given
 itself.

 Yet the term artificial intelligence has had substantial uses, not least
 in assisting in the creation of a self-conscious community of research
 ers who are committed to a kind of intellectual inquiry never before
 attempted. They created a discipline that remains vital, though still
 very controversial. Indeed, as this issue of Dcedalus demonstrates,
 artificial intelligence has a history that, like all good histories, is
 characterized by significant disagreements. These are differences not
 only about what has been accomplished, what forty years of research

 w

 V
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 vi Dcedalus

 has produced, but whether there is today an understanding of mind
 and human intelligence that has been substantially advanced by those
 who have labored in the artificial intelligence vineyard. The question
 is not simply what AI has produced in terms of practical results but
 how much it has illuminated our understanding of mind.

 Some, the harshest critics, question whether AI merits the distinc
 tion of being called a science, what the distinctive contributions of the
 field have been, whether AI researchers have adequately used the
 important discoveries made in recent decades by other scientists who
 have been so inventive in their study of the human brain. Others,
 while accepting that AI has scientific credentials, question certain of
 its pretended accomplishments. Of one achievement, "expert
 systems," there is substantial agreement that this has been a techno
 logical breakthrough, but there is controversy about the scientific
 contribution of the endeavor. Others, including a number who write
 for this issue, insist that AI is an evolving science, in some sense an
 emergent study. Impressed with the accomplishments of AI to date,
 they choose not to minimize the difficulties that lie ahead but persist
 in believing that the promise of AI for the future is great.

 In this issue of Dcedalus there is a serious effort made to explain
 why and how certain discoveries about the human brain have been
 used and not used by the AI community, and whether the AI
 endeavor has increased our understanding of human cognition. If, as
 some believe, the computer may in time be seen as the greatest
 invention of the twentieth century, the role of AI researchers in
 exploring its potential will almost certainly be recognized. The study
 of the aspirations and accomplishments of AI during recent decades
 suggests why the discipline is, to many, so compelling. While there is
 no denying that certain of the early enthusiasms have abated, it is also
 obvious that others have recently been kindled. Thus, for example, a
 great deal is made in this volume of the new importance of "connec
 tionist" theory and what it may in time contribute. But even here,
 there is no universal acceptance of the proposition that powerful new
 computers, guided by principles of associative memory, will quickly
 make major advances in simulating the human brain.

 This issue of Dcedalus needs to be read as a collection of dialogues.
 The debate is not between one group wholly committed to AI,
 concerned with defending its record in toto, opposed to another that
 is inclined to dismiss the enterprise entirely. It is best understood as an
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 Preface vu
 encounter between those who emphasize what has been accom
 plished and what may be impending and those who choose to see the
 effort as a marathon in which only the first tentative yards have been
 traversed. Joining this discussion of distance traversed is another,
 parallel dialogue about the epistemological underpinnings of the AI
 effort as a whole. What no reader of this volume can fail to recognize
 is how much this post-World War II study of mind, intelligence,

 memory, and machines relies on a long tradition of scientific and
 philosophical reflection and how much of the contemporary AI
 research is owing to initiatives taken in a handful of American
 universities and research centers. If there is an "emergent" AI today
 different from the artificial intelligence advocated some decades ago,
 it is important to consider what its promise may be, how certain of
 the major problems encountered by earlier researchers are now
 perceived.

 As many of the essays in this Dcedalus volume suggest, "traditional
 AI"?whatever its accomplishments and however useful its major
 invention, expert systems?appears to be undergoing new scrutiny.

 The concept of programming from earlier AI is being challenged in
 new ways. If the connectionists seem to be the principal challengers,
 there are authors in this study who see the need to go beyond them,

 who believe that neither traditional AI, with its algorithms, nor
 connectionism, with its network models, is likely to be sufficient.
 Each may prove to be elements in a new synthesis that has yet to be
 achieved.

 The essays in this volume make abundantly clear that some see
 wholly new dialogue partners for AI; these exist in psychoanalysis,
 for example, but also in fine arts, philosophy, tfie field of vision, and
 the study of the brain in general. This, however, is not universally
 assented to. Indeed, the most useful contribution of this Dcedalus
 issue may be to suggest how intense the quarrels are, why there is so
 little consensus about AI accomplishments to date, so little agreement
 about its promise for the future. Here, this new learning is discussed
 and argued over, with no effort made to conceal the differences that
 exist about it.

 Many of the "fathers" of AI are still alive; some, indeed, are
 authors in this volume. So also are their "children," and the genera
 tion gap, evident in these articles, is itself worth noting. But then,
 there are also the "critics" of AI and the "commentators," whose
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 vin Dcedalus

 warnings need to be reflected on. In no sense can this issue of
 Dcedalus be read as a manual on the subject of artificial intelligence.
 It was never intended to serve as an encyclopedia, yet it aspires to be

 more than an introduction to the subject. A spirited and sometimes
 heated exploration of what a new discipline appears to have accom
 plished, as interesting for the reservations and warnings issued as for
 the enthusiasms expressed, it is a tale of intellectual adventure.
 Because the field is complex, efforts have been made to persuade
 authors to write for some readers who are well versed in the subject
 but also for many others who are not. I feel grateful to the authors
 who have consented to do this.

 Finally, thanks need to be given to the Los Alamos National
 Laboratory, which made a grant to Dcedalus that encouraged these
 dialogues to be initiated. The conference facilities of the Los Alamos
 National Laboratory were made available to us, allowing the authors
 to convene in very agreeable surroundings to discuss the early drafts
 of their papers. The discussions at Los Alamos were animated and
 contentious; we hope the quality of their argument is reflected in the
 essays published. Thanks are due also to Professor Herman Fesh
 bach, who, as president of the American Academy of Arts and
 Sciences, convened a small meeting on the subject to discuss what an
 issue of Dcedalus on artificial intelligence might treat. A planning
 conference at the House of the Academy created the agenda for the
 volume, emphasizing the importance of involving several generations
 of researchers and insisting that room be left also for critics. My
 warm thanks also to Professor Gian-Carlo Rota of MIT for helping
 to persuade us to push forward with this effort and to Dr. Robert
 Seiden of Los Alamos, who did so much to make both the meeting
 and the publication possible.

 S.R.G.
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 Seymour Papert

 One AI or Many?

 Is there one ai or are there many? A dramatic shift in the tone
 of discussion about artificial intelligence has brought about a
 suddenly increased awareness of the presence of divergent ways

 of thinking in what has generally been presented as a unified field.
 Readers of this issue of Dcedalus who have not kept abreast of recent
 developments may be astonished to see how many of its authors have

 chosen to focus on divergences in the field, and particularly on one
 trend in AI that has come to be known as connectionism. They would
 not be alone in their surprise. Late in 1985 I participated in a
 planning meeting to discuss an issue of Dcedalus on AI. At that time
 I knew (and I assume that most people at that meeting knew) that
 research activity on "connectionist" themes was growing. But I

 would have expressed disbelief had anyone at the meeting suggested
 (no one did) that these themes would soon burst out of the technical
 journals into such publications as the New York Times Book
 Review?where connectionism is characterized as cognitive counter
 revolution1?and become the central talking point wherever AI or
 cognitive science is discussed. The contents of this issue of Dcedalus

 reflect this movement more than any deliberate plan: something
 intriguing and dramatic had taken place on a larger scale than the
 planning of a journal. So when Stephen Graubard invited me to
 contribute a piece of my own, I could not resist using the connec
 tionist brouhaha as the occasion to discuss some larger issues about

 Seymour Papert is professor of media technology and director of the Learning and Epistemol
 ogy Group in the Media Laboratory at MIT.

 1
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 2 Seymour Papert

 the nature of artificial intelligence and its appeal to people more
 interested in the human mind than in building robots.
 The field of artificial intelligence is currently divided into what

 seem to be several competing paradigms. The present contenders
 differ over the form of mechanisms needed to capture all forms of
 intelligence. They are each engaged in a search for mechanisms with
 a universal application. Allen Newell, dean of information process
 ing, believes that he is close, that all knowledge can be formulated as
 the rules behind a special kind of program known as a "production
 system." The authors of the current connectionist manifesto, Parallel

 Distributed Processing,2 do not think they are as close, but speak
 with confidence that their way?relying not on programs but on
 networked neuronlike entities?will provide universal mechanisms.

 I do not foresee the future in terms of an ultimate victory for any
 of the present contenders. What I do foresee is a change of frame,
 away from the search for universal mechanisms. I believe that we
 have much more to learn from studying the differences, rather than
 the sameness, of kinds of knowing. And just because knowing takes
 place in one brain is not a reason to argue, as both connectionists and
 programmers do, that there is one privileged and universal mecha
 nism on any psychologically relevant level.

 An analogy dramatizes what I mean by psychologically relevant.
 An evolutionary biologist might try to understand how tigers came to
 have stripes. And a molecular biologist might try to understand the
 origin of life in some primeval soup. But how life started gives you no
 information about how a tiger looks. Yet this fallacy pervades the
 intellectual discourse of connectionists and programmers. The con
 nectionists talk about experiments on the level of small groups of
 simulated neurons and then, almost in the same breath, talk about
 how one can walk and think at the same time. Multiprocessing is
 assumed to be the same kind of enterprise in both cases. Information
 processing experts display rule systems that match the behavior of
 people and computers solving logical problems, and jump from there
 to statements like Allen NewelPs: "Psychology has arrived at the
 possibility of a unified theory of cognition."

 There is the same mistake on both sides: the category error of
 supposing that the existence of a common mechanism provides both
 an explanation and a unification of all systems, however complex, in
 which this mechanism might play a central role. My thesis here is that
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 One AI or Many? 3
 AI needs to be defined in a way that does not put it in jeopardy of
 making this category error. As it matures, I see AI developing the
 conceptual frameworks that will enable us to obtain a rigorous
 understanding not only of what is the same in such activities as falling
 in love and playing chess, but of what is different between them.

 Artificial intelligence should become the methodology for thinking
 about ways of knowing.

 In this essay I use an incident in the development of connectionism
 to illustrate the current resistance of the field to this way of thinking
 about its intellectual identity.

 I

 I do not come to the discussion of connectionism as a neutral
 observer. In fact, the standard version of its history assigns me a role
 in a romantic story whose fairytale resonances surely contribute at
 least a little to connectionism's aura of excitement.

 Once upon a time two daughter sciences were born to the new
 science of cybernetics. One sister was natural, with features inherited
 from the study of the brain, from the way nature does things. The
 other was artificial, related from the beginning to the use of comput
 ers. Each of the sister sciences tried to build models of intelligence,
 but from very different materials. The natural sister built models
 (called neural networks) out of mathematically purified neurones.

 The artificial sister built her models out of computer programs.
 In their first bloom of youth the two were equally successful and

 equally pursued by suitors from other fields of knowledge. They got
 on very well together. Their relationship changed in the early sixties
 when a new monarch appeared, one with the largest coffers ever seen
 in the kingdom of the sciences: Lord DARPA, the Defense Depart

 ment's Advanced Research Projects Agency. The artificial sister grew
 jealous and was determined to keep for herself the access to Lord

 DARPA's research funds. The natural sister would have to be slain.

 The bloody work was attempted by two staunch followers of the
 artificial sister, Marvin Minsky and Seymour Papert, cast in the role
 of the huntsman sent to slay Snow White and bring back her heart as
 proof of the deed. Their weapon was not the dagger but the mightier
 pen, from which came a book?Perceptrons3?purporting to prove
 that neural nets could never fill their promise of building models of
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 4 Seymour Papert
 mind: only computer programs could do this. Victory seemed
 assured for the artificial sister. And indeed, for the next decade all the

 rewards of the kingdom came to her progeny, of which the family of
 expert systems did best in fame and fortune.

 But Snow White was not dead. What Minsky and Papert had
 shown the world as proof was not the heart of the princess; it was the
 heart of a pig. To be more literal: their book was read as proving that
 the neural net approach to building models of mind was dead. But a
 closer look reveals that they really demonstrated something much less
 than this. The book did indeed point out very serious limitations of a
 certain class of nets (nowadays known as one-layer perceptrons) but
 was misleading in its suggestion that this class of nets was the heart
 of connectionism. Parallel Distributed Processing, allowing that the
 suggestion could have been an honest mistake, lapses into a fairy-tale
 tone in talking about how things were back in "Minsky and Papert's
 day." In that far-off time and place, the technical discoveries were still
 to be made that would open the vision?model connectionism's
 sustaining myth?of much more powerful neural nets than could
 then be imagined.

 Connectionist writings present the story as having a happy ending.
 The natural sister was quietly nurtured in the laboratories of a few
 ardent researchers who kept the faith, even when the world at large
 let itself be convinced that the enterprise was futile. Who (or what)
 should be cast in the role of Prince Charming is a problem I shall take
 up later: Who are the parties to the present-day connectionist love
 affair? Who woke connectionism? And why now? And what next?
 But for the moment suffice it to note that the princess has emerged
 from relative rags and obscurity to win the admiration of all except
 a few of her sister's disgruntled hangers-on.

 II

 The story seems to call for a plea of guilty or innocent: Did Minsky
 and I try to kill connectionism, and how do we feel now about its
 resurrection? Something more complex than a plea is needed. Yes,
 there was some hostility in the energy behind the research reported in
 Perceptrons, and there is some degree of annoyance at the way the
 new movement has developed; part of our drive came, as we quite
 plainly acknowledged in our book, from the fact that funding and
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 One A? or Many? 5

 research energy were being dissipated on what still appear to me
 (since the story of new, powerful network mechanisms is seriously
 exaggerated) to be misleading attempts to use connectionist methods
 in practical applications. But most of the motivation for Perceptrons
 came from more fundamental concerns, many of which cut cleanly
 across the division between networkers and programmers.

 One of these concerns had to do with finding an appropriate
 balance between romanticism and rigor in the pursuit of artificial
 intelligence. Many serious endeavors would never get off the ground
 if pioneers were limited to discussing in public only what they could
 demonstrate rigorously. Think, for example, of the development of
 flying machines. The excitement generated when the Wright brothers
 made their first flight had a large element of the romantic. And rightly
 so: it is hard to work up respect for those critics who complained that
 a short hop on a beach did not prove the feasibility of useful air
 transportation. When final success cannot be taken as a criterion for
 judging initial steps, the problem of developing a sensible critical

 methodology is an essential and often delicate part of any very
 out-of-the-ordinary endeavor. In the case of artificial intelligence, the
 problem of critical judgment of partial results is compounded by the
 fact that a little intelligence is not easily recognized as intelligence.
 Indeed, in English we have a special word for it: although a short
 flight is still counted as a flight, a little intelligence is counted as
 stupidity, and in AI's early stages (where it still is), this is all that can
 be expected. How, then, does one decide whether the latest "stu
 pidity" of a machine should be counted as a step toward intelligence?
 The methodology Minsky and I used in Perceptrons is best explained
 through an example.

 Parallel Distributed Processing reports an experiment in which a
 simulated machine ( I'll call it Exor) learned to tell whether two
 inputs, each of which must be either a one or a zero, are different.*

 Exor's learning process consumed 2,232 repetitions of a training
 cycle; in each repetition the machine was presented with one of the
 four possible combinations of inputs (one-one, zero-zero, zero-one,
 one-zero) and a feedback signal to indicate whether it had given the
 right response ("no" for the first two and "yes" for the others). Smart

 *XOR, pronounced as if written exor, is a computerist abbreviation for "exclusive or" (i.e.,
 "this or that but not both"). This makes it the perfect name for our simulated machine.
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 6 Seymour Papert

 or stupid? Should one be more impressed by the fact that the thing
 "learned" at all, or by the fact that it learned so slowly and
 laboriously?

 There was a time, in the early days of cybernetics, when a machine
 doing anything at all that resembled learning would have been
 impressive. Today something more is needed to give significance, and
 in this case the something more is closely related to our allegory. Exor
 is a neural net, and the task it learned to perform happens, for all its
 simplicity, to be one of those things a one-layer net cannot do.
 Knowing this turns the dilemma of judging Exor into an encapsula
 tion of the larger dilemma of judging connectionism. If you want to
 believe, Exor allows you to proclaim, "Snow White lives." If you
 don't, Exor's retarded pace of learning allows you to whisper, "But
 barely." Perceptrons set out on a very different tack: instead of asking
 whether nets are good, we asked what they are good for. The focus
 of enquiry shifted from generalities about kinds of machines to
 specifics about kinds of tasks. From this point of view, Exor raises
 such questions as: Which tasks would be learned faster and which

 would be learned even more slowly by this machine? Can we make a
 theory of tasks that will explain why 2,232 repetitions were needed
 in this particular act of learning? The shift in perspective is sharp:
 interest has moved from making a judgment of the machine to using
 the performance of the machine on particular tasks as a way to learn

 more about the nature of the tasks. This shift is reflected in the

 subtitle of our book?Perceptrons: An Introduction to Computa
 tional Geometry. We approached our study of neural networks by
 looking carefully at the kinds of tasks for which their use was being
 advocated at the time. Since most of these were in the area of visual

 pattern recognition, our methodology led us into building theories
 about such patterns. To our surprise, we found ourselves working a
 new problem area for geometric research, concerned with under
 standing why some recognition tasks could easily be performed by a
 given recognition mechanism, while other computations were ex
 tremely costly as measured by the number of repetitions needed for a
 task or the amount of machinery required. For example, a small
 single-layer perceptron can easily distinguish triangles from squares,
 but a very large network is needed to learn whether what is put in
 front of it is a single connected object or is made up of several parts.
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 One AI or Many? 7
 Our surprise at finding ourselves working in geometry was a

 pleasant one. It reinforced our sense that we were opening a new
 field, not closing an old one. But although the shift from judging
 perceptrons abstractly to judging the tasks they perform might seem
 like plain common sense, it took us a long time to make it. So long,
 in fact, that we are now only mildly surprised to observe the
 resistance today's connectionists show to recognizing the nature of
 our work?and the nature of the problem area into which their own
 investigations must eventually lead.

 Ill

 Artificial intelligence, like any other scientific enterprise, had built a
 scientific culture. The way of working we used in Perceptrons ran
 against the grain of this culture, in whose development we ourselves
 had participated.

 The quest for universality of mechanism is obscured as a pervasive
 trait of the AI culture by the circumstance that all successful AI
 demonstrations, whether by programmers or connectionists, perform
 quite specific tasks in quite narrow domains. Indeed, AI theorists
 sometimes claim as an important discovery the theory that domain
 specificity is not a limitation of machines but a characteristic of
 intelligence. However, the theoretical energy of AI has not gone into
 understanding differences between specific domains, but rather into
 finding general forms for the specific contents.

 The universalist trait gains robustness from having numerous roots.
 Among the deepest may be the mythic nature of AI's original enterprise
 of mind building mind. The desire for universality was fed also by the
 legacy of the scientists, largely mathematicians, who created AI. And it

 was nurtured by the most mundane material circumstances of funding.
 By 1969, the date of the publication of Perceptrons, AI was not
 operating in an ivory-tower vacuum. Money was at stake. And while
 this pressured the field into a preference for short-term achievement, it
 also put a premium on claims that the sponsor's investment would
 bear fruits beyond the immediate product.

 Its universalism made it almost inevitable for AI to appropriate our
 work as proof that neural nets were universally bad. We did not think
 of our work as killing Snow White; we saw it as a way to understand
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 8 Seymour Papert

 her. In fact, more than half of our book is devoted to "proper
 ceptron" findings about some very surprising and hitherto unknown
 things that perceptrons can do. But in a culture set up for global
 judgment of mechanisms, being understood can be a fate as bad as
 death. A real understanding of what a mechanism can do carries too
 much implication about what it can not do.

 The same trait of universalism leads the new generation of
 connectionists to assess their own microlevel experiments, such as
 Exor, as a projective screen for looking at the largest macroissues in
 the philosophy of mind. The category error analogous to seeking
 explanations of the tiger's stripes in the structure of DNA is not an
 isolated error. It is solidly rooted in AI's culture.

 IV

 The conceit of using the story of Snow White as a metaphor has
 allowed me to talk about the connectionist counterrevolution with

 out saying exactly what connectionism is or what it is revolting
 against. A little more technical detail is needed to situate connection
 ism in the larger field of sciences of mind.
 The actual task of recognizing the sameness of the two binary

 inputs would be a trivial one for a programmer. The first of several
 remarkable features possessed by Exor is that no one programmed it;
 it was "trained" to do its task by a strictly behaviorist process of
 external association of stimuli with reinforcements. It could have
 been trained by someone who rigorously followed Watson's stric
 tures against thinking about the innards of a system. But if this was
 its only merit as a model of mental process, the large number of
 repetitions would negate its interest: machines specifically designed to
 simulate conditioned reflexes have done so with a psychologically
 more plausible number of repetitions.

 Exor's claim of universality is a stronger feature. Exor is small and
 limited in power, but it sustains the vision of larger machines that are
 built on the same principles and that will learn whatever is learnable
 with no innate disposition to acquire particular behaviors. The
 prospect of such performance becomes a vindication of something
 more than neural nets. It promises a vindication of behaviorism
 against Jean Piaget, Noam Chomsky, and all those students of mind
 who criticized the universalism inherent in behaviorism's tabula rasa.
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 One AI or Many? 9
 Behaviorism has been beaten down in another version of the Snow

 White story, but the response of academic psychology to connection
 ism may turn out to be a classic example of the return of the
 repressed.

 Connectionism does more than bring back old-fashioned behav
 iorism. It brings it back in a form that offers a reconciliation with
 biological thinking about the brain. The structure of the machine
 reflects, albeit in an abstract way, a certain model of how brains
 might conceivably be built out of neurons. Although the actual Exor
 experiments are, of course, performed by computer programs, these
 programs are meant to represent what would happen if one con
 nected together networks of units that are held to be neuronlike in the
 following sense. Each unit in the network receives signals from the
 others or from sensor units connected to the outside world; at any
 given time, each unit has a certain level of activation that depends on
 the weighted sum of the states of activation of the units sending
 signals to it, and the signals sent out along the unit's "axon" reflect its
 state of activation. Learning takes place by a process that adjusts the

 weights (strengths of connections) between the units; when the
 weights are different, activation patterns produced by a given input
 will be different, and finally, the output (response) to an input
 (stimulus) will change. This feature gives machines in Exor's family a
 biological flavor that appeals strongly to the spirit of our times and
 yet takes very little away from the behaviorist simplicity: although
 one has to refer to the neuronlike structure in order to build the

 machine, one thinks only in terms of stimulus, response, and a
 feedback signal to operate it.

 V

 This presentation of connectionism as behaviorism in computer's
 clothing helps place Perceptrons in perspective: the questions it
 discusses are a modern form of an old debate originally couched as a
 humanistic and philosophical discussion of associations and taken up
 again more recently as a discussion of behaviorism. Such debates
 often turn around assertions of the form, "Starting with nothing but
 (associations, stimulus and response, or whatever), you can never get
 to (general ideas, language, or whatever)." Discussion of this form
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 10 Seymour Papert
 has been more or less compelling but seldom anywhere near conclu
 sive to standards of rigor that seemed normal to people trained, as

 Minsky and I both were, as mathematicians. And indeed, how could
 the discussion even be formulated with any semblance of rigor in the

 absence of a tight theory of human thought? And how could one
 move seriously toward such a tight theory without knowing whether
 general ideas or whatever can be derived from associations or
 whatever?

 In its narrowest sense, the intention of Perceptrons was to avoid
 for the study of "machine thinking" some of the chicken-and-egg
 difficulties that have plagued thinking about human thinking. The
 strategy was to study a class of computational machines that were
 sufficiently powerful to capture a significant slice of contemporary
 achievement in AI, yet sufficiently simple to make possible, with the

 limited analytic tools at our disposal, a rigorous mathematical
 analysis of their capacities. We chose the class of machines for which
 the book was named (in honor of Frank Rosenblatt): perceptrons are
 defined in the book to be a special and especially simple kind of
 neural net in the same family as Exor. Perceptrons are too simple to
 be interesting in their own right as models of mental process. But the
 most promising step toward developing tools powerful enough to
 analyze more complex systems, including the human mind, seemed to
 be achieving a thorough understanding of a single case as simple as a
 perceptron. Many readers, perhaps all except mathematicians, would
 be shocked to know how simple a machine can be and still elude full
 understanding of its capabilities. I find it quite awesome to think
 about how hard it was to confirm or reject our intuitions about the

 capacities of perceptrons.
 Minsky and I both knew perceptrons extremely well. We had

 worked on them for many years before our joint project of under
 standing their limits was conceived; indeed, we originally met at a
 conference where we both coincidentally presented papers with an
 unlikely degree of overlap in content about what perceptronlike
 machines could do. With this background we should have been in an
 exceptional position to formulate strong conjectures about percep
 trons. Yet when we challenged ourselves to prove our intuitions it
 sometimes took years of struggle to pin one down?to prove it true
 or to discover that it was seriously flawed.
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 One AI or Many? 11
 I was left with a deep respect for the extraordinary difficulty of

 being sure of what a computational system can or cannot do. I
 wonder at people who seem so secure in their intuitive convictions, or
 their less-than-rigorous rhetorical arguments, about computers, neu
 ral nets, or human minds. One area in which intuition seems
 particularly in need of rigorous analysis is in dealing with the
 romantically attractive notion of holistic process.

 VI

 In the history of psychology, behaviorism and holism (or gestaltism)
 have been considered polar opposites. Behaviorism fragments the
 mind into a myriad of separate atoms of a much smaller size than
 common sense would allow. Holism and gestaltism insist that
 psychological atoms are bigger than common sense thinks. So it is
 quite remarkable that connectionism has facets that appeal to each of
 these schools of thought.
 The title of the current bible of connectionism, Parallel Distributed

 Processing, juxtaposes two qualities that are taken in the connection
 ist movement as prime characteristics certainly of all natural, and
 probably of effective artificial, embodiments of intelligence. Parallel
 refers to the quality of having many processes go on at the same time:
 as people walk and talk at the same time, they very likely carry out
 large numbers of concurrent, mostly unconscious, mental processes.

 Distributed refers to the quality of not being localized: in traditional
 computers, items of information are stored in particular places,
 cleanly separated from one another; in neural nets, information is
 spread out (in principle, a new piece of learning might involve
 changes everywhere). Much of the sense that deep process is at work
 in the functioning of nets is related to the suggestion that what
 ordinary discourse and traditional cognitive theory misleadingly
 describe as atomistic items of information are holistically represented
 and yet appropriately evocable.

 Parallel plus distributed feels right. But work with perceptrons
 made us acutely aware of ways in which the two qualities are in
 tension rather than sweet harmony. It is not hard to switch percep
 tions so as to make the juxtaposition feel intuitively problematic. In
 ordinary life, customs of separating activities into rooms and offices

 are founded on experience with the untidy consequences of having
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 12 Seymour Papert

 everything happening everywhere at the same time. But connection
 ism is built on the theory?what Sherry Turkle calls a sustaining

 myth?that a deeper understanding would reveal the naivete of such
 everyday analogies. Just as modern physics teaches us not to project
 our sense of macroscopic events onto the subatomic world, so too
 deeper understanding of networks will teach us that our metaphors
 of macroscopic organization may be equally misleading.

 Indeed, one can find analogies in physical science that go very
 strongly against uninformed intuitions about interference?how pro
 cesses disturb one another. The vibrations of all radio and television

 waves pass through the same space at the same time, and yet tuning
 circuits can separate them. Even more incomprehensible, if not
 frankly shocking to common sense, is the hologram, which records a
 three-dimensional picture in a fully distributed way: if part of the
 holographic record is destroyed, no particular part of the picture is
 lost; there is only a uniform degradation of quality.
 These examples plainly say that there is precedent in the physical

 world for distributed superposition. Enough in the universe is holistic
 so that the concept of distributed neural net cannot be rejected on
 general intuitive principles. But not everything is holistic, and com
 monsense (or even philosophical) opinion is of little use in spotting
 what is. Specific investigation, sometimes of a subtle and very
 technical mathematical nature, is needed to find out whether holistic

 representation is possible in any specific situation and whether (where
 it can be done) there is an exorbitant price to pay. The Exor machine
 illustrates, in a simple case, the concept of the cost of holism.

 The task that Exor learned can be seen as a superposition of two
 learnings in the same network: learning to say yes to one-zero and
 learning to say yes to zero-one. An important fact is that each of these
 tasks, taken separately, is much easier to learn than the combined
 task. And this is not an occasional phenomenon: Exor is a very mild
 case of incurred cost of distribution. One of the research results of

 Perceptrons, and one that required some mathematical labor, shows
 that in certain situations the degree of difficulty of superposed tasks
 can exceed the difficulty of each separate task by arbitrary, large
 factors.

 The romantic stance is to make a new network that isn't quite a
 perceptron and to assume it innocent until proven guilty of the
 danger of superposition costs. On the whole, connectionist literature
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 One AI or Many? 13
 does so even when reporting experiments in which the new networks
 show empirical signs of such costs as those that Exor incurs in its mild
 way. The rigorous stance assumes the possibility of guilt until
 innocence can be established: the theorems proved about perceptrons
 are seen as showing what kind of phenomena need to be precluded
 before one can make assertions confidently.

 VII

 I said at the beginning that I would offer some thoughts about Prince
 Charming. Who woke connectionism? Why this surge of interest and
 activity? Why now? And I will use my speculations on these themes
 to comment on the important question, What next?
 A purely technical account of Snow White's awakening goes like

 this: In the olden days of Minsky and Papert, neural networking
 models were hopelessly limited by the puniness of the computers
 available at the time and by the lack of ideas about how to make any

 but the simplest networks learn. Now things have changed. Powerful,
 massively parallel computers can implement very large nets, and new
 learning algorithms can make them learn. No romantic Prince
 Charming is needed for the story.

 I don't believe it. The influential recent demonstrations of new
 networks all run on small computers and could have been done in
 1970 with ease. Exor is a "toy problem" run for study and demon
 stration, but the examples discussed in the literature are still very
 small. Indeed, Minsky and I, in a more technical discussion of this
 history (added as a new chapter to a reissue of Perceptrons), suggest
 that the entire structure of recent connectionist theories might be built
 on quicksand: it is all based on toy-sized problems with no theoretical
 analysis to show that performance will be maintained when the
 models are scaled up to realistic size. The connectionist authors fail to
 read our work as a warning that networks, like "brute force"
 programs based on search procedures, scale very badly.

 A more sociological explanation is needed. Massively parallel
 supercomputers do play an important role in the connectionist
 revival. But I see it as a cultural rather than a technical role, another
 example of a sustaining myth. Connectionism does not use the new
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 14 Seymour Papert

 computers as physical machines; it derives strength from the "com
 puter in the mind," from its public's largely nontechnical awareness
 of supercomputers.

 I see connectionism's relationship to biology in similar terms.
 Although its models use biological metaphors, they do not depend on
 technical findings in biology any more than they do on modern
 supercomputers. But here too there is a powerful, resonant phenome
 non. Biology is increasingly the locus of the greatest excitement. And
 neurosciences are invading the territory of academic psychology just as
 psychopharmacology is invading the territory of clinical psychology.

 I also see a more subtle, but not less relevant, cultural resonance.
 This is a generalized turn away from the hard-edged rationalism of
 the time connectionism last went into eclipse and a resurgent
 attraction to more holistic ways of thinking. The actual theoretical
 discussion in the connectionist literature may not be connected in any
 strict sense to such trends in intellectual fashion. But here again, the
 concepts of sustaining myth and cultural resonance are pertinent: this
 time, perhaps, in a two-way process of mutual support.

 Voil? Prince Charming: a composite of cultural trends. Reduction
 ist undertones in my discussion do not undermine my good wishes for
 a happy union with Snow White. The new sense of excitement that is
 already replacing a certain ho-hum tiredness in cognitive science will
 ensure the fertility of the union. But the impact of connectionism will
 come less from the ideas it engenders than from heightened aware
 ness of the problems it avoids.

 ENDNOTES

 Carnes G. Greeno, "The Cognition Connection," New York Times Book Review,
 4 Jan. 1987.

 2David E. Rumelhart, James L. McClelland, and the PDP Research Group, Parallel
 Distributed Processing (Cambridge: MIT Press, 1986).

 3Marvin Minsky and Seymour Papert, Perceptrons: An Introduction to Computa
 tional Geometry (Cambridge: MIT Press, 1969).

 4Rumelhart, McClelland, and the PDP Research Group, Parallel Distributed
 Processing, p. 111.
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 Hubert L. Dreyfus and Stuart E. Dreyfus

 Making a Mind Versus Modeling the
 Brain: Artificial Intelligence Back at a
 Branchpoint

 [Njothing seems more possible to me than that people
 some day will come to the definite opinion that there is
 no copy in the ... nervous system which corresponds to
 a particular thought, or a particular idea, or memory}

 ?Ludwig Wittgenstein (1948)

 [Information is not stored anywhere in particular.
 Rather, it is stored everywhere. Information is better
 thought of as "evoked" than "found."2

 ?David Rumelhart and Donald Norman (1981)

 In the early 1950s, as calculating machines were coming into
 their own, a few pioneer thinkers began to realize that digital
 computers could be more than number crunchers. At that point

 two opposed visions of what computers could be, each with its
 correlated research program, emerged and struggled for recognition.
 One faction saw computers as a system for manipulating mental
 symbols; the other, as a medium for modeling the brain. One sought
 to use computers to instantiate a formal representation of the world;

 Hubert L. Dreyfus is professor of philosophy at the University of California at Berkeley.

 Stuart E. Dreyfus is professor of industrial engineering and operations research at the
 University of California at Berkeley.
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 16 Hubert L. Dreyfus and Stuart E. Dreyfus

 the other, to simulate the interactions of neurons. One took problem
 solving as its paradigm of intelligence; the other, learning. One
 utilized logic; the other, statistics. One school was the heir to the
 rationalist, reductionist tradition in philosophy; the other viewed
 itself as idealized, holistic neuroscience.

 The rallying cry of the first group was that both minds and digital
 computers are physical symbol systems. By 1955 Allen Newell and
 Herbert Simon, working at the Rand Corporation, had concluded
 that strings of bits manipulated by a digital computer could stand for
 anything?numbers, of course, but also features of the real world.

 Moreover, programs could be used as rules to represent relations
 between these symbols, so that the system could infer further facts
 about the represented objects and their relations. As Newell put it
 recently in his account of the history of issues in AI,

 The digital-computer field defined computers as machines that manipulated
 numbers. The great thing was, adherents said, that everything could be
 encoded into numbers, even instructions. In contrast, the scientists in AI saw

 computers as machines that manipulated symbols. The great thing was, they
 said, that everything could be encoded into symbols, even numbers.3

 This way of looking at computers became the basis of a way of
 looking at minds. Newell and Simon hypothesized that the human
 brain and the digital computer, while totally different in structure and
 mechanism, had at a certain level of abstraction a common functional
 description. At this level both the human brain and the appropriately
 programmed digital computer could be seen as two different instan
 tiations of a single species of device?a device that generated intelli
 gent behavior by manipulating symbols by means of formal rules.
 Newell and Simon stated their view as a hypothesis:

 The Physical Symbol System Hypothesis. A physical symbol system has the
 necessary and sufficient means for general intelligent action.

 By "necessary" we mean that any system that exhibits general intelligence
 will prove upon analysis to be a physical symbol system. By "sufficient" we
 mean that any physical symbol system of sufficient size can be organized
 further to exhibit general intelligence.4

 Newell and Simon trace the roots of their hypothesis back to
 Gottlob Frege, Bertrand Russell, and Alfred North Whitehead,5 but
 Frege and company were of course themselves heirs to a long,
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 Making a Mind Versus Modeling the Brain 17

 atomistic, rationalist tradition. Descartes had already assumed that
 all understanding consisted of forming and manipulating appropriate
 representations, that these representations could be analyzed into
 primitive elements (naturas simplices), and that all phenomena could
 be understood as complex combinations of these simple elements.

 Moreover, at the same time, Hobbes had implicitly assumed that the
 elements were formal components related by purely syntactic oper
 ations, so that reasoning could be reduced to calculation. "When a
 man reasons, he does nothing else but conceive a sum total from
 addition of parcels," Hobbes wrote, "for REASON... is nothing but
 reckoning_"6 Finally, Leibniz, working out the classical idea of
 mathesis?the formalization of everything?sought support to de
 velop a universal symbol system so that "we can assign to every
 object its determined characteristic number."7 According to Leibniz,
 in understanding we analyze concepts into more simple elements. In
 order to avoid a regress to simpler and simpler elements, there must
 be ultimate simples in terms of which all complex concepts can be
 understood. Moreover, if concepts are to apply to the world, there
 must be simple features that these elements represent. Leibniz envis

 aged "a kind of alphabet of human thoughts"8 whose "characters
 must show, when they are used in demonstrations, some kind of
 connection, grouping and order which are also found in the
 objects."9

 Ludwig Wittgenstein, drawing on Frege and Russell, stated in his
 Tractatus Logico-Philosophicus the pure form of this syntactic,
 representational view of the relation of the mind to reality. He
 defined the world as the totality of logically independent atomic facts:

 1.1. The world is the totality of facts, not of things.

 Facts in turn, he held, could be exhaustively analyzed into primitive
 objects.

 2.01. An atomic fact is a combination of objects_

 2.0124. If all objects are given, then thereby all atomic facts are given.

 These facts, their constituents, and their logical relations, Wittgen
 stein claimed, were represented in the mind.
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 18 Hubert L. Dreyfus and Stuart E. Dreyfus

 2.1. We make to ourselves pictures of facts.

 2.15. That the elements of the picture are combined with one another in a
 definite way, represents that the things are so combined with one another.10

 AI can be thought of as the attempt to find the primitive elements
 and logical relations in the subject (man or computer) that mirror the
 primitive objects and their relations that make up the world. Newell
 and Simon's physical symbol system hypothesis in effect turns the

 Wittgensteinian vision (which is itself the culmination of the classical
 rationalist philosophical tradition) into an empirical claim and bases
 a research program on it.

 The opposed intuition, that we should set about creating artificial
 intelligence by modeling the brain rather than the mind's symbolic
 representation of the world, drew its inspiration not from philosophy
 but from what was soon to be called neuroscience. It was directly
 inspired by the work of D.O. Hebb, who in 1949 suggested that a

 mass of neurons could learn if when neuron A and neuron B were

 simultaneously excited, that excitation increased the strength of the
 connection between them. n

 This lead was followed by Frank Rosenblatt, who reasoned that
 since intelligent behavior based on our representation of the world was
 likely to be hard to formalize, AI should instead attempt to automate
 the procedures by which a network of neurons learns to discriminate
 patterns and respond appropriately. As Rosenblatt put it,

 The implicit assumption [of the symbol manipulating research program] is
 that it is relatively easy to specify the behavior that we want the system to
 perform, and that the challenge is then to design a device or mechanism
 which will effectively carry out this behavior-[I]t is both easier and more
 profitable to axiomatize the physical system and then investigate this system
 analytically to determine its behavior, than to axiomatize the behavior and
 then design a physical system by techniques of logical synthesis.12

 Another way to put the difference between the two research
 programs is that those seeking symbolic representations were looking
 for a formal structure that would give the computer the ability to
 solve a certain class of problems or discriminate certain types of
 patterns. Rosenblatt, on the other hand, wanted to build a physical
 device, or to simulate such a device on a digital computer, that could
 then generate its own abilities:
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 Making a Mind Versus Modeling the Brain 19
 Many of the models which we have heard discussed are concerned with the
 question of what logical structure a system must have if it is to exhibit some
 property, X. This is essentially a question about a static system

 An alternative way of looking at the question is: what kind of a system
 can evolve property X? I think we can show in a number of interesting cases
 that the second question can be solved without having an answer to the
 first.13

 Both approaches met with immediate and startling success. By
 1956 Newell and Simon had succeeded in programming a computer
 using symbolic representations to solve simple puzzles and prove
 theorems in the propositional calculus. On the basis of these early
 impressive results it looked as if the physical symbol system hypoth
 esis was about to be confirmed, and Newell and Simon were
 understandably euphoric. Simon announced:

 It is not my aim to surprise or shock you.... But the simplest way I can
 summarize is to say that there are now in the world machines that think, that

 learn and that create. Moreover, their ability to do these things is going to
 increase rapidly until?in a visible future?the range of problems they can
 handle will be coextensive with the range to which the human mind has been
 applied.14

 He and Newell explained:

 [W]e now have the elements of a theory of heuristic (as contrasted with
 algorithmic) problem solving; and we can use this theory both to understand
 human heuristic processes and to simulate such processes with digital
 computers. Intuition, insight, and learning are no longer exclusive posses
 sions of humans: any large high-speed computer can be programmed to
 exhibit them also.15

 Rosenblatt put his ideas to work in a type of device that he called
 a perceptron.16 By 1956 Rosenblatt was able to train a perceptron to
 classify certain types of patterns as similar and to separate these from
 other patterns that were dissimilar. By 1959 he too was jubilant and
 felt his approach had been vindicated:

 It seems clear that the ... perceptron introduces a new kind of information
 processing automaton: For the first time, we have a machine which is
 capable of having original ideas. As an analogue of the biological brain, the
 perceptron, more precisely, the theory of statistical separability, seems to
 come closer to meeting the requirements of a functional explanation of the
 nervous system than any system previously proposed_As concept, it
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 20 Hubert L. Dreyfus and Stuart E. Dreyfus
 would seem that the perceptron has established, beyond doubt, the feasibil
 ity and principle of non-human systems which may embody human
 cognitive functions-The future of information processing devices which
 operate on statistical, rather than logical, principles seems to be clearly
 indicated.17

 In the early sixties both approaches looked equally promising, and
 both made themselves equally vulnerable by making exaggerated
 claims. Yet the results of the internal war between the two research

 programs were surprisingly asymmetrical. By 1970 the brain simu
 lation research, which had its paradigm in the perceptron, was
 reduced to a few lonely, underfunded efforts, while those who
 proposed using digital computers as symbol manipulators had un
 disputed control of the resources, graduate programs, journals, and
 symposia that constitute a flourishing research program.

 Reconstructing how this change came about is complicated by the
 myth of manifest destiny that any ongoing research program gener
 ates. Thus, it looks to the victors as if symbolic information process
 ing won out because it was on the right track, while the neural
 network or connectionist approach lost because it simply didn't
 work. But this account of the history of the field is a retrospective
 illusion. Both research programs had ideas worth exploring, and both
 had deep, unrecognized problems.

 Each position had its detractors, and what they said was essentially
 the same: each approach had shown that it could solve certain easy
 problems but that there was no reason to think either group could
 extrapolate its methods to real-world complexity. Indeed, there was
 evidence that as problems got more complex, the computation
 required by both approaches would grow exponentially and so
 would soon become intractable. In 1969 Marvin Minsky and Sey
 mour Papert said of Rosenblatt's perceptron:

 Rosenblatt's schemes quickly took root, and soon there were perhaps as
 many as a hundred groups, large and small, experimenting with the
 model....

 The results of these hundreds of projects and experiments were generally
 disappointing, and the explanations inconclusive. The machines usually
 work quite well on very simple problems but deteriorate very rapidly as the
 tasks assigned to them get harder.18
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 Making a Mind Versus Modeling the Brain 21

 Three years later, Sir James Lighthill, after reviewing work using
 heuristic programs such as Simon's and Minsky's, reached a strik
 ingly similar negative conclusion:

 Most workers in AI research and in related fields confess to a pronounced
 feeling of disappointment in what has been achieved in the past 25 years.

 Workers entered the field around 1950, and even around 1960, with high
 hopes that are very far from having been realized in 1972. In no part of the
 field have the discoveries made so far produced the major impact that was
 then promised....

 [0]ne rather general cause for the disappointments that have been
 experienced: failure to recognize the implications of the 'combinatorial
 explosion'. This is a general obstacle to the construction of a ... system on
 a large knowledge base which results from the explosive growth of any
 combinatorial expression, representing numbers of possible ways of group
 ing elements of the knowledge base according to particular rules, as the
 base's size increases.19

 As David Rumelhart and David Zipser have succinctly summed it up,
 "Combinatorial explosion catches you sooner or later, although
 sometimes in different ways in parallel than in serial."20 Both sides
 had, as Jerry Fodor once put it, walked into a game of three
 dimensional chess, thinking it was tick-tack-toe. Why then, so early
 in the game, with so little known and so much to learn, did one team
 of researchers triumph at the total expense of the other? Why, at this
 crucial branchpoint, did the symbolic representation project become
 the only game in town?

 Everyone who knows the history of the field will be able to point
 to the proximal cause. About 1965, Minsky and Papert, who were
 running a laboratory at MIT dedicated to the symbol-manipulation
 approach and therefore competing for support with the perceptron
 projects, began circulating drafts of a book attacking the idea of the
 perceptron. In the book they made clear their scientific position:

 Perceptrons have been widely publicized as "pattern recognition" or
 "learning" machines and as such have been discussed in a large number of
 books, journal articles, and voluminous "reports." Most of this writing ...
 is without scientific value.21

 But their attack was also a philosophical crusade. They rightly saw
 that traditional reliance on reduction to logical primitives was being
 challenged by a new holism:
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 22 Hubert L. Dreyfus and Stuart E. Dreyfus

 Both of the present authors (first independently and later together) became
 involved with a somewhat therapeutic compulsion: to dispel what we feared
 to be the first shadows of a "holistic" or "Gestalt" misconception that

 would threaten to haunt the fields of engineering and artificial intelligence as

 it had earlier haunted biology and psychology.22

 They were quite right. Artificial neural nets may, but need not,
 allow an interpretation of their hidden nodes* in terms of features a
 human being could recognize and use to solve the problem. While
 neural network modeling itself is committed to neither view, it can be
 demonstrated that association does not require that the hidden nodes

 be interpretable. Holists like Rosenblatt happily assumed that indi
 vidual nodes or patterns of nodes were not picking out fixed features
 of the domain.

 Minsky and Papert were so intent on eliminating all competition,
 and so secure in the atomistic tradition that runs from Descartes to

 early Wittgenstein, that their book suggests much more than it
 actually demonstrates. They set out to analyze the capacity of a
 one-layer perceptron,* while completely ignoring in the mathemati
 cal portion of their book Rosenblatt's chapters on multilayer ma
 chines and his proof of the convergence of a probabilistic learning
 algorithm based on back propagation* of errors.23 According to
 Rumelhart and McClelland,

 Minsky and Papert set out to show which functions can and cannot be
 computed by [one-layer] machines. They demonstrated, in particular, that
 such perceptrons are unable to calculate such mathematical functions as
 parity (whether an odd or even number of points are on in the retina) or the
 topological function of connectedness (whether all points that are on are
 connected to all other points that are on either directly or via other points
 that are also on) without making use of absurdly large numbers of
 predicates. The analysis is extremely elegant and demonstrates the impor
 tance of a mathematical approach to analyzing computational systems.24

 * Hidden nodes are nodes that neither directly detect the input to the net nor constitute its
 output. They are, however, either directly or indirectly linked by connections with adjustable
 strengths to the nodes detecting the input and those constituting the output.
 f A one-layer network has no hidden nodes, while multilayer networks do contain hidden
 nodes.
 % Back propagation of errors requires recursively computing, starting with the output nodes,
 the effects of changing the strengths of connections on the difference between the desired output
 and the output produced by an input. The weights are then adjusted during learning to reduce
 the difference.
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 But the implications of the analysis are quite limited. Rumelhart and
 McClelland continue:

 Essentially ... although Minsky and Papert were exactly correct in their
 analysis of the one-layer perceptron, the theorems don't apply to systems
 which are even a little more complex. In particular, it doesn't apply to
 multilayer systems nor to systems that allow feedback loops.25

 Yet in the conclusion to Perceptrons, when Minsky and Papert ask
 themselves the question, Have you considered perceptrons with
 many layers? they give the impression, while rhetorically leaving the
 question open, of having settled it:

 Well, we have considered Gamba machines, which could be described as
 "two layers of perceptron." We have not found (by thinking or by studying
 the literature) any other really interesting class of multilayered machine, at
 least none whose principles seem to have a significant relation to those of the

 perceptron.... [W]e consider it to be an important research problem to
 elucidate (or reject) our intuitive judgment that the extension is sterile.26

 Their attack on gestalt thinking in AI succeeded beyond their
 wildest dreams. Only an unappreciated few, among them Stephen
 Grossberg, James A. Anderson, and Teuvo Kohonen, took up the
 "important research problem." Indeed, almost everyone in AI as
 sumed that neural nets had been laid to rest forever. Rumelhart and

 McClelland note:

 Minsky and Papert's analysis of the limitations of the one-layer perceptron,
 coupled with some of the early successes of the symbolic processing
 approach in artificial intelligence, was enough to suggest to a large number
 of workers in the field that there was no future in perceptron-like compu
 tational devices for artificial intelligence and cognitive psychology.27

 But why was it enough? Both approaches had produced some
 promising work and some unfounded promises.28 It was too early to
 close accounts on either approach. Yet something in Minsky and
 Papert's book struck a responsive chord. It seemed AI workers shared

 the quasi-religious philosophical prejudice against holism that moti
 vated the attack. One can see the power of the tradition, for example,
 in Newell and Simon's article on physical symbol systems. The article
 begins with the scientific hypothesis that the mind and the computer
 are intelligent by virtue of manipulating discrete symbols, but it ends
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 with a revelation: "The study of logic and computers has revealed to
 us that intelligence resides in physical-symbol systems."29

 Holism could not compete with such intense philosophical convic
 tions. Rosenblatt was discredited along with the hundreds of less
 responsible network research groups that his work had encouraged.
 His research money dried up, and he had trouble getting his work
 published. By 1970, as far as AI was concerned, neural nets were
 dead. In his history of AI, Newell says the issue of symbols versus
 numbers "is certainly not alive now and has not been for a long
 time."30 Rosenblatt is not even mentioned in John Haugeland's or

 Margaret Boden's histories of the AI field.31
 But blaming the rout of the connectionists on an antiholistic

 prejudice is too simple. There was a deeper way philosophical
 assumptions influenced intuition and led to an overestimation of the
 importance of the early symbol-processing results. The way it looked
 at the time was that the perceptron people had to do an immense
 amount of mathematical analysis and calculating to solve even the
 most simple problems of pattern recognition, such as discriminating
 horizontal from vertical lines in various parts of the receptive field,
 while the symbol-manipulating approach had relatively effortlessly
 solved hard problems in cognition, such as proving theorems in logic
 and solving combinatorial puzzles. Even more important, it seemed
 that given the computing power available at the time, the neural net
 researchers could do only speculative neuroscience and psychology,
 while the simple programs of symbolic representationists were on
 their way to being useful. Behind this way of sizing up the situation

 was the assumption that thinking and pattern recognition are two
 distinct domains and that thinking is the more important of the two.
 As we shall see later in our discussion of the commonsense knowl

 edge problem, to look at things this way is to ignore both the
 preeminent role of pattern discrimination in human expertise and
 also the background of commonsense understanding that is presup
 posed in everyday real-world thinking. Taking account of this
 background may well require pattern recognition.

 This thought brings us back to the philosophical tradition. It was
 not just Descartes and his descendants who stood behind symbolic
 information processing, but all of Western philosophy. According to

 Heidegger, traditional philosophy is defined from the start by its
 focusing on facts in the world while "passing over" the world as

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:38:14 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Making a Mind Versus Modeling the Brain 25

 such.32 This means that philosophy has from the start systematically
 ignored or distorted the everyday context of human activity.33 The
 branch of the philosophical tradition that descends from Socrates
 through Plato, Descartes, Leibniz, and Kant to conventional AI takes
 it for granted, in addition, that understanding a domain consists in
 having a theory of that domain. A theory formulates the relationships
 among objective, context-free elements (simples, primitives, features,
 attributes, factors, data points, cues, etc.) in terms of abstract
 principles (covering laws, rules, programs, etc.).

 Plato held that in theoretical domains such as mathematics and

 perhaps ethics, thinkers apply explicit, context-free rules or theories
 they have learned in another life, outside the everyday world. Once
 learned, such theories function in this world by controlling the
 thinker's mind, whether he or she is conscious of them or not. Plato's
 account did not apply to everyday skills but only to domains in which
 there is a priori knowledge. The success of theory in the natural
 sciences, however, reinforced the idea that in any orderly domain
 there must be some set of context-free elements and some abstract
 relations among those elements that account for the order of that
 domain and for man's ability to act intelligently in it. Thus, Leibniz
 boldly generalized the rationalist account to all forms of intelligent
 activity, even everyday practice:

 [T]he most important observations and turns of skill in all sorts of trades
 and professions are as yet unwritten. This fact is proved by experience when
 passing from theory to practice we desire to accomplish something. Of
 course, we can also write up this practice, since it is at bottom just another
 theory more complex and particular-[italics added]34

 The symbolic information-processing approach gains its assurance
 from this transfer to all domains of methods that have been devel
 oped by philosophers and that are successful in the natural sciences.
 Since, in this view, any domain must be formalizable, the way to do
 AI in any area is obviously to find the context-free elements and
 principles and to base a formal, symbolic representation on this
 theoretical analysis. In this vein Terry Winograd describes his AI

 work in terms borrowed from physical science:

 We are concerned with developing a formalism, or "representation," with
 which to describe ... knowledge. We seek the "atoms" and "particles" of
 which it is built, and the "forces" that act on it.35
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 No doubt theories about the universe are often built up gradually
 by modeling relatively simple and isolated systems and then making
 the model gradually more complex and integrating it with models of
 other domains. This is possible because all the phenomena are
 presumably the result of the lawlike relations between what Papert
 and Minsky call "structural primitives." Since no one argues for
 atomistic reduction in AI, it seems that AI workers just implicitly
 assume that the abstraction of elements from their everyday context,
 which defines philosophy and works in natural science, must also
 work in AI. This assumption may well account for the way the
 physical symbol system hypothesis so quickly turned into a revelation
 and for the ease with which Papert and Minsky's book triumphed
 over the holism of the perceptron.

 Teaching philosophy at MIT in the mid-sixties, one of us?
 Hubert?was soon drawn into the debate over the possibility of AI.
 It was obvious that researchers such as Newell, Simon, and Minsky

 were the heirs to the philosophical tradition. But given the conclu
 sions of the later Wittgenstein and the early Heidegger, that did not
 seem to be a good omen for the reductionist research program. Both
 these thinkers had called into question the very tradition on which
 symbolic information processing was based. Both were holists, both
 were struck by the importance of everyday practices, and both held
 that one could not have a theory of the everyday world.

 It is one of the ironies of intellectual history that Wittgenstein's
 devastating attack on his own Tractatus, his Philosophical
 Investigations,36 was published in 1953, just as AI took over the
 abstract, atomistic tradition he was attacking. After writing the
 Tractatus, Wittgenstein spent years doing what he called
 phenomenology37?looking in vain for the atomic facts and basic
 objects his theory required. He ended by abandoning his Tractatus
 and all rationalistic philosophy. He argued that the analysis of
 everyday situations into facts and rules (which is where most
 traditional philosophers and AI researchers think theory must begin)
 is itself only meaningful in some context and for some purpose. Thus,
 the elements chosen already reflect the goals and purposes for which
 they are carved out. When we try to find the ultimate context-free,
 purpose-free elements, as we must if we are going to find the
 primitive symbols to feed a computer, we are in effect trying to free
 aspects of our experience of just that pragmatic organization which
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 makes it possible to use them intelligently in coping with everyday
 problems.

 In the Philosophical Investigations Wittgenstein directly criticized
 the logical atomism of the Tractatus:

 "What lies behind the idea that names really signify simples"??Socrates
 says in the Theaetetus: "If I make no mistake, I have heard some people say
 this: there is no definition of the primary elements?so to speak?out of

 which we and everything else are composed.... But just as what consists of
 these primary elements is itself complex, so the names of the elements
 become descriptive language by being compounded together." Both Rus
 sell's 'individuals' and my 'objects' (Tractatus Logico-Philosophicus) were
 such primary elements. But what are the simple constituent parts of which
 reality is composed? ... It makes no sense at all to speak absolutely of the
 'simple parts of a chair.'38

 Already, in the 1920s, Martin Heidegger had reacted in a similar
 way against his mentor, Edmund Husserl, who regarded himself as
 the culmination of the Cartesian tradition and was therefore the

 grandfather of AI.39 Husserl argued that an act of consciousness, or
 noesis, does not on its own grasp an object; rather, the act has
 intentionality (directedness) only by virtue of an "abstract form," or

 meaning, in the noema correlated with the act.40
 This meaning, or symbolic representation, as conceived by Hus

 serl, is a complex entity that has a difficult job to perform. In Ideas
 Pertaining to a Pure Phenomenology,41 Husserl bravely tried to
 explain how the noema gets the job done. Reference is provided by
 "predicate-senses," which, like Fregean Sinne, just have the remark
 able property of picking out objects' atomic properties. These pred
 icates are combined into complex "descriptions" of complex objects,
 as in Russell's theory of descriptions. For Husserl, who was close to
 Kant on this point, the noema contains a hierarchy of stria rules.
 Since Husserl thought of intelligence as a context-determined, goal
 directed activity, the mental representation of any type of object had
 to provide a context, or a "horizon" of expectations or "predelinea
 tions" for structuring the incoming data: "a rule governing possible
 other consciousness of [the object] as identical?possible, as exem
 plifying essentially predelineated types."42 The noema must contain a
 rule describing all the features that can be expected with certainty in
 exploring a certain type of object?features that remain "inviolably
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 the same: as long as the objectivity remains intended as this one and
 of this kind."43 The rule must also prescribe predelineations of
 properties that are possible, but not necessary, features of this type of

 object: "Instead of a completely determined sense, there is always,
 therefore, a frame of empty sense_" 44

 In 1973 Marvin Minsky proposed a new data structure, remark
 ably similar to Husserl's, for representing everyday knowledge:

 A frame is a data-structure for representing a stereotyped situation, like
 being in a certain kind of living room, or going to a child's birthday
 party....
 We can think of a frame as a network of nodes and relations. The top

 levels of a frame are fixed, and represent things that are always true about
 the supposed situation. The lower levels have many terminals?slots that

 must be filled by specific instances or data. Each terminal can specify
 conditions its assignments must meet....
 Much of the phenomenological power of the theory hinges on the

 inclusion of expectations and other kinds of presumptions. A frame's
 terminals are normally already filled with "default" assignments.45

 In Minsky's model of a frame, the "top level" is a developed
 version of what, in Husserl's terminology, remains "inviolably the
 same" in the representation, and Husserl's predelineations have
 become "default assignments"?additional features that can nor
 mally be expected. The result is a step forward in AI techniques from
 a passive model of information processing to one that tries to take
 account of the interactions between a knower and the world. The

 task of AI thus converges with the task of transcendental phenome
 nology. Both must try in everyday domains to find frames con
 structed from a set of primitive predicates and their formal relations.

 Heidegger, before Wittgenstein, carried out, in response to Hus
 serl, a phenomenological description of the everyday world and
 everyday objects like chairs and hammers. Like Wittgenstein, he
 found that the everyday world could not be represented by a set of
 context-free elements. It was Heidegger who forced Husserl to face
 precisely this problem by pointing out that there are other ways of
 "encountering" things than relating to them as objects defined by a
 set of predicates. When we use a piece of equipment like a hammer,

 Heidegger said, we actualize a skill (which need not be represented in
 the mind) in the context of a socially organized nexus of equipment,
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 purposes, and human roles (which need not be represented as a set of
 facts). This context, or world, and our everyday ways of skillful
 coping in it, which Heidegger called "circumspection," are not
 something we think but part of our socialization, which forms the

 way we are. Heidegger concluded:

 The context... can be taken formally in the sense of a system of relations.
 But... [t]he phenomenal content of these 'relations' and 'relata'... is such
 that they resist any sort of mathematical functionalization; nor are they

 merely something thought, first posited in an 'act of thinking'. They are
 rather relationships in which concernful circumspection as such already
 dwells.46

 This defines the splitting of the ways between Husserl and AI on
 the one hand and Heidegger and the later Wittgenstein on the other.
 The crucial question becomes, Can there be a theory of the everyday
 world as rationalist philosophers have always held? Or is the
 commonsense background rather a combination of skills, practices,
 discriminations, and so on, which are not intentional states and so, a

 fortiori, do not have any representational content to be explicated in
 terms of elements and rules?

 By making a move that was soon to become familiar in AI circles,
 Husserl tried to avoid the problem Heidegger posed. Husserl claimed
 that the world, the background of significance, the everyday context,

 was merely a very complex system of facts correlated with a complex
 system of beliefs, which, since they have truth conditions, he called
 validities. One could, in principle, he held, suspend one's dwelling in
 the world and achieve a detached description of the human belief
 system. One could thus complete the task that had been implicit in
 philosophy since Socrates: one could make explicit the beliefs and
 principles underlying all intelligent behavior. As Husserl put it,

 [E]ven the background ... of which we are always concurrently conscious
 but which is momentarily irrelevant and remains completely unnoticed, still
 functions according to its implicit validities.47

 Since he firmly believed that the shared background could be made
 explicit as a belief system, Husserl was ahead of his time in raising the
 question of the possibility of AI. After discussing the possibility that
 a formal axiomatic system might describe experience and pointing
 out that such a system of axioms and primitives?at least as we know
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 it in geometry?could not describe everyday shapes such as "scal
 loped" and "lens-shaped," Husserl left open the question whether
 these everyday concepts could nonetheless be formalized. (This was
 like raising and leaving open the AI question whether one can
 axiomatize commonsense physics.) Taking up Leibniz's dream of a
 mathesis of all experience, Husserl added:

 The pressing question is ... whether there could not be ... an idealizing
 procedure that substitutes pure and strict ideals for intuited data and that
 would ... serve ... as the basic medium for a mathesis of experience.48

 But, as Heidegger predicted, the task of writing out a complete
 theoretical account of everyday life turned out to be much harder
 than initially expected. Husserl's project ran into serious trouble, and
 there are signs that Minsky's has too. During twenty-five years of
 trying to spell out the components of the subject's representation of
 everyday objects, Husserl found that he had to include more and
 more of the subject's commonsense understanding of the everyday
 world:

 To be sure, even the tasks that present themselves when we take single types
 of objects as restricted clues prove to be extremely complicated and always
 lead to extensive disciplines when we penetrate more deeply. That is the
 case, for example, with ... spatial objects (to say nothing of a Nature) as
 such, of psycho-physical being and humanity as such, culture as such.49

 He spoke of the noema's "huge concreteness"50 and of its "tre
 mendous complication,"51 and he sadly concluded at the age of
 seventy-five that he was a perpetual beginner and that phenomenol
 ogy was an "infinite task."52

 There are hints in his paper "A Framework for Representing
 Knowledge" that Minsky has embarked on the same "infinite task"
 that eventually overwhelmed Husserl:

 Just constructing a knowledge base is a major intellectual research
 problem.... We still know far too little about the contents and structure of
 common-sense knowledge. A "minimal" common-sense system must "know"
 something about cause-effect, time, purpose, locality, process, and types of
 knowledge_We need a serious epistemological research effort in this
 area.53

 To a student of contemporary philosophy, Minsky's naivete and
 faith are astonishing. Husserl's phenomenology was just such a
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 research effort. Indeed, philosophers from Socrates through Leibniz
 to early Wittgenstein carried on serious epistemological research in
 this area for two thousand years without notable success.

 In the light of Wittgenstein's reversal and Heidegger's devastating
 critique of Husserl, one of us?Hubert?predicted trouble for sym
 bolic information processing. As Newell notes in his history of AI,
 this warning was ignored:

 Dreyfus's central intellectual objection ... is that the analysis of the context
 of human action into discrete elements is doomed to failure. This objection
 is grounded in phenomenological philosophy. Unfortunately, this appears to
 be a nonissue as far as AI is concerned. The answers, refutations, and
 analyses that have been forthcoming to Dreyfus's writings have simply not
 engaged this issue?which indeed would be a novel issue if it were to come
 to the fore.54

 The trouble was, indeed, not long in coming to the fore, as the
 everyday world took its revenge on AI as it had on traditional
 philosophy. As we see it, the research program launched by Newell
 and Simon has gone through three ten-year stages. From 1955 to
 1965 two research themes, representation and search, dominated the
 field then called "cognitive simulation." Newell and Simon showed,
 for example, how a computer could solve a class of problems with the
 general heuristic search principle known as means-end analysis?
 namely, to use any available operation that reduces the distance
 between the description of the current situation and the description of
 the goal. They then abstracted this heuristic technique and incorpo
 rated it into their General Problem Solver (GPS).

 The second stage (1965-75), led by Marvin Minsky and Seymour
 Papert at MIT, was concerned with what facts and rules to represent.
 The idea was to develop methods for dealing systematically with
 knowledge in isolated domains called "microworlds." Famous pro
 grams written around 1970 at MIT include Terry Winograd's
 SHRDLU, which could obey commands given in a subset of natural
 language about a simplified "blocks-world," Thomas Evan's analogy
 problem program, David Waltz's scene analysis program, and Pat
 rick Winston's program, which could learn concepts from examples.

 The hope was that the restricted and isolated microworlds could be

 gradually made more realistic and combined so as to approach
 real-world understanding. But researchers confused two domains,
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 which, following Heidegger, we shall distinguish as "universe" and
 "world." A set of interrelated facts may constitute a universe, like the

 physical universe, but it does not constitute a world. The latter, like
 the world of business, the world of theater, or the world of the
 physicist, is an organized body of objects, purposes, skills, and
 practices on the basis of which human activities have meaning or
 make sense. To see the difference, one can contrast the meaningless
 physical universe with the meaningful world of the discipline of
 physics. The world of physics, the business world, and the theater
 world make sense only against a background of common human
 concerns. They are local elaborations of the one commonsense world
 we all share. That is, subworlds are not related like isolable physical
 systems to the larger systems they compose but rather are local
 elaborations of a whole that they presuppose. Microworlds are not
 worlds but isolated meaningless domains, and it has gradually
 become clear that there is no way they could be combined and
 extended to arrive at the world of everyday life.

 In its third stage, roughly from 1975 to the present, AI has been
 wrestling with what has come to be called the commonsense knowl
 edge problem. The representation of knowledge was always a central
 problem for work in AI, but the two earlier periods?cognitive
 simulation and microworlds?were characterized by an attempt to
 avoid the problem of commonsense knowledge by seeing how much
 could be done with as little knowledge as possible. By the middle
 1970s, however, the issue had to be faced. Various data structures,
 such as Minsky's frames and Roger Schank's scripts, have been tried

 without success. The commonsense knowledge problem has kept AI
 from even beginning to fulfill Simon's prediction of twenty years ago
 that "within twenty years machines will be capable of doing any
 work a man can do."55

 Indeed, the commonsense knowledge problem has blocked all
 progress in theoretical AI for the past decade. Winograd was one of
 the first to see the limitations of SHRDLU and all script and frame
 attempts to extend the microworlds approach. Having "lost faith" in
 AI, he now teaches Heidegger in his computer science course at
 Stanford and points out "the difficulty of formalizing the common
 sense background that determines which scripts, goals and strategies
 are relevant and how they interact."56
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 What sustains AI in this impasse is the conviction that the
 commonsense knowledge problem must be solvable, since human
 beings have obviously solved it. But human beings may not normally
 use commonsense knowledge at all. As Heidegger and Wittgenstein
 pointed out, what commonsense understanding amounts to might
 well be everyday know-how. By "know-how" we do not mean
 procedural rules but knowing what to do in a vast number of special
 cases.57 For example, commonsense physics has turned out to be
 extremely hard to spell out in a set of facts and rules. When one tries,
 one either requires more common sense to understand the facts and
 rules one finds or else one produces formulas of such complexity that
 it seems highly unlikely they are in a child's mind.
 Doing theoretical physics also requires background skills that may

 not be formalizable, but the domain itself can be described by
 abstract laws that make no reference to these background skills. AI
 researchers mistakenly conclude that commonsense physics too must
 be expressible as a set of abstract principles. But it just may be that
 the problem of finding a theory of commonsense physics is insoluble
 because the domain has no theoretical structure. By playing with all
 sorts of liquids and solids every day for several years, a child may
 simply learn to discriminate prototypical cases of solids, liquids, and
 so on and learn typical skilled responses to their typical behavior in
 typical circumstances. The same might well be the case for the social

 world. If background understanding is indeed a skill and if skills are
 based on whole patterns and not on rules, we would expect symbolic
 representations to fail to capture our commonsense understanding.

 In the light of this impasse, classical, symbol-based AI appears
 more and more to be a perfect example of what Imre Lakatos has
 called a degenerating research program.58 As we have seen, AI began
 auspiciously with Newell and Simon's work at Rand and by the late
 1960s turned into a flourishing research program. Minsky predicted
 that "within a generation the problem of creating 'artificial intelli
 gence' will be substantially solved."59 Then, rather suddenly, the field
 ran into unexpected difficulties. It turned out to be much harder than
 one expected to formulate a theory of common sense. It was not, as

 Minsky had hoped, just a question of cataloguing a few hundred
 thousand facts. The commonsense knowledge problem became the
 center of concern. Minsky's mood changed completely in five years.
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 He told a reporter that "the AI problem is one of the hardest science
 has ever undertaken."60

 The rationalist tradition had finally been put to an empirical test,
 and it had failed. The idea of producing a formal, atomistic theory of
 the everyday commonsense world and of representing that theory in
 a symbol manipulator had run into just the difficulties Heidegger and

 Wittgenstein had discovered. Frank Rosenblatt's intuition that it
 would be hopelessly difficult to formalize the world and thus to give
 a formal specification of intelligent behavior had been vindicated. His
 repressed research program (using the computer to instantiate a
 holistic model of an idealized brain), which had never really been
 refuted, became again a live option.

 In journalistic accounts of the history of AI, Rosenblatt is vilified
 by anonymous detractors as a snake-oil salesman:

 Present-day researchers remember that Rosenblatt was given to steady and
 extravagant statements about the performance of his machine. "He was a
 press agent's dream," one scientist says, "a real medicine man. To hear him
 tell it, the Perceptron was capable of fantastic things. And maybe it was. But
 you couldn't prove it by the work Frank did."61

 In fact, he was much clearer about the capacities and limitations of
 the various types of perceptrons than Simon and Minsky were about
 their symbolic programs.62 Now he is being rehabilitated. David
 Rumelhart, Geoffrey Hinton, and James McClelland reflect this new
 appreciation of his pioneering work:

 Rosenblatt's work was very controversial at the time, and the specific
 models he proposed were not up to all the hopes he had for them. But his
 vision of the human information processing system as a dynamic, interac
 tive, self-organizing system lies at the core of the PDP approach.63

 The studies of perceptrons ... clearly anticipated many of the results in
 use today. The critique of perceptrons by Minsky and Papert was widely
 misinterpreted as destroying their credibility, whereas the work simply
 showed limitations on the power of the most limited class of perceptron-like

 mechanisms, and said nothing about more powerful, multiple layer models.64

 Frustrated AI researchers, tired of clinging to a research program
 that Jerry Lettvin characterized in the early 1980s as "the only straw
 afloat," flocked to the new paradigm. Rumelhart and McClelland's
 book Parallel Distributed Processing sold six thousand copies the day
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 it went onto the market, and thirty thousand are now in print. As
 Paul Smolensky put it,

 In the past half-decade the connectionist approach to cognitive modeling has
 grown from an obscure cult claiming a few true believers to a movement so
 vigorous that recent meetings of the Cognitive Science Society have begun to
 look like connectionist pep rallies.65

 If multilayered networks succeed in fulfilling their promise, re
 searchers will have to give up the conviction of Descartes, Husserl,
 and early Wittgenstein that the only way to produce intelligent
 behavior is to mirror the world with a formal theory in the mind.

 Worse, one may have to give up the more basic intuition at the source
 of philosophy that there must be a theory of every aspect of reality?
 that is, there must be elements and principles in terms of which one
 can account for the intelligibility of any domain. Neural networks
 may show that Heidegger, later Wittgenstein, and Rosenblatt were
 right in thinking that we behave intelligently in the world without
 having a theory of that world. If a theory is not necessary to explain
 intelligent behavior, we have to be prepared to raise the question

 whether in everyday domains such a theoretical explanation is even
 possible.

 Neural net modelers, influenced by symbol-manipulating AI, are
 expending considerable effort, once their nets have been trained to
 perform a task, in trying to find the features represented by individual
 nodes and sets of nodes. Results thus far are equivocal. Consider
 Hinton's network for learning concepts by means of distributed
 representations.66 The network can be trained to encode relation
 ships in a domain that human beings conceptualize in terms of
 features, without the network being given the features that human
 beings use. Hinton produces examples of cases in which some nodes
 in the trained network can be interpreted as corresponding to the
 features that human beings pick out, although these nodes only
 roughly correspond to those features. Most nodes, however, cannot
 be interpreted semantically at all. A feature used in a symbolic
 representation is either present or not. In the net, however, although
 certain nodes are more active when a certain feature is present in the
 domain, the amount of activity not only varies with the presence or
 absence of this feature but is affected by the presence or absence of
 other features as well.

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:38:14 UTC�������������� 

All use subject to https://about.jstor.org/terms



 36 Hubert L. Dreyfus and Stuart E. Dreyfus

 Hinton has picked a domain?family relationships?that is con
 structed by human beings precisely in terms of the features that
 human beings normally notice, such as generation and nationality.
 Hinton then analyzes those cases in which, starting with certain
 random initial-connection strengths, some nodes can, after learning,
 be interpreted as representing those features. Calculations using
 Hinton's model show, however, that even his net seems to learn its
 associations for some random initial-connection strengths without
 any obvious use of these everyday features.

 In one very limited sense, any successfully trained multilayer net
 can be interpreted in terms of features?not everyday features but
 what we shall call highly abstract features. Consider the simple case
 of layers of binary units activated by feed-forward, but not lateral or
 feedback, connections. To construct such an account from a network
 that has learned certain associations, each node one level above the
 input nodes could, on the basis of the connections to it, be interpreted
 as detecting when one of a certain set of input patterns is present.
 (Some of the patterns will be the ones used in training, and some will
 never have been used.) If the set of input patterns that a particular
 node detects is given an invented name (it almost certainly won't have
 a name in our vocabulary), the node could be interpreted as detecting
 the highly abstract feature so named. Hence, every node one level
 above the input level could be characterized as a feature detector.
 Similarly, every node a level above those nodes could be interpreted
 as detecting a higher-order feature, defined as the presence of one of
 a specified set of patterns among the first level of feature detectors.
 And so on up the hierarchy.

 The fact that intelligence, defined as the knowledge of a certain set
 of associations appropriate to a domain, can always be accounted for
 in terms of relations among a number of highly abstract features of a
 skill domain does not, however, preserve the rationalist intuition that

 these explanatory features must capture the essential structure of the
 domain so that one could base a theory on them. If the net were
 taught one more association of an input-output pair (where the input
 prior to training produced an output different from the one to be
 learned), the interpretation of at least some of the nodes would have
 to be changed. So the features that some of the nodes picked out
 before the last instance of training would turn out not to have been
 invariant structural features of the domain.
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 Once one has abandoned the philosophical approach of classical
 AI and accepted the atheoretical claim of neural net modeling, one
 question remains: How much of everyday intelligence can such a
 network be expected to capture? Classical AI researchers are quick to
 point out?as Rosenblatt already noted?that neural net modelers
 have so far had difficulty dealing with stepwise problem solving.
 Connectionists respond that they are confident that they will solve
 that problem in time. This response, however, reminds one too much
 of the way that the symbol manipulators in the sixties responded to
 the criticism that their programs were poor at the perception of
 patterns. The old struggle continues between intellectualists, who
 think that because they can do context-free logic they have a handle
 on everyday cognition but are poor at understanding perception, and
 gestaltists, who have the rudiments of an account of perception but
 no account of everyday cognition.67 One might think, using the
 metaphor of the right and the left brain, that perhaps the brain or the
 mind uses each strategy when appropriate. The problem would then
 be how to combine the strategies. One cannot just switch back and
 forth, for as Heidegger and the gestaltists saw, the pragmatic back
 ground plays a crucial role in determining relevance, even in everyday
 logic and problem solving, and experts in any field, even logic, grasp
 operations in terms of their functional similarities.

 It is even premature to consider combining the two approaches,
 since so far neither has accomplished enough to be on solid ground.

 Neural network modeling may simply be getting a deserved chance to
 fail, as did the symbolic approach.

 Still, there is an important difference to bear in mind as each
 research program struggles on. The physical symbol system approach
 seems to be failing because it is simply false to assume that there must
 be a theory of every domain. Neural network modeling, however, is
 not committed to this or any other philosophical assumption. Nev
 ertheless, building an interactive net sufficiently similar to the one our
 brain has evolved may be just too hard. Indeed, the commonsense
 knowledge problem, which has blocked the progress of symbolic
 representation techniques for fifteen years, may be looming on the
 neural net horizon, although researchers may not yet recognize it. All
 neural net modelers agree that for a net to be intelligent it must be
 able to generalize; that is, given sufficient examples of inputs associ
 ated with one particular output, it should associate further inputs of
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 the same type with that same output. The question arises, however:
 What counts as the same type? The designer of the net has in mind a
 specific definition of the type required for a reasonable generalization
 and counts it a success if the net generalizes to other instances of this
 type. But when the net produces an unexpected association, can one
 say it has failed to generalize? One could equally well say that the net
 has all along been acting on a different definition of the type in
 question and that that difference has just been revealed. (All the
 "continue this sequence" questions found on intelligence tests really
 have more than one possible answer, but most human beings share a
 sense of what is simple and reasonable and therefore acceptable.)
 Neural network modelers attempt to avoid this ambiguity and

 make the net produce "reasonable" generalizations by considering
 only a prespecified allowable family of generalizations?that is,
 allowable transformations that will count as acceptable generaliza
 tions (the hypothesis space). These modelers then attempt to design
 the architecture of their nets so that they transform inputs into
 outputs only in ways that are in the hypothesis space. Generalization
 will then be possible only on the designer's terms. While a few
 examples will be insufficient to identify uniquely the appropriate
 member of the hypothesis space, after enough examples only one
 hypothesis will account for all the examples. The net will then have
 learned the appropriate generalization principle. That is, all further
 input will produce what, from the designer's point of view, is the
 appropriate output.

 The problem here is that the designer has determined, by means of
 the architecture of the net, that certain possible generalizations will
 never be found. All this is well and good for toy problems in which
 there is no question of what constitutes a reasonable generalization,
 but in real-world situations a large part of human intelligence consists
 in generalizing in ways that are appropriate to a context. If the
 designer restricts the net to a predefined class of appropriate re
 sponses, the net will be exhibiting the intelligence built into it by the
 designer for that context but will not have the common sense that
 would enable it to adapt to other contexts, as a truly human
 intelligence would.

 Perhaps a net must share size, architecture, and initial-connection
 configuration with the human brain if it is to share our sense of
 appropriate generalization. If it is to learn from its own "experiences"
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 to make associations that are humanlike rather than be taught to
 make associations that have been specified by its trainer, a net must
 also share our sense of appropriateness of output, and this means it
 must share our needs, desires, and emotions and have a humanlike
 body with appropriate physical movements, abilities, and vulnerabil
 ity to injury.

 If Heidegger and Wittgenstein are right, human beings are much
 more holistic than neural nets. Intelligence has to be motivated by
 purposes in the organism and goals picked up by the organism from
 an ongoing culture. If the minimum unit of analysis is that of a whole
 organism geared into a whole cultural world, neural nets as well as
 symbolically programmed computers still have a very long way to go.

 ENDNOTES

 *Ludwig Wittgenstein, Last Writings on the Philosophy of Psychology (Chicago:
 Chicago University Press, 1982), vol. 1, 504 {66c). (Translation corrected.)

 2David E. Rumelhart and Donald A. Norman, "A Comparison of Models," Parallel
 Models of Associative Memory, ed. Geoffrey Hinton and James Anderson
 (Hillsdale, N.J.: Lawrence Erlbaum Associates, 1981), 3.

 3Allen Newell, "Intellectual Issues in the History of Artificial Intelligence," in The
 Study of Information: Interdisciplinary Messages, ed. F. Machlup and U. Mans
 field (New York: Wiley, 1983), 196.

 4Allen Newell and Herbert Simon, "Computer Science as Empirical Inquiry:
 Symbols and Search," reprinted in Mind Design, ed. John Haugeland (Cam
 bridge: MIT Press, 1981), 41.

 5Ibid., 42.
 6Thomas Hobbes, Leviathan (New York: Library of Liberal Arts, 1958), 45.
 7Leibniz, Selections, ed. Philip Wiener (New York: Scribner, 1951), 18.

 %id., 20.
 9Ibid., 10.
 10Ludwig Wittgenstein, Tractatus Logico-Philosophicus (London: Routledge and

 Kegan Paul, 1960).
 aiD. O. Hebb, The Organization of behavior (New York: Wiley, 1949).
 12Frank Rosenblatt, "Strategic Approaches to the Study of Brain Models," Principles

 of Self-Organization, ed. H. von Foerster (Elmsford, N.Y.: Pergamon Press,
 1962), 386.

 13Ibid., 387.
 14Herbert Simon and Allen Newell, "Heuristic Problem Solving: The Next Advance

 in Operations Research," Operations Research 6 (January-February 1958):6.
 15Ibid. Heuristic rules are rules that when used by human beings are said to be based

 on experience or judgment. Such rules frequently lead to plausible solutions to
 problems or increase the efficiency of a problem-solving procedure. Whereas
 algorithms guarantee a correct solution (if there is one) in a finite time, heuristics
 only increase the likelihood of finding a plausible solution.
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 16David E. Rumelhart, James L. McClelland, and the PDP Research Group in their

 recent collection of papers, Parallel Distributed Processing: Explorations in the
 Microstructure of Cognition, vol. 1 (Cambridge: MIT Press, 1986), describe the
 perceptron as follows:

 Such machines consist of what is generally called a retina, an array of binary inputs
 sometimes taken to be arranged in a two-dimensional spatial layout; a set of predicates, a
 set of binary threshold units with fixed connections to a subset of units in the retina such
 that each predicate computes some local function over the subset of units to which it is
 connected; and one or more decision units, with modifiable connections to the predicates,
 (p. HD

 They contrast the way a parallel distributed processing (PDP) model like the
 perceptron stores information with the way information is stored by symbolic
 representation:

 In most models, knowledge is stored as a static copy of a pattern. Retrieval amounts to
 finding the pattern in long-term memory and copying it into a buffer or working memory.
 There is no real difference between the stored representation in long-term memory and the
 active representation in working memory. In PDP models, though, this is not the case. In
 these models, the patterns themselves are not stored. Rather, what is stored is the connection
 strengths between units that allow these patterns to be re-created, (p. 31)

 [Kjnowledge about any individual pattern is not stored in the connections of a special unit
 reserved for that pattern, but is distributed over the connections among a large number of
 processing units, (p. 33)

 This new notion of representation led directly to Rosenblatt's idea that such
 machines should be able to acquire their ability through learning rather than by
 being programmed with features and rules:

 [I]f the knowledge is [in] the strengths of the connections, learning must be a matter of
 finding the right connection strengths so that the right patterns of activation will be
 produced under the right circumstances. This is an extremely important property of this
 class of models, for it opens up the possibility that an information processing mechanism
 could learn, as a result of tuning its connections, to capture the interdependencies between
 activations that it is exposed to in the course of processing, (p. 32)

 17Frank Rosenblatt, Mechanisation of Thought Processes: Proceedings of a Sympo
 sium held at the National Physical Laboratory (London: Her Majesty's Stationery
 Office, 1958), vol. 1, 449.

 18Marvin Minsky and Seymour Papert, Perceptrons: An Introduction to Computa
 tional Geometry (Cambridge: MIT Press, 1969), 19.

 19Sir James Lighthill, "Artificial Intelligence: A General Survey" in Artificial Intelli
 gence: A Paper Symposium (London: Science Research Council, 1973).

 20Rumelhart and McClelland, Parallel Distributed Processing, 158.
 21Minsky and Papert, Perceptrons, 4.
 22Ibid, 19.
 23Frank Rosenblatt, Principles of Neurodynamics, Perceptrons and the Theory of

 Brain Mechanisms (Washington, D.C.: Spartan Books, 1962), 292. See also:

 The addition of a fourth layer of signal transmission units, or cross-coupling the A-units of
 a three-layer perceptron, permits the solution of generalization problems, over arbitrary
 transformation groups, (p. 576)

 In back-coupled perceptrons, selective attention to familiar objects in a complex field can
 occur. It is also possible for such a perceptron to attend selectively to objects which move
 differentially relative to their background, (p. 576)
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 24Rumelhart and McClelland, Parallel Distributed Processing, 111.
 25Ibid., 112.
 26Minsky and Papert, Perceptrons, 231-32.
 27Rumelhart and McClelland, Parallel Distributed Processing, 112.
 28For an evaluation of the symbolic representation approach's actual successes up to

 1978, see Hubert Dreyfus, What Computers Can't Do, 2d ed. (New York:
 Harper and Row, 1979).

 29Newell and Simon, "Computer Science and Empirical Inquiry," 197.
 30Newell, "Intellectual Issues," 10.
 31John Haugeland, Artificial Intelligence: The Very Idea (Cambridge: MIT Press,

 1985); and Margaret Boden, Artificial Intelligence and Natural Man (New York:
 Basic Books, 1977). Work on neural nets was continued in a marginal way in
 psychology and neuroscience. James A. Anderson at Brown University continued
 to defend a net model in psychology, although he had to live off other researchers'
 grants, and Stephen Grossberg worked out an elegant mathematical implemen
 tation of elementary cognitive capacities. For Anderson's position see "Neural

 Models with Cognitive Implications" in Basic Processing in Reading, ed. D.
 LaBerse and S. J. Samuels (Hillsdale, N.J.: Lawrence Erlbaum Associates, 1978).
 For examples of Grossberg's work during the dark ages, see his book Studies of
 Mind and Brain: Neural Principles of Learning, Perception, Development,
 Cognition and Motor Control (Boston: Reidel Press, 1982). Kohonen's early
 work is reported in Associative Memory?A System-Theoretical Approach
 (Berlin: Springer-Verlag, 1977).
 At MIT Minsky continued to lecture on neural nets and to assign theses

 investigating their logical properties. But according to Papert, Minsky did so only
 because nets had interesting mathematical properties, whereas nothing interesting
 could be proved concerning the properties of symbol systems. Moreover, many AI
 researchers assumed that since Turing machines were symbol manipulators and
 Turing had proved that Turing machines could compute anything, he had proved
 that all intelligibility could be captured by logic. On this view a holistic (and in
 those days statistical) approach needed justification, while the symbolic AI
 approach did not. This confidence, however, was based on confusing the
 uninterpreted symbols of a Turing machine (zeros and ones) with the semantically
 interpreted symbols of AI.

 32Martin Heidegger, Being and Time (New York: Harper and Row, 1962), sec.
 14-21; Hubert Dreyfus, Being-in-the-World: A Commentary on Division I of
 Being and Time (Cambridge: MIT Press, forthcoming, 1988).

 33According to Heidegger, Aristotle came closer than any other philosopher to
 understanding the importance of everyday activity, but even he succumbed to the
 distortion of the phenomenon of the everyday world implicit in common sense.

 34Leibniz, Selections, 48.
 35Terry Winograd, "Artificial Intelligence and Language Comprehension," in

 Artificial Intelligence and Language Comprehension (Washington, D.C.: Na
 tional Institute of Education, 1976), 9.

 36Ludwig Wittgenstein, Philosophical Investigations (Oxford: Basil Blackwell,
 1953).

 37Ludwig Wittgenstein, Philosophical Remarks (Chicago: University of Chicago
 Press, 1975).

 38Wittgenstein, Philosophical Investigations, 21.
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 39See Husserl, Intentionality and Cognitive Science, ed. Hubert Dreyfus (Cambridge:
 MIT Press, 1982).

 40"Der Sinn ... so wie wir ihn bestimmt haben, ist nicht ein konkretes Wesen im
 Gesamtbestande des Noema, sondern eine Art ihm einwohnender abstrackter
 Form." See Edmund Husserl, Ideen Zu Einer Reinen Ph?nomenologie und
 Ph?nomenologischen Philosophie (The Hague: Nijhoff, 1950). For evidence that
 Husserl held that the noema accounts for the intentionality of mental activity, see
 Hubert Dreyfus, "Husserl's Perceptual Noema," in Husserl, Intentionality and
 Cognitive Science.

 41Edmund Husserl, Ideas Pertaining to a Pure Phenomenology and to a Phenome
 nological Philosophy, trans. F. Kersten (The Hague: Nijhoff, 1982).

 42Edmund Husserl, Cartesian Meditations, trans. D. Cairns (The Hague: Nijhoff,
 1960), 45.

 43Ibid., 53.
 44Ibid,51.
 45Marvin Minsky, "A Framework for Representing Knowledge," in Mind Design,

 ed. John Haugeland (Cambridge: MIT Press, 1981), 96.
 46Heidegger, 121-22.
 47Edmund Husserl, Crisis of European Sciences and Transcendental Phenomenol

 ogy, trans. D. Carr (Evanston: Northwestern University Press, 1970), 149.
 48Edmund Husserl, Ideen zu einer reinen Ph?nomenologie und phenomenologischen

 Philosophie, bk. 3 in vol. 5, Husserliana (The Hague: Nijoff, 1952), 134.
 49Husserl, Cartesian Meditations, 54-55.
 50Husserl, Formal and Transcendental Logic, trans. D. Cairns (The Hague: Nijhoff,

 1969), 244.
 51Ibid., 246.
 52Husserl, Crisis, 291.
 53Minsky, "A Framework," 124.
 54Newell, "Intellectual Issues," 222-23.
 55Herbert Simon, The Shape of Automation for Men and Management (New York:

 Harper and Row, 1965), 96.
 56Terry Winograd, "Computer Software for Working with Language," Scientific

 American (September 1984): 142.
 57This account of skill is spelled out and defended in Hubert Dreyfus and Stuart

 Dreyfus, Mind Over Machine (New York: Macmillan, 1986).
 58Imre Lakatos, Philosophical Papers, ed. J. Worrall (Cambridge: Cambridge

 University Press, 1978).
 59Marvin Minsky, Computation: Finite and Infinite Machines (New York: Prentice

 Hall, 1977), 2.
 60Gina Kolata, "How Can Computers Get Common Sense?" Science 217 (24

 September 1982):1237.
 61Pamela McCorduck, Machines Who Think (San Francisco: W. H. Freeman,

 1979), 87.
 62Some typical quotations from Rosenblatt's Principles of Neurodynamics:

 In a learning experiment, a perceptron is typically exposed to a sequence of patterns
 containing representatives of each type or class which is to be distinguished, and the
 appropriate choice of a response is "reinforced" according to some rule for memory
 modification. The perceptron is then presented with a test stimulus, and the probability of
 giving the appropriate response for the class of the stimulus is ascertained.... If the test
 stimulus activates a set of sensory elements which are entirely distinct from those which
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 were activated in previous exposures to stimuli of the same class, the experiment is a test of
 "pure generalization." The simplest of perceptrons ... have no capability for pure
 generalization, but can be shown to perform quite respectably in discrimination experiments
 particularly if the test stimulus is nearly identical to one of the patterns previously
 experienced, (p. 68)

 Perceptrons considered to date show little resemblance to human subjects in their
 figure-detection capabilities, and gestalt-organizing tendencies, (p. 71)

 The recognition of sequences in rudimentary form is well within the capability of suitably
 organized perceptrons, but the problem of figurai organization and segmentation presents
 problems which are just as serious here as in the case of static pattern perception, (p. 72)

 In a simple perceptron, patterns are recognized before "relations"; indeed, abstract
 relations, such as "A is above B" or "the triangle is inside the circle" are never abstracted as
 such, but can only be acquired by means of a sort of exhaustive rote-learning procedure, in

 which every case in which the relation holds is taught to the perceptron individually, (p. 73)
 A network consisting of less than three layers of signal transmission units, or a network

 consisting exclusively of linear elements connected in series, is incapable of learning to
 discriminate classes of patterns in an isotropic environment (where any pattern can occur in
 all possible retinal locations, without boundary effects), (p. 575)

 A number of speculative models which are likely to be capable of learning sequential
 programs, analysis of speech into phonemes, and learning substantive "meanings" for nouns
 and verbs with simple sensory referents have been presented in the preceding chapters. Such
 systems represent the upper limits of abstract behavior in perceptrons considered to date. They
 are handicapped by a lack of a satisfactory "temporary memory," by an inability to perceive
 abstract topological relations in a simple fashion, and by an inability to isolate meaningful
 figurai entities, or objects, except under special conditions, (p. 577)

 The applications most likely to be realizable with the kinds of perceptrons described in this
 volume include character recognition and "reading machines," speech recognition (for
 distinct, clearly separated words), and extremely limited capabilities for pictorial recognition,
 or the recognition of objects against simple backgrounds. "Perception" in a broader sense may
 be potentially within the grasp of the descendants of our present models, but a great deal of
 fundamental knowledge must be obtained before a sufficiently sophisticated design can be
 prescribed to permit a perceptron to compete with a man under normal environmental
 conditions, (p. 583)

 63Rumelhart and McClelland, Parallel Distributed Processing, vol. 1, 45.
 64Ibid., vol. 2, 535.
 65Paul Smolensky, "On the Proper Treatment of Connectionism," Behavioral and

 Brain Sciences, forthcoming.
 66Geoffrey Hinton, "Learning Distributed Representations of Concepts," in Pro

 ceedings of the Eighth Annual Conference of the Cognitive Science Society
 (Amherst, Mass.: Cognitive Science Society, August 1986).

 67For a recent influential account of perception that denies the need for mental
 representation, see James J. Gibson, The Ecological Approach to Visual Percep
 tion (Boston: Houghton Mifflin, 1979). Gibson and Rosenblatt collaborated on a
 research paper for the U.S. Air Force in 1955; see J. J. Gibson, P. Olum, and F.
 Rosenblatt, "Parallax and Perspective During Aircraft Landing," American
 Journal of Psychology 68 (1955):372-85.
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 Natural and Artificial Intelligence

 In this essay we will not attempt to decide whether artificial
 intelligence is the same as natural intelligence. Instead we will
 examine some of the issues and terms that must be clarified

 before that question can be resolved. We will discuss how the
 question about the relationship between natural and artificial intelli
 gence can be formulated.

 One of the first things that must be clarified is the ambiguous word
 artificial. This adjective can be used in two senses, and it is important
 to determine which one applies in the term artificial intelligence. The

 word artificial is used in one sense when it is applied, say, to flowers,
 and in another sense when it is applied to light. In both cases
 something is called artificial because it is fabricated. But in the first
 usage artificial means that the thing seems to be, but really is not,
 what it looks like. The artificial is the merely apparent; it just shows
 how something else looks. Artificial flowers are only paper, not
 flowers at all; anyone who takes them to be flowers is mistaken. But
 artificial light is light and it does illuminate. It is fabricated as a
 substitute for natural light, but once fabricated it is what it seems to

 be. In this sense the artificial is not the merely apparent, not simply an
 imitation of something else. The appearance of the thing reveals what
 it is, not how something else looks.

 The movement of an automobile is another example of something
 that is artificial in the second sense of the word. An automobile

 Robert Sokolowski is professor of philosophy at The Catholic University of America.

 45
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 moves artificially; it moves only because human beings have con
 structed it to move and have made it go by the release of stored
 energy. But it really does move?it does not only seem to be moving.
 In contrast, the artificial wood paneling in the car only seems to be

 wood; it burns, bends, breaks, and decays as plastic, not wood. It also
 smells, sounds, and feels like plastic, not wood. It seems to be wood
 only to vision and only from a certain angle and in certain kinds of
 light.

 In which sense do we use the word artificial when we speak of
 artificial intelligence? Critics of artificial ' intelligence, those who
 disparage the idea and say it has been overblown and oversold,
 would claim that the term is used in the first sense, to mean the merely
 apparent. They would say that artificial intelligence is really nothing
 but complex mechanical structures and electrical processes that
 present an illusion (to the gullible) of some sort of thinking. Support
 ers of the idea of artificial intelligence, those who claim that the term
 names something genuine and not merely apparent, would say that
 the word artificial is used in the second of the senses we have
 distinguished. Obviously, they would say, thinking machines are
 artifacts; obviously they are run by human beings; but once made
 and set in motion, the machines do think. Their thinking may be
 different from that of human beings in some ways, just as the
 movement of a car is different from that of a rabbit and the flight of
 an airplane is different from that of a bird, but it is a kind of genuine
 thinking, just as there is genuine motion in the car and genuine flight
 in the plane.

 Suppose we were to claim that artificial intelligence is a genuine,
 though constructed, intelligence. Must we then prove the truth of that
 claim? Are we obliged to show that the machines really think, that
 they do not only seem to possess intelligence? Perhaps not; no one
 has to prove the fact that artificial light illuminates and that airplanes
 really fly. We just see that they do. If thinking machines display the
 activity of thinking, why should we not admit that they truly are
 intelligent?

 The problem is that thinking is not as visible and palpable as are
 illumination, motion, and flight; it is not as easy to say whether
 thinking is present or not. Even when we talk with another human
 being, we cannot always be sure if that person is speaking and acting
 thoughtfully or merely reciting by rote, behaving automatically. And
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 there are cases in which machines only seem to think but really do
 not: the electronic calculator can do remarkable things, but only
 someone who is deceived by it?someone like the person who takes
 artificial flowers for real ones?would say that the calculator pos
 sesses its own intelligence. The calculator may reveal the intelligence
 of those who built and programmed it, but it does not originate its
 own thinking.

 How is artificial intelligence different from the calculator? How is
 it different from numeric computing? What does it do that we can call
 its own machine thinking, its own activity that cannot be dissolved
 into the thinking of the people who made and programmed the

 machine? If we are to claim that the thinking machine, though an
 artifact, does exhibit intelligence, we must clarify what we mean by
 the "thinking" it is said to execute. This may not be a proof, but it is
 an explanation, and some such justification seems to be required to
 support our claim that machines think.

 Alan Turing set down the principle that if a machine behaves
 intelligently, we must credit it with intelligence.1 The behavior is the
 key. But the Turing test cannot stand by itself as the criterion for the
 intelligence of machines. Machine thinking will always reproduce
 only part of natural thinking; it may be limited, for instance, to the
 responses that are produced on a screen. In this respect our experi
 ence of the machine's thinking is like talking to someone on the
 telephone, not like being with that person and seeing him act, speak,
 and respond to new situations. How do we know that our partial
 view of the machine's intelligence is not like that angle of vision from
 which artificial flowers look real to us? How can we know that we

 are not being deceived if we are caught in the perspective from which
 a merely apparent intelligence looks very much like real intelligence?
 Some sort of argument has to be added to the Turing test to show
 that artificial intelligence is artificial in the second sense of the word
 and not in the first?that although it is constructed and partial, it is
 still genuine and not merely apparent. We need to say more about
 intelligence to show whether it really is there or not, and we need to
 clarify the difference between its natural and artificial forms.
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 i

 In discussing the distinction between natural and artificial intelli
 gence, we must be careful not to establish divisions that are abrupt
 and naive. If we formulate our question in terms of stark alternatives
 we may put our argument into a straitjacket and deprive it of the
 flexibility it needs. With this rigid approach we might set the
 computer in opposition to the brain, considering natural intelligence
 an activity carried on in the brain, artificial intelligence an activity
 carried on in computers. Here the brain, there the computer; here the

 natural intelligence, there the artificial intelligence. The activity is
 defined by the material in which it takes place.

 This approach is blunt and naive because it neglects something that
 bridges natural and artificial intelligence: the written word. Artificial
 intelligence does not simply mimic the brain and nervous system; it
 transforms, codifies, and manipulates written discourse. And natural
 intelligence is not just an organic activity that occurs in a functioning
 brain; it also is embodied in the words that are written on paper,
 inscribed in clay, painted on a billboard. Writing comes between the
 brain and the computer.
 When thinking is embodied in the written word, there is something

 artificial about it. Consider a flashing neon sign that says Hotel.
 People do not react to the sign as they would to a rock or a tree. They
 both read the sign and answer it. They behave toward it in a manner
 analogous to the way they would react to someone who told them
 that the building was a hotel and that they could get a room there.
 Furthermore, the person who put the sign where it is?the one who
 is stating something in the sign and can be held responsible for saying
 what the sign says?does not have to remain near it for the sign to
 have its effect. He can let the sign go; it works without him. It is an
 artifice, and one that manifests and communicates something to
 someone, inviting both an interpretation and a response.
 Of course, artificial intelligence promises to do more than writing

 can do, but it has a foothold in writing: it puts into motion the
 thinking that is embodied in writing. Our philosophical challenge is
 to clarify what sort of motion thinking is.2 The continuity between
 writing and artificial intelligence should make us less apprehensive
 about being somehow replaced by thinking machines. In a way, we
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 are already replaced by the written word. If I leave written instruc
 tions behind me, I do not have to be around for the instructions to
 take effect. But this does not cancel my thinking; it enhances it. If we
 find written records in the ruins of an ancient city, we do not think
 that the speakers in that city were obliterated as speakers by the
 documents or that their subjectivity was destroyed by them; we think
 that their speech was more vividly appreciated as speech in contrast
 with the written word. We also believe that their thinking was
 amplified by their writing, not muffled by it, because through the
 written word they are able to "speak" to us. Likewise, the codifica
 tion of writing in artificial intelligence does not mean that we no
 longer have to think. Rather, our own thinking can be more vividly
 appreciated in contrast with what can be done by machines; the fact
 that some dimensions of thinking can be carried out mechanically

 makes us more vividly aware of those dimensions that we alone can
 perform. If artificial thinking can substitute for some of our thinking
 as artificial light can take over some of the functions of natural light,
 then the kinds of thinking for which no substitute is possible will
 surface more clearly as our own.

 The gradual diffusion of writing into human affairs can serve as a
 historical analogue for the seepage of artificial intelligence into
 human exchanges. Writing did not simply replace the linguistic
 activities that people carried out before there was writing; its major
 impact was to make new kinds of activity possible and to give a new
 shape to old kinds. It enlarged and differentiated economic, legal,
 political, and aesthetic activities, and it made history possible. It even
 allowed religion to take on a new form: it permitted the emergence of
 religions involving a book, with all the attendant issues of text,
 interpretation, and commentary. Writing did all this by amplifying
 intelligence. Printing accelerated the spread of the written word, but
 it did not change the nature of writing.

 The question that can be put to artificial intelligence is whether it
 is merely an extension of printing or a readjustment in the human
 enterprise that began when writing entered into human affairs. Word
 processing is clearly just a refinement of printing, a kind of glorified
 typing, but artificial intelligence appears to be more than that. It
 seems able to reform the embodiment of thought that was achieved
 in and by writing. What will artificial intelligence prove to be? Will it
 be just a postscript to writing, or will writing turn out to be a
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 four-thousand-year prelude to artificial intelligence? Will writing's
 full impact lie in its being a preparation for mechanical thinking?

 If artificial intelligence is indeed a transformation of writing, then
 it is more like artificial light and less like artificial flowers: a genuine
 substitute for some forms of thought, not merely a superficial
 imitation. Thinking is shaped by writing; intelligence is modified

 when it takes on the written form; writing permits us to identify and
 differentiate things in ways that were not possible when we could
 speak but not write. If artificial intelligence can in turn transform

 writing, it may be able to embody a kind of intelligence that cannot
 occur in any other way, just as the automobile provides a kind of
 motion that was not available before the car was invented.

 In the case of any new technology, the new is first understood
 within the horizon set by the old. The earliest automobiles, for
 instance, looked very much like carriages. It takes time for truly new
 possibilities to assert themselves, to shape both themselves and the
 environment within which they must find their place. It took time for
 the automobile to generate highways and garages. The expert systems
 developed in the early stages of artificial intelligence are following this
 pattern.3 They attempt to replace a rather prosaic form of thinking,
 a kind that seems ripe for replacement: the kind exercised by the man
 in the information booth or the pharmacist?the person who knows
 a lot of facts and can coordinate them and draw out some of their

 implications. Expert systems are the horseless carriages of artificial
 intelligence. They are analogous to the early writings that just
 recorded the contents of the royal treasury or the distribution of the
 grain supply.

 This is not to belittle expert systems. The initial, small, obvious
 replacements for the old ways of doing things must settle in before the
 more distinctive accomplishments of a new intellectual form can take
 place?in this case, before the Dantes, Shakespeares, and Newtons,
 or the Jaguars, highways, and service stations of artificial intelligence
 can arise. And just as the people who experienced the beginning of
 writing could hardly imagine what Borges and Bohr could do, or
 what a national library or a medical research center or an insurance
 contract could be, so we?if artificial intelligence is indeed a renova
 tion of writing?will find it hard to conceive what form the flowering
 of machine thinking may take.
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 Furthermore, there is a lot of human thinking that is rather
 mechanical. It demands only that we be well informed and that we be
 able to register relationships and draw inferences within what we
 know. The extent to which such routine thinking permeates our
 intellectual activity may only be realized when artificial thinking
 succeeds in doing most of this work for us.4 Large tracts of scientific
 data-gathering, measuring, and correlation, of planning strategies in
 taxation or insurance, of working out acceptable combinations of
 antibiotics and matching them with infections, of constructing net
 works and schedules for airline travel, of figuring out how to cope
 with laws and regulations, are tasks that can be codified and
 organized according to specifiable rules. Artificial intelligence will
 most readily be able to relieve us of such laborious thinking. But,
 since there are few unmixed blessings, it is also likely to introduce
 new routines and drudgeries and unwelcome complexities that would
 not have arisen if computers had not come into being.
 We are quite properly astonished at how machines can store

 knowledge and information, and at how they even seem to "think"
 with this knowledge and information. But these capabilities of
 machines should not blind us to something that is simpler but
 perhaps even more startling: the uncanny storage and representation
 that occurs when meaning is embodied in the written word. In
 artificial intelligence the embodiment changes, but the major differ
 ence is in the new kind of embodying material, not in embodiment as
 such. The neon light flashing the word Hotel engages many of the
 features found in thinking machines: a meaning is available, a course
 of behavior is indicated, inferences are legitimated. There seems to be
 no one who speaks or owns the meaning?the meaning seems to
 float?and yet it is somehow there in the sign. The meaning is
 available for everyone and seems to outlast any particular human
 speaker.

 In artificial intelligence such meanings get embodied in materials
 that permit extremely complex manipulations of a syntactic kind.

 Hence the machine seems to reason, whereas the sign does not seem
 to reason but only to state. Instead of simply comparing computers
 and brains, we should also compare the "reasoning" of the machine
 with the "stating" of the sign, and examine storage and representa
 tion as they occur in the machine and in writing.
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 It is true that artificial intelligence may go beyond printouts into
 artificially voiced speech. It may move beyond printing to the more
 subtle embodiment of meaning that occurs in sounds. If it succeeds in
 doing so, its "speech" will have been a transformation of its writing
 and will bear the imprint of writing. Artificial intelligence will have
 moved in a direction that is the reverse of that followed by natural
 thinking, which went from voiced speech to the written word.

 II

 The written word can serve as a broker between natural and artificial

 intelligence. It straddles the two: natural intelligence is embodied and
 modified in writing, yet writing is somewhat artificial, something of
 an artifact. Let us investigate this mediating role of writing more
 closely. How can writing serve as a bridge to artificial intelligence?
 We will circle into this issue by asking a more general question

 about the conditions necessary for the emergence of artificial intelli
 gence: What things are required to allow artificial intelligence to
 come into being? An obvious answer is that certain computer
 languages, such as LISP and Prolog, are necessary. Another is that
 the computers themselves, with the appropriate hardware, architec
 ture, and memory, are also required. Still another answer is that the
 mathematical logic devised during the past hundred years or so by
 Gottlob Frege, Giuseppe Peano, Bertrand Russell, and others was
 necessary as a condition for both the software and the hardware we
 now have. It is interesting that these advances in mathematics and
 logic were carried on for purely theoretical reasons?to show, for
 example, that arithmetic is a part of pure logic (Frege's goal)?and
 not to prepare a language for thinking machines.5 The technological
 application took advantage of the opening provided by the theoret
 ical achievement: "The opportunity created the appetite, the supply
 the demand."6

 All these prerequisites for artificial intelligence?computer lan
 guages, computer hardware, and formalized logics?have been made
 by identifiable persons at definite times. We can give names and dates
 for their invention. But there is another enabling condition that is of
 still another nature. It is of much greater philosophical interest, and
 it is also much more elusive; it is hard to say when it appeared on the
 scene and who was responsible for bringing it about. But without it,
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 neither artificial intelligence nor any of its other prerequisites could
 have arisen. The condition in question is that we are able to take a
 linguistic sign in two ways. We can think about what the sign
 expresses, or we can think about the sign and the way it is composed.

 To illustrate the distinction, consider two ways of translating.7
 Consider first the translator who works at international meetings and
 who translates speeches as they are being given. Such a translator
 thinks about the topic being discussed. If the speech is about ocean
 shipping, the translator thinks about ships, cargoes, laws, coastlines,
 and ocean currents. He talks along with the original speaker; he may
 anticipate some of the speaker's phrases or words, and might even
 sometimes speak ahead of the speaker. The translator can do this
 because he is guided by the things that are spoken about and
 presented in the speech; he does not focus on analyzing the speaker's
 words.

 In contrast, consider someone who is learning Greek and trying to
 translate a Greek text. He inspects each word, notices the word
 endings, picks out which word must be the verb and which the
 subject, tries to figure out how this word results from certain elisions
 and contractions, tries to determine what it means and how it fits
 with the other words. Gradually he figures out a possible sense for the
 sentence. In this case what is expressed in the words does not guide
 the translation; rather, the thing meant comes last, only after the

 words have been the direct concern for quite some time. This
 translator could not anticipate the speaker's words because the
 translator is not being guided by the subjects discussed. In this case
 the things expressed are on the margin of attention while the words
 are the focus of thought, whereas in the first case the words are on the
 margin while the subject expressed is in focus.

 We can shift from a focus on what is expressed to a focus on
 words, we can move back to the things expressed, and we can move
 back and forth again and again. When we are in one focus, the other
 always remains on the margin as a focus we can enter. And the two
 foci are not merely annexed to each other; each is what it is only in
 conjunction with the other. The focus on words as words is possible
 because it is played off against the focus on what the words express;

 the focus on the subject is what it is (for us as speakers) only as played
 off against a focus on what the subject is called or what it could be
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 called. There are no words except as drawn into this double
 perspective; there are no words just "lying around."

 Now artificial intelligence is possible because we can turn our
 attention quite decisively toward the word, and instead of analyzing
 its grammatical or phonemic composition, we can begin to codify the

 word?to replace its letters by a series of binary digits and its
 syntactical possibilities by computerized operations. We can alpha
 betize and grammatize the word in a new way. We can reduce it to
 strings of ones and zeros and rules of manipulation. But in doing so,

 we never cancel our appreciation that this is a word we are dealing
 with, and that it expresses a certain thing; we never cut away the
 margin in which the meaning is expressed. For this reason the final
 result of our codification and transformation continues to express
 something. For this reason we call the outcome of what we and the

 machine do an artificial intelligence?an understanding of something,
 not just a rearrangement of marks.

 This is where the "intentionality" of computer programs should be
 explored and understood: not by asking how the computer is like a
 brain, but by asking how the outputs of the computer are like written
 words, and how our shift of focus, between thinking about expres
 sions and thinking about what is expressed, can still take place in
 regard to the "speech" that is delivered up to us by the processes
 going on in the thinking machine.8

 It can even be misleading to say that the word must have a
 meaning, because the meaning might then appear to be an entity of
 some sort that comes between the word and the thing it represents. In
 some theories about cognition, such a substantialized meaning gets
 located in the brain or in the mind, and an argument may follow as
 to whether this meaning is also to be found as some sort of
 representation in the computer and its program.9 There is no need for
 such an entity. All we need to do is acknowledge the capacity that is
 in us to focus on the word while the thing it represents is in the

 margin, or to focus on the thing while the word that symbolizes it is
 in the margin. Nothing more is needed. The meaning is simply the
 thing as meant by the word.
 We know that Frege devised his new logical notation in the years

 prior to 1879, when his Begriffsschrift was published. But when did
 somebody realize that we can focus on words as words and that we
 can take words apart even while keeping in mind what they mean?
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 There is no date for this; this goes way back. And who was the
 somebody who appreciated this? Artificial intelligence is greatly
 indebted to him, and so are we all, since we can hardly imagine
 ourselves without this ability. We could turn toward the word even if
 we were limited to voiced speech, but we can turn toward it much
 more explicitly and decisively and analytically once we have begun to
 write. But the ability we have to shift our focus precedes writing and
 makes writing possible, and it also precedes and enables the further
 codification of writing that occurs in artificial intelligence.

 Our ability to shift our focus from, say, a tree to the word tree,
 helps us explain how words are established as symbols and how
 things are established as being named by words or signified by
 symbols. But this ability to shift focus can also help us approach one
 of the most vexing problems associated with artificial and natural
 intelligence?the problem of how physiological events in the brain
 can present something that occurs in the world, the problem of how
 we are to describe mental representations or mental images or mental
 symbols. When I perceive this lamp, something occurs in my brain.

 Neural networks are activated. How is it that these activations are

 more than just an electrical storm or a chemical process in the brain?
 How is it that they serve to present or represent something beyond
 themselves and beyond the brain? How is it that they serve to present
 this lamp? How are we to describe the "brain-word," or the
 "brain-image," of the lamp?
 Most writers who discuss this issue simply say that there is a

 mental symbol or representation that does the job, but they do not
 differentiate the "brain-symbol" from the kinds of symbols we
 normally deal with?those we find in sound, on paper, on canvas, in
 wood, in stone. A crucial difference between the brain-symbol and
 the normal, "public" symbol seems to be the following. In the case of
 the public symbol, we can focus either on the symbol or the thing it
 symbolizes: on this lamp or the lamp itself. But in the case of the
 brain-symbol, the individual cannot focus on the neural activation in

 his brain; he can only attend to the object presented, the lamp. The
 brain-symbol is essentially and necessarily transparent to him. But
 one who does focus on the brain-word?the neurologist, say, who
 examines the neural activations involved in seeing this lamp?cannot
 see these activations as a presentation of the lamp; he cannot intend
 the lamp through them (as he might marginally intend the lamp while
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 focusing on the term this lamp). For the neurologist, the cerebral
 activations are essentially and necessarily opaque; they are a biolog
 ical phenomenon in their own right. For him they are not symbolic,
 not even marginally so. He has to be told by the person he is
 examining that a lamp is being seen.

 Thus the brain-word is not like the spoken word, but reflection on
 how we constitute the spoken word can help us clarify the perplexing
 nature of the brain-word. A person, in the case of the public symbol,
 can shift from the symbol to the thing; but in the case of the
 brain-symbol, he is fragmented into two persons: the one who sees
 the thing but not the brain-symbol, and the one who sees the
 brain-event but not the thing. These remarks, of course, are only the
 beginning of an analysis of mental representations, but they do
 indicate that one of the best ways we have of adapting our language
 to describe the brain properly is to contrast the brain-symbol with the
 public symbol and work out this contrast in all its details. Earlier in
 this essay we used the embodiment of meaning that occurs in writing
 as an aid in describing artificial intelligence; here we use the embod
 iment of meaning found in public symbols as an aid in understanding
 the representation that occurs in natural intelligence.

 Let us leave the issue of mental representation and turn once again
 to the written word. We have taken it for granted that the writing in
 question is alphabetic writing, the kind familiar to speakers of
 English. But there is also ideogrammatic writing, and it would be
 interesting to compare alphabetic and ideogrammatic writing in
 regard to the shift of focus we have described?the shift between
 attending to the thing and attending to the word.

 An ideograph, since it is something like a picture of the thing
 meant, keeps that thing vividly in the mind even when one turns to
 the written word.10 An alphabetic word, on the other hand, lets go of
 any image of the object and symbolizes the sounds of the spoken
 word. Ideogrammatic writing pulls us toward the thing, alphabetic
 writing pulls us toward the word, but neither can cut away the other
 of the two foci. It would no longer be writing if it did.

 Artificial intelligence has worked primarily with alphabetic sym
 bolism. It is interesting to speculate whether some features of
 ideogrammatic script could find a place in artificial intelligence, to
 complement the alphabetic in some way. Ideogrammatic writing does
 away with inflections and brings the deep grammatical structures of
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 sentences close to the surface11; these qualities might simplify the
 grammar and logic of narration and make narratives easier to codify.
 Ideogrammatic expression might not be useful for creating program

 ming languages, but could be used to modify what programs print
 out for users of computers to read and interpret. An ideogrammatic
 influence on the language at the user-machine interface would make
 this language different from the one we normally speak?it might
 produce a kind of pidgin English, for example?but we should expect
 that.12 Our natural language has developed quite apart from any
 involvement with thinking machines and is not adapted to them. It
 has served other purposes in other circumstances. Why should
 artificial intelligence be forced into all the constraints that would be
 required to make its output look like a speech in ordinary English?
 The thinking machine is a new presence, as writing once was. Our
 natural language, with its exuberant adaptability, will find ways to
 curl around it and into it, even if it has to stretch beyond its
 alphabetic form to do so.

 Ill

 The kind of thinking that artificial intelligence is supposed to be able
 to emulate is deductive inferential reasoning?drawing out conclu
 sions once axioms and rules of derivation have been set down.

 Making deductions means reaching new truths on the basis of those
 we already know. It was this sort of reasoning that Frege wanted to
 formalize in his new logical notation, the forerunner of computer
 languages. Frege wanted to secure the accuracy of deductions by

 making each step in the deduction explicit and formally justified, and
 by keeping the derivations clear of any hidden premises. His notation
 was supposed to make such purity of reasoning possible.13 The
 subsequent outcome of Frege's efforts have been logics and programs
 that make the deductions so explicit that they can be carried out
 mechanically; indeed, the part of an artificial intelligence program
 that draws out conclusions is sometimes called by the colorful name
 of "the inference engine."

 But drawing inferences is not the only kind of intelligence; there are
 other kinds as well. We will discuss quotation and making distinc
 tions as two forms of intellectual activity that are not reducible to

 making inferences. We will also discuss the desire that moves us to
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 think. These forms and aspects of natural intelligence?quotation,
 distinguishing, desire?are of interest to artificial intelligence in two
 ways. If artificial intelligence can somehow embody them, it will
 prove itself all the more successful in replacing natural intelligence.
 But if it becomes apparent that artificial intelligence cannot imitate
 these powers and activities, we will have discovered some of the
 borders of artificial thinking and will better understand the difference
 between natural and artificial intelligence.

 Artificial intelligence depends on both engineering and phenome
 nology. The engineering is the development of hardware and pro
 grams; the phenomenology is the analysis of natural cognition, the
 description of the forms of thinking that the engineering may either
 try to imitate and replace, or try to complement if it cannot replace
 them. Our present discussion is a contribution to the phenomenology
 of natural intelligence, carried out in the context set by the purposes
 and possibilities of artificial intelligence.

 QUOTATION

 One of the essential characteristics of natural intelligence is that we as
 speakers can quote one another. This does not just mean that we can
 repeat the words that someone else has said; it means that we can
 appreciate and state how things look to someone else. Our citation of
 someone else's words is merely the way we present to ourselves and
 others how the world seems to someone different from ourselves.14

 The ability to quote allows us to add perspectives to the things we
 experience and express. I see things not only from my own point of
 view, but as they seem to someone from another point of view, as
 they seem to someone who has a history different from mine, as they
 seem to someone with interests different from mine. It is a mark of

 greater intelligence to be able to appreciate things as they are
 experienced by others, a mark of lesser intelligence to be unable to do
 so: we are obtuse if we see things only one way, only our way.
 We do not describe this ability properly if we call it the power to

 put ourselves in someone else's place, as though the important thing
 were to share that person's moods and feelings, to sympathize with
 his subjective states. Even the feelings and moods we may want to
 share are a response to the way things look, and the way things look
 to someone can be captured in a quotation. Furthermore, there can
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 be complex layers of quotation. I can, for example, cite not only how
 something seems to John, but also how its seeming to John seems to

 Mary. But no matter how complex the citation, I remain the one
 doing the quotations; I remain the citational center.
 When we speak we always play off the way things seem to us

 against the way they seem to others. The way things seem to others
 influences the way they seem to us. This supplement of alternative
 viewpoints is neglected when we concentrate on straight-line deduc
 tive inferences. The logic of deduction is a logic for monologues?a
 cyclopic, one-eyed logic. All diversity of points of view is filtered out.
 Only what follows from our premises is admitted. And even in the
 formal logics that try to handle cases that are not covered by a specific
 set of axioms?even in nonmonotonic logics, which try to cope with
 situations and facts that do not follow from the premises that are set
 down in the system?we still remain limited to inferences executed
 from a single point of view. As Raymond Reiter has written, "All
 current nonmonotonic formalisms deal with single agent reasoners.
 However, it is clear that frequently agents must ascribe nonmono
 tonic inferences to other agents, for example, in cooperative planning
 or speech acts. Such multi-agent settings require appropriate formal
 theories which currently we are lacking."15

 The restriction of logic to a single point of view is a legitimate and
 useful abstraction, but it should be seen as limited, as not providing
 a full picture of human thinking. In our natural thinking, the opinions
 of others exercise an influence on the opinions we hold. We do not
 derive our positions only from the axioms we accept as true. If
 artificial intelligence is to emulate natural thinking, it must develop
 programs that can handle alternative viewpoints and not just
 straight-line inferential reasoning. It must develop a logic that will
 somehow take the expectations and statements of an interlocutor
 into account and formalize a conversational argument, not just a

 monological one. Such an expansion of artificial thinking would
 certainly help in the simulation of strategies and competitive situa
 tions. On the other hand, if quotation is beyond artificial intelligence,
 then perhaps we alone can be the final citational centers in thinking;
 perhaps our thinking machines will always just be quoted by us,
 never able to quote us in return.
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 MAKING DISTINCTIONS

 Another kind of thinking different from inferential reasoning is the
 activity of making distinctions.16 A computer program can make a
 distinction in the sense that it can select one item instead of another,
 but such an activity assumes that the terms of the distinction have
 been programmed into the machine. A more elementary issue is
 whether a distinction can "dawn" on a machine. Can a machine
 originally establish the terms of a distinction?

 In our natural thinking we do not infer distinctions. To recognize
 that there are two distinct aspects to a situation is a more rudimen
 tary act of thinking than is inference. It is also a mark of great
 intelligence, especially if the two terms of the distinction have not
 been previously established in the common notions stored in our
 language. For example, to appreciate that in a difficult situation there
 is something threatening and also something insidiously desirable,
 and to have a sense of the special flavor of both the threat and the
 attraction, is a raw act of insight. It is not derived from premises. This
 sort of thinking, this dawning of distinctions, is at the origin of the
 categories that make up our common knowledge. It is prior to the
 axioms from which our inferences are derived.

 Similarly, the stock of rules and representations that make up a
 computer program, a data base, and a knowledge base presumes that
 the various stored representations have been distinguished, one from
 the other. This store of distinctions has to have been built up by
 natural intelligence. And each representation, each idea in natural
 intelligence, is not just soaked up by the mind as a liquid is soaked up
 by a blotter; each idea must also be distinguished from its appropriate
 others.17 Some thinking, some distinguishing, goes into every notion
 we have. The thoughtful installation of an idea always involves
 distinction. Is there any way that artificial intelligence can generate a
 distinction between kinds of things? Can distinctions dawn on a
 machine? Or is the thinking machine like a household pet, fed only
 what we choose to give it?

 DESIRE

 Desire is involved with thinking in two ways. There is first the desire
 to know more: the curiosity to learn more facts or the urge to
 understand more fully. But there is also the desire for other satisfac
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 tions such as nourishment, exercise, repose, and the like. Let us call
 these desires the passions. How is thinking related to passion?

 A common way of expressing this relationship is to say that reason
 is the slave of the passions.18 In this view, the passions we are born

 with establish the ends we want to pursue, the satisfactions we seek;
 reason then comes into play to figure out how we can attain what the
 passions make us want. Desires provide the ends, thinking provides
 the means. In this view there is little room for rational discussion of

 goals because the goals are not established by reason.
 Such an understanding of the relation between desire and reason

 fits well with some presuppositions of artificial intelligence. It is easy
 to see that the computer might help us determine how to get to a
 goal?perhaps by using the General Problem Solver techniques
 initiated by Allen Newell, Cliff Shaw, and Herbert A. Simon?but the
 computer has to have the goals set down for it in advance, just as it
 needs to have its axioms set down.19 The computer helps us reach our
 goals by working out inferences appropriate to the problem we face
 and the resources we have. Thus, if natural intelligence is indeed the
 slave of the passions, artificial intelligence may go far in replacing it.

 But natural reason is not completely external to our desires. It is true
 that as agents we begin with passions that precede thought, but before
 long our thinking enters into our desires and articulates what we want,
 so that we want in a thoughtful way. We desire not just nourishment
 but to eat a dinner; we want not just shelter but a home. Our passions
 become penetrated by intelligence. Furthermore, new kinds of desire
 arise that only a thoughtful being could have. We can desire honor,
 retribution, justice, forgiveness, valor, security against future dangers,
 political society. Our "rational desire" involves not only curiosity and
 the thoughtful articulation of the passions but also the establishment of

 ways of wanting that could not occur if we did not think.

 Artificial intelligence might be able to do something with goals that
 are set in advance, but can it emulate the mixture of desire and
 intelligence that makes up so much of what we think and do? Can it

 emulate curiosity? The thinking machine is moved by electrical
 energy, but can there be any way of giving it the kind of origin of
 motion that we call desire? Can its reasoning become a thoughtful
 desire? Or will all the wanting be always our own?

 * * *
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 Drawing inferences is an intellectual activity that is less radically
 our own than are the three activities we have just examined. Once
 axioms and rules of derivation have been set down, anyone can infer
 conclusions. Even if we happen to be the ones who carry out the
 deductions, we need not believe what we conclude. We need only say
 that these conclusions follow from those premises. Inference can
 remain largely syntactic. But in quotation we stand out more vividly
 on our own, since we distinguish our point of view from that of
 someone else. In making a distinction we also think more authenti
 cally, more independently, since we get behind any axioms and
 premises that someone might set down for us and simply allow one
 thing to distinguish itself from another. In thoughtful desire we
 express the character we have developed and the way our emotions
 have been formed by thinking. Quotation, distinction, and desire are
 more genuine forms of thinking than inference. And although these
 forms of thinking are more thoroughly our own, they do not become

 merely subjective or relativistic. They express an objectivity and a
 truth appropriate to the dimensions of thinking and being in which
 they are involved, dimensions that are neglected in inferential
 reasoning.20

 If artificial intelligence were able to embody such forms of thinking
 as quotation, distinction, and desire, it would seem much more like a
 genuine replacement for natural intelligence than a mere simulacrum
 of it. It would seem, in its artificiality, to be similar to artificial light.
 It would seem somehow capable of originating its own thinking, of
 doing something not resolvable into the reasoning and responsibility
 of those who make and use the thinking machines. But even if
 artificial intelligence cannot fully embody such activities, it can at
 least complement them, and precisely by complementing them it can
 help us to understand what they are. We can learn a lot about
 quotation, distinction, and desire by coming to see why they cannot
 be mechanically reproduced, if that does turn out to be the case. We
 can learn a lot about natural intelligence by distinguishing it from
 artificial intelligence. And if artificial intelligence helps us understand
 what thinking is?whether by emulation or by contrast?it will
 succeed in being not just a technology but part of the science of
 nature.
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 ENDNOTES

 *Alan Turing, "Computing Machinery and Intelligence," Mind 59 (1950):434-60.
 2Frege speaks of a Gedankenbewegung as the process his notation is supposed to

 express. See "On the Scientific Justification of a Conceptual Notation," in
 Conceptual Notation and Related Articles, ed. T. Bynum (Oxford: Claredon,
 1972), 85.

 3See Paul Harmon and David King, Expert Systems in Business (New York: John
 Wiley & Sons, 1985).

 4Jacques Arsac asks, "How many semantic activities of man can be represented by
 signs in an appropriate language, and treated 'informatically' [i.e., coded and
 syntactically manipulated]? Who, at this point in time, can determine the borders
 that this science will not be able to cross?" Arsac, La science informatique (Paris:
 Dunod, 1970), 45.

 5See G. P. Baker and P. M. S. Hacker, Frege: Logical Excavations (New York:
 Oxford University Press, 1984), 8: "Frege's avowed primary goal was to
 substantiate the logicist thesis that arithmetic is part of pure logic. Everything else
 he did was peripheral. Consequently he viewed what we judge to be his greatest
 achievement, i.e., his invention of concept-script, as altogether instrumental."

 6The phrase is from J. J. Scarisbrick, The Reformation and The English People (New
 York: Blackwell, 1984), 74.

 7I adapt these examples from Arsac, La science informatique, 34-47.
 8For a recent statement and survey of the problem of intentionality and computer

 science, see Kenneth M. Sayre, "Intentionality and Information Processing: An
 Alternative Model for Cognitive Science," Behavioral and Brain Sciences 9
 (1986): 121-65. On the importance of "intentionality" or "representation," see
 the conclusion of Howard Gardner, The Mind's New Science: A History of the
 Cognitive Revolution (New York: Basic Books, 1985), 381-92.

 9In my opinion this "substantializing" of a "sense" occurs in some interpretations of
 Husserl's doctrine of the noema?those that take the noema as a mental
 representation that accounts for the intentional character of mental activity. I
 have commented on this issue, and given references to various positions and
 participants in this controversy, in "Intentional Analysis and The Noema,"
 Dial?ctica 38 (1984): 113-29, and in "Husserl and Frege," The Journal of
 Philosophy 84 (1987) (forthcoming). For an attempt to explain what meaning is
 without appealing to mental representations, or, as they are sometimes called,
 "abstract entities," see my essay "Exorcising Concepts," Review of Metaphysics
 40 (1987):451-63.

 10See Ernest Fenollosa, The Chinese Written Character as a Medium for Poetry, ed.
 E. Pound (San Francisco: City Lights Books, 1936), esp. p. 9: "In reading Chinese
 we do not seem to be juggling mental counters, but to be watching things work
 out their own fate."

 11 As David Diringer says about Chinese, "There is an extreme paucity of grammat
 ical structure in Chinese; strictly speaking, there is no Chinese grammar, and
 hardly any syntax." The Alphabet, 3d ed. (New York: Funk and Wagnalls,
 1968), vol. 1, 63.

 12If we tried to read aloud some of the formulas devised by C. A. R. Hoare we would
 find ourselves speaking something very much like pidgin English. See the formulas
 in Communicating Sequential Processes (Englewood Cliffs, NJ: Prentice-Hall,
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 1985), 27-30, 43, 47-49. Ideograms tend to express events rather than predi
 cates, and Hoare's formalism is an attempt to capture events in a process; see p.
 25. And Hoare is quite aware that he is symbolizing not words or names, but
 things and events. He begins his book as follows (p. 23): "Forget for a while about
 computers and computer programming, and think instead about objects in the
 world around us, which act and interact with us and with each other in
 accordance with some characteristic pattern of behavior. Think of clocks and
 counters and telephones and board games and vending machines. To describe
 their patterns of behavior, first decide what kinds of event or action will be of
 interest, and choose a different name for each kind."

 13See Baker and Hacker, Frege: Logical Excavations, p. 35: Frege's concept-script
 "was designed to give a perspicuous representation of inferences, to ensure that no
 tacit presuppositions remain hidden_The heart of Begriffsschrift is then the
 elaboration of a notation for presenting inferences and the setting up of a formal
 system for rigorously testing their cogency_He foreswore expressing in concept
 script anything 'which is without importance for the chain of inference.' "

 14See Robert Sokolowski, "Quotation," Review of Metaphysics 37 (1984): 699-723.
 15Raymond Reiter, "Nonmonotonic Reasoning," Annual Reviews of Computer

 Science 2 (1987): 183.1 am grateful to John McCarthy for bringing this article to
 my attention.

 16See Robert Sokolowski, "Making Distinctions," Review of Metaphysics 32
 (1979):639-76.

 17An interesting example of how one term can rest on several distinctions, and how
 the "activation" of one or another of the distinctions can modify the sense of an
 actual use of the term, is found in Pierre Jacob, "Remarks on the Language of
 Thought," in The Mind and the Machine: Philosophical Aspects of Artificial
 Intelligence, ed. S. Torrance (New York: John Wiley, 1984), 74: "For Bob's use
 of the predicate [black], something will count as black if it is not perceived as dark
 blue or any other color but black, whether or not it is dyed. For Joe's use of the
 predicate, something will count as black not only if it looks black but also if it
 turns out not to be dyed." The incident sense of "not black" makes a difference
 in the current sense of "black."

 18The phrase is, of course, from David Hume: "Reason is, and ought only to be the
 slave of the passions, and can never pretend to any other office than to serve and
 obey them." A Treatise of Human Nature, ed. L. A. Selby-Bigge (New York:
 Oxford University Press, 1960), vol. 3, 415.

 19For a summary of the General Problem Solver (GPS) and means-ends analysis, see
 John Haugeland, Artificial Intelligence (Cambridge: MIT Press, 1985), 178-83.

 20In Artificial Intelligence, Haugeland contrasts two models of thinking: the "Aris
 totelian," in which the mind is said to think by absorbing resemblances of things,
 and the "Hobbesian," in which thinking is said to be computation carried out on
 mental symbols. Haugeland calls Hobbes "the grandfather of AI" because of his
 computational understanding of reason (p. 23), but he concludes that we may
 need to invoke a theory of meaning that involves both resemblance and
 computation (p. 222). It seems to me that rich resources for such a theory can be
 found in the philosophy of Husserl, for whom all presentations are articulated
 and all mental articulations are presentational. For Husserl, syntax and semantics
 are essentially parts of a larger whole. As against Haugeland I would say,
 however, that the mind should not be conceived as absorbing resemblances of
 things but simply as presenting things in many different ways.
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 Artificial Intelligence: An Aper?u

 An imagined paradise: thick-trunked trees with densely
 fronded crowns; sinuous vines; enormous flowers. Within
 , this paradise, the eternal couple?his extended arm pointing

 ahead as he looks over his shoulder, perhaps to urge on his mate, hair
 flying as she catches up.

 Another scene: the trees taller, weighted by a recent rain; an utter
 absence of breeze; the undergrowth sparer now, but even so he tries
 to hide?from her, not us, for we can see his legs beneath a gigantic
 flowering shrub?while she seeks him, shading her eyes for a better
 view. More scenes: she's gone, then he's gone too; the artist now
 focuses completely on details of the vegetation (Figs. 1-3).

 The artist has never seen what is only imagined, has joined in the
 long tradition, from Cro-Magnon cave walls to Egyptian funerary art
 to Henri Rousseau, of expressing what might be?as significant to the
 human imagination as what is.

 Except the artist is a computer program. Equipped?shall I say
 endowed??with ideas about plant growth, about the size and shape
 of human beings and plausible poses they might take, equipped too
 with some ideas about art (closure, occlusion, spatial balance,
 symmetries pleasing and boring), the program goes on its autono

 mous way, doing drawings by the thousands. It remembers what it
 has already done, and won't repeat itself unless explicitly asked to do
 so. Its name is AARON. A little joke about Aaron's rod there, I once
 supposed, but I supposed wrong: AARON was intended to be the

 Pamela McCorduck, a lecturer in the writing program at Columbia University, is author of
 Machines Who Think (1979) and The Universal Machine (1985).
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 Fig. 1.

 first of a series of programs, to be named alphabetically. Instead
 AARON has persisted, evolving into greater complexity and matu
 rity. Aaron is the Hebrew name of Harold Cohen, the artist who
 created the program, endowed it with its essence, and who watches,
 amazed as anyone, while AARON draws. AARON is artificial
 intelligence.

 The drawings of Aaron raise puzzling questions. To be sure, some
 of the same questions are also raised by other works of art?
 questions regarding the nature and meaning of art itself, within a
 culture and outside it; questions about the role of the viewer (I see a
 paradise, but another might see a horticultural nightmare?or, if
 unacquainted with the conventions of Western line drawing, nothing
 at all. Still others cannot forget or forgive AARON's genesis, and so
 deprecate what they see). AARON's work also joins a much smaller
 set of art objects that ask the artist's identity (AARON? Harold
 Cohen?).

 AARON is only a semi-intelligent machine. That is, it draws its
 pictures but doesn't then quarrel with critics, gallery owners, or even
 Harold Cohen. It has no perceptual apparatus to "see" what it
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 Fig. 2.

 imagines (though we now know that what humans perceive is very
 much a function of our internal symbolic structures, shaped by a long
 acculturation process). Another question arises: Lacking eyes, lacking
 interests beyond its own drawings, can AARON pretend to intelli
 gence at all? In other words, is intelligence all-or-none?

 To confuse matters further, I've interpreted the pictures my own
 way, but is perception only in the eye of the beholder? Suppose,
 instead of Eden, what's pictured is a tropical Black Forest, the couple
 a Hansel and Gretel trying hopelessly to find their way back from
 abandonment. Is this equally legitimate (or equally illegitimate, given
 AARON's lack of interest in either interpretation)?

 To these questions presently. For now, the point is this: AARON
 is artificial intelligence, intelligence in vitro?not the whole complex
 of intelligent behavior as we have come to recognize it in humans.
 Instead, artificial intelligence is certain significant parts of intelligent
 behavior, cultured in silicon for the same reasons cells are cultured
 and studied: to understand the parts as a step toward understanding
 the whole. This may be the most problematic issue for those who
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 Fig. 3.

 believe that intelligent behavior, once separated from a fully func
 tioning general intelligence such as the human mind, can no longer be
 considered truly intelligent.

 Embryonic as they are, the findings of AI do more than serve to
 expand our knowledge. They are already being applied to assist us in
 a variety of tasks, practical and whimsical. Perhaps most important,
 AI has begun to redefine our sense of ourselves and our place in the
 world. A syncretic discipline as significant to art as to science, to
 emotion as to reason, AI is a compelling part of our human past and
 an inevitable part of our human (and, some would say, extra-human)
 future. There's nothing else like it.

 For the past thirty years AI research has taken two general
 approaches, though they exist in fluid reciprocity with each other.
 The first general approach has been to mimic human intelligence in a
 computer program?in particular, to find functional models that
 elucidate human cognition. The second approach has aimed to attack
 and solve problems without necessarily referring to models of human
 intelligence, with the aim of exhibiting intelligent behavior of a high
 order outside the human cranium.
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 As a science, AI has evolved into a search for the principles,
 perhaps the laws, of intelligent behavior in general, whether exhibited
 by a human or a computer. The first such principles have been
 proposed; one present task of AI research is to verify them and to
 articulate more.

 BESTOWING THE ESSENCE

 Within the last few years a fascinating goal has captured imaginations
 across scientific disciplines. Joining the computer scientists, engineers,
 psychologists, and linguists who have pursued the goal for nearly
 thirty years, physicists and biologists have also taken up the question
 of how, in a scientific way, mind can arise from matter.

 For nearly as long as we have records, human beings have
 imagined bestowing their essence upon artifacts?idols, automata,
 robots, simulacra, unpredictable deities, obedient slaves?animated,
 artificial intelligences, every one of them. What comprises this human
 essence has, of course, changed over time, both in content and
 expression, but a theme recurs: to be human is to think?to reason,
 cogitate, associate, create.

 The first instances of this imaginative impulse are rhetorical
 structures, and given the centrality of language, the form persists to
 this day: stories, myths, even philosophical arguments. They are
 found, for example, in Homer's Iliad: the attendants to Hephaestus
 are "golden, and in appearance like living young women. / There is
 intelligence in their hearts, and there is speech in them / and strength,
 and from the immortal gods they have learned how to do things."1

 Contemporary and similar tales appear in China: the intellectually
 (and physically) adventurous King Mu of the Chou Dynasty is said to
 have an immortal robot that is "very near to artificial flesh and
 blood," all part of the great Chinese fascination with life generated by
 chemical means. This idea finds new life among the Arabs, nine or ten
 centuries later, in Um al-takwin, the "science of artificial generation,"
 which will eventually lend the idea of the al-iksir, or elixir of life, to
 medieval European alchemists.2

 Those Arab heirs to the Hellenes may have been the first to state
 formally that a distinction exists between natural and artificial
 substances. The distinction the Arabs made did not imply that the
 natural was superior to the artificial, only that it was different. But
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 not very different: they asserted that one excellent means of knowing
 the natural was to study the artificial. Though that premise underlies
 the whole Western idea of scientific modeling, it would not have
 made much sense to the traditional Chinese, who were inclined to
 view everything?animate and inanimate, natural and artificial?as
 indissolubly connected. Such an easygoing, inclusive world view
 permeated both Shintoism and Buddhism, and subsequently spared
 the modern Japanese from debates about whether artificial intelli
 gence is real or fake. On that score they watch us with wonder.

 But I return to Western history. Medieval Europe seems obsessed
 by artificial intelligences: they appear everywhere the intellect is
 exercised. Pope Sylvester II, Albertus Magnus, Roger Bacon, and
 others were of the company said to have fashioned talking heads of
 brass that foretold the future and solved knotty problems, "brazen
 heads" both proof and source of wisdom. The Spanish mystic Ramon
 Lull lifted wholesale an Arab contraption, a thinking machine called
 the zairja, and recast it along more Christian lines, calling it, with no
 undue modesty, the Ars Magna. It consisted of a series of concentric
 disks that could be spun and matched by categories and other criteria,
 the idea being to bring reason to bear on all subjects. The Ars Magna
 and its Arab forerunner, the zairja, were each modeled on the
 assumption that thinking could be carried on outside the human
 mind?indeed, mechanized.

 THE PHILOSOPHERS APPROACH MIND

 If mind is an essential human property (or process), its nature is
 elusive. Heated disputes developed in the seventeenth century about
 mind and body, whether they were different or the same. Descartes
 concluded that they were different; Spinoza rejected that dualism,
 believing the human mind and body to be aspects of the same thing,
 two attributes of God. In 1650, the year Descartes died, Bishop

 Ussher published his famous calculation of the world's beginning: he
 set it at 4004 B.C. Protoscience and pseudoscience coexisted uneasily.
 Leibniz also pondered the mind-body issue and eventually decided
 that mind and body were indeed separate, but exactly matched,
 monads. Under the influence of Newton's elegant mechanics, philos
 ophers such as Locke and Hume applied themselves to searching for
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 a rational understanding of mind, trying to divine laws analogous to
 Newton's, not of matter but of thought.

 This had its risks. The Church, for example, with its strong ideas
 about a proper dualistic Christian attitude toward mind and body,
 did not welcome dissent, as Julien Offray de la Mettrie discovered a
 century after Descartes. La Mettrie studied the philosophers and
 scoffed: Words without substance, he snorted, speculation without
 knowledge. In short, mere rhetoric.

 In 1747 la Mettrie published a book called UHomme Machine,
 based on his practice as a physician. He proposed a comprehensive
 theory of the mind and cited evidence that physical substances
 affected thinking; diet, pregnancy, drugs, fatigue, disease all figured
 in his analysis. Rude and contentious, he intended his theories (and
 his language) to shock. He made enemies, not only among the
 authorities, who hounded him first out of Paris and then the

 Netherlands, but also among the philosophers who finally received
 him at the court of Frederick the Great in Berlin. After his death

 there, they discarded his ideas and refused even to mention his name.
 La Mettrie is important because he is the first to offer empirical

 evidence in behalf of theory: the revolutions in the physical sciences
 touch him differently from the way they touched the philosophers.

 His work marks the beginning of the end of amateurism in under
 standing human thought.

 THE COMPUTER

 To be reminded of early attempts to fashion artificial intelligences?
 to capture the mind outside the human cranium?is not to say that
 there is nothing new under the sun. The computer, the first instru

 ment able to process symbols in a general-purpose way, began
 awkwardly, then somewhat more smoothly, to capture certain
 essential qualities of human thought.

 Patrick Winston of MIT has observed that the computer is an ideal

 experimental subject, requires little care and feeding, is endlessly
 patient, and does not bite.3 The computer allows intelligent perfor
 mance to be rigorously defined, built, and tested, and provides the
 rapid feedback necessary for progress in experimentation. Thus, for
 example, the notion of symbol takes on precise meaning and is shown
 to be essential to intelligent behavior.
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 The computer has made explicit the fundamental division between
 the two components of intelligent behavior, hardware and software,
 finally demystifying the mind-body conundrum. The computer not
 only provides an instance of symbolic functioning arising out of
 matter; it also reveals how this can happen.

 In 1948 the MIT mathematician Norbert Wiener published a brief
 but seminal work entitled Cybernetics. It recorded the switch from
 one dominant paradigm, energy, to a new one, information. One
 major advantage of the new paradigm to explain thinking was that it
 dealt with open systems, systems coupled to the outside world both
 for the reception of impressions and the performance of actions; the
 older paradigm of energy dealt only with closed, conservative sys
 tems. Another, perhaps even more important, advantage of the new
 paradigm was that it dealt with the behavior of symbols, soon to
 emerge as central to the study of intelligent action. Wiener's small
 book made scarcely any mention of the computer in its first edition
 (an unsurprising lapse, given the awkwardness and unreliability of
 these machines at the time).

 That the computer was potentially an all-purpose symbolic ma
 nipulator and that it could be used as such was precisely the opinion
 shared by all early AI researchers. During the summer of 1956 all ten
 of them came together, for shorter or longer periods of time, on the
 campus of Dartmouth College. As they told their benign foundation
 patron, they proceeded on the basis of the conjecture that every
 aspect of learning or any other feature of intelligence can in principle
 be so precisely described that a machine can be made to simulate it.4

 By the time of the Dartmouth conference a landmark program
 existed. The work of a team from Carnegie Mellon University (then
 Carnegie Tech) and the Rand Corporation (including Allen Newell,
 J. C. Shaw, and Herbert Simon), the program was brought to the
 conference by Newell and Simon. Called the Logic Theorist, it proved
 certain theorems in Whitehead and Russell's Principia Mathematica.
 The Logic Theorist discovered a shorter and more satisfying proof to
 theorem 2.85 than that used by Whitehead and Russell. Simon wrote
 the news to Lord Russell, who responded with delight. But The
 Journal of Symbolic Logic declined to publish an article?coauthored
 by the Logic Theorist?that described the proof.

 The Logic Theorist, created in an intellectual milieu very different
 from that shared by others at Dartmouth that summer, was invented
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 by men not much taken with logic, mathematical formalisms, neural
 nets, or any of the earlier attempts to make machines think. Instead,

 the Logic Theorist rested upon the so-called information-processing
 view, which held that complex systems of processing information,
 built up out of relatively small and simple components, could exhibit
 intelligent behavior. How to make those processes work required an
 intimate knowledge of the computer; Newell, Simon, and their first

 AI students were as handy and inventive with programming lan
 guages as they were with electronics. They designed a higher-level
 programming language called IPL-V (Information Processing Lan
 guage Five) that reflected what cognitive psychology had previously
 demonstrated about human associative memory.

 John McCarthy, one of the original Dartmouth conference orga
 nizers and inventor of the phrase artificial intelligence, liked the
 general idea of list processing but was offended by the untidiness of
 IPL-V. McCarthy created his own language, LISP (for List Process
 ing). In its many dialects, LISP became the unchallenged lingua franca
 of AI research and applications in the next twenty-five years. Not
 only did AI researchers begin to produce programs that would
 perform certain tasks considered to require intelligence, but they
 began to articulate a set of ideas about intelligence that were more
 revolutionary in their implications than any specific chess-playing or
 theorem-proving program.

 In 1975, on the occasion of receiving the Turing Award (the most
 prestigious prize in computer sciences), Allen Newell and Herbert
 Simon articulated, in the form of a scientific hypothesis, an assump
 tion that they believed underlay all work in AI. They spoke of a
 physical symbol system hypothesis.5

 All science, they explained, characterizes the essential nature of the
 systems it studies. These characterizations are qualitative?the cell
 doctrine in biology, plate tectonics in geology, atomism in chemis
 try?and establish a frame within which more detailed, often quan
 titative, studies can be pursued. In computing, the qualitative
 description that forms and defines the science is a physical symbol
 system.

 Physical clearly denotes that such systems obey the laws of
 physics?they are realizable by engineered systems made of engi
 neered components. A symbol system is a collection of patterns and
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 processes, the processes capable of producing, destroying, and mod
 ifying the symbols. The most important property of patterns is that
 they are able to designate objects, processes, or other patterns. When
 patterns designate processes, they can be interpreted. Interpretation
 implies carrying out the designated processes.

 This outlook provides a conceptual framework for studying intel
 ligence (human or otherwise), which may be more precisely defined
 as the ability to process symbols. Thus, human beings and computers
 are two members of a larger class defined as information processors,

 a class that includes many other information-processing systems?
 economic, political, planetary?and, in its generality, a class that
 threatens to embrace the universe. Human beings and computers,
 however, are not only information processors but also intelligent
 agents: they are able to compute something besides their own
 processes.

 How did Newell, Simon, and their colleagues arrive at these
 definitions of form and function in intelligence? They were in a
 position to do it because they had a physical machine called a
 computer to study; they could observe (and alter) the machine's
 behavior, tracing up through its architectural hierarchy the explicit
 connections from level to level?from semiconductor materials and

 metals up through the gross configuration level, each level explicitly
 connected to levels above and below it.

 The working assumptions of the physical symbol system have led
 to two important but slightly different hypotheses about the nature of

 mind. One of them, which posits an intelligent agent working in a
 milieu called the knowledge level, is from Newell, and grows directly
 out of the physical symbol system hypothesis. It is generally hierar
 chical in design. The other, from Marvin Minsky at MIT, uses the
 same basic assumptions of the physical symbol system, but posits a
 "society" of agents (some intelligent, some not) working more
 heterarchically to produce the results we call a mind.

 Mind, Allen Newell suggests, is an intelligent agent, a member of
 that special class of information processors that can compute some
 thing besides their own processes. Such intelligence as the mind
 exhibits is a result of the aggregate behavior of a hierarchy of
 functions, starting at the most primitive level and working up to the
 most complex.6
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 Newell can identify specific correspondences between the system
 levels of a human being as an intelligent agent and those of a
 computer system, each level of the systems with its own physical
 medium and rules of operation. The most basic is the device level,
 made up of semiconductor materials in computers and biochemicals
 in humans; then comes the circuit level, made up of resistors,
 inductors, and capacitors in computers, of cells in the human. The
 highest level has generally been thought to be the configuration level:
 in computers, the gross behavior of memories, tapes, disks, and
 input-output devices; in humans, the body that contains the brain.

 But perhaps, Newell speculates, another level should be added
 above the configuration level, beyond the individual body that
 contains the brain. Newell calls it the knowledge level, and following
 his earlier taxonomy, the system at this level is the agent; the
 components are goals, actions, and bodies. The medium at the
 knowledge level is, of course, knowledge.

 Thus an agent?a human or a computer system?has knowledge
 (encoded, however, at the symbol level, not the knowledge level),

 which it processes to determine actions to take. Knowledge requires
 both structures and processes: one kind of knowledge, structural, is
 impotent without the other kind, procedural. Behavior at the knowl
 edge level is regulated by the principle of rationality; actions are
 selected to attain the agent's goals. Rationality, however, is not
 perfect, but limited.

 In a recent book addressed to nonspecialists and called The Society
 of Mind, Marvin Minsky offers another view of what mind might be,
 ideas distilled from a professional lifetime devoted to AI research.7

 While he shares the AI assumption that intelligence grows out of
 matter (or nonintelligence), he takes a somewhat less hierarchical
 view of the whole process than Newell.

 Minsky suggests that the entity called mind is the product of many
 agents working sometimes together, sometimes in conflict, each with
 greater or lesser short-term goals and shallow knowledge, but
 together producing all the phenomena we are used to talking about

 with regard to mind: the self, individuality, insight and introspection,
 memory, intelligence, learning, and so forth. In a delightful and
 powerful metaexample, the book itself is composed of many brief
 essays, often less than a page in length, the whole forming an instance
 of the larger point Minsky is making. (In a postscript, Minsky says he
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 tried to write it differently, but it just didn't work. "A mind is too
 complex to fit the mold of narratives that start out here and end up
 there; a human intellect depends upon the connections in a tangled

 web?which simply wouldn't work at all if it were neatly straight
 ened out."8)
 Within those brief essays Minsky deals with nearly every aspect of

 thought, which "is not based on any single and uniform kind of
 'logic,' but upon myriads of varied kinds of processes, scripts,
 stereotypes, critics and censors, analogies and metaphors. Some of
 these are acquired through the operation of our genes, others are
 learned from our environments, and yet others we construct for
 ourselves. But even there inside our minds, nobody ever really learns
 alone, since every step employs so many things we've learned before,
 from language, family, friends?as well as from our former Selves
 [states of being]. Without each stage to teach the next, no person
 could construct anything so complex as a mind."9

 Do people think logically? Not really. Do computers?-Not those
 either. Instead, both use connections?processes that involve causes,
 similarities, and dependencies. The connections between agents are

 myriad, often indirect. Minsky doubts that the scientific laws of
 intelligence that will eventually emerge can ever be as simple as the
 laws of physics, because intelligence?symbol manipulation?is more
 complicated than matter.

 THE SCIENCE OF ARTIFICIAL INTELLIGENCE

 Since the beginning of modern computing it has been widely believed
 that if only people could communicate with computers in ordinary,
 natural language, many severe communication problems would be
 eased. (Indeed, this belief continues: a significant portion of effort in
 the Japanese fifth-generation project to develop large-scale intelligent
 computers is focused on natural-language processing.10) Early com
 putational approaches to natural-language understanding relied on
 formal, virtually mathematical, models of language, and whatever
 their elegance, produced unsatisfactory results. The problem of
 automatic translation between natural languages, for example, one of
 the first nonmathematical problems tackled in postwar computation,
 created high hopes and then dashed them; it has had episodic waxing
 and waning ever since.
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 AI researchers in language have taken a number of approaches,
 and one of the most influential has been that of Roger Schank and his

 colleagues at Yale. Early in the 1970s Schank formulated a theory of
 conceptual dependency, which suggests that concepts, not words, are
 the proper primitives for linguists to deal with (concepts such as
 possession-changing-action standing for give or take or buy or sell).
 Schank proposes a universal representation system at the conceptual
 dependency level. At that level, when two sentences are identical in
 meaning, regardless of language, then there is only one representa
 tion. This work, in its attention to larger contexts, has little interest in
 focusing on simple sentence-by-sentence interpretations.11 Schank
 reports that each implementation of his general theory has opened up
 new, unanticipated problems and has both refined and expanded the
 premises the theory is based on.

 Nevertheless, AI research in language (and the Schankians repre
 sent only one approach) has come a long way. Thirty years ago
 scholars would scoff: How could a computer ever understand the
 difference between the pen is in the box and the box is in the pen? The
 answer is that an intelligent program can often resolve linguistic
 ambiguity, rephrase a simple narrative, infer answers to questions
 about it, and even tell simple stories.

 As the computer proliferated after World War II, and its
 information-processing potential impressed a small number of re
 searchers, some found the parallels between the on-off nature of the
 neuron and the electronic switch irresistible. In the early 1940s a
 brilliant University of Illinois neurophysiologist, Warren McCulloch,
 joined with a young mathematician, Walter Pitts, to try to define the

 mind mathematically as a net of interconnected neurons, on-off
 devices. The McCulloch-Pitts work, while influential for a decade or
 more, lost favor with the AI community. Many turned away from it,
 preferring a more information-processing view.

 Thirty years later, with the availability of powerful new computers,
 the neural network idea has reemerged, dramatically revitalized and
 renamed connectionism. While connectionism, or neural net re
 search, aims to build a model of natural intelligence using computer
 components, few are now led to compare the neuron with the on-off
 switches of the computer.

 It bears repeating that all approaches in artificial intelligence share
 three assumptions: that intelligent behavior is explicable in scientific
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 terms, that it can take place outside the human skull, and that the
 computer is the best laboratory instrument for exploring those
 propositions. Which particular approach will prove the best remains
 to be seen.

 In the mid-1960s a small group of Stanford researchers, led by
 Edward Feigenbaum and Joshua Lederberg (now president of Rocke
 feller University), decided to transform their impatience with the toy
 problems that had preoccupied AI research efforts?chess, abstract
 game-playing, and the like?into an exploration of a real-world
 problem. Their stated aim was to try to simulate scientific induction:
 How do scientists, confronted with a problem, reason their way
 toward a solution? As a test they selected the difficult problem of
 spectrographic analysis, a complicated procedure for analyzing the
 composition of organic molecules, then the domain of Ph.D. chemists.

 DENDRAL, the program that eventually emerged from this effort,
 was the first expert system, a method of capturing human expertise
 that has proved itself in various domains, causing considerable
 excitement in the marketplace as commercial ventures discovered the
 advantages of expert systems applications.

 In principle, the expert system is simple. It consists of three
 connected subsystems:

 1. A knowledge base, comprising facts, assumptions, beliefs,
 heuristics ("expertise"), and methods of dealing with the data base to
 achieve desired results, such as a diagnosis or an interpretation or a
 solution to a problem.

 2. A data base, a collection of data about objects and events on
 which the knowledge base will work to achieve desired results.

 3. An inference engine, which permits inferences to be drawn from
 the interactions between the knowledge and data bases.

 The system is presented with a problem, evokes data from the
 questioner, and eventually offers advice toward the solution. It can be
 questioned in natural human language, which not only makes the
 expert system valuable to busy professionals but also makes it a fine
 instructional device for novices. From such relatively simple begin
 nings has developed a multimillion-dollar worldwide business that
 promises soon to be earning a great deal more.
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 Artificial intelligence, addressing as it does the central interests of
 human beings, their symbolic capacities, cannot fail to affect many
 other domains. Who can say which is likely to be the most impor
 tant? The elucidation of human intelligence is obviously important;
 so, however, is its augmentation or amplification, with the help of
 mechanical intelligent assistants. But there are other, less obvious
 terrains where it may soon show its influence. Consider, for example,
 the present situation in the visual arts. Many of the fine arts long ago
 removed themselves from everyday access and understanding. Still,
 critics assure us that if we had discernment and training, we would all

 see why a hunk of iron from Richard Serra's studio is different from
 a hunk of iron ready to be hauled off to Joe's Scrap Metals, why Andy

 Warhol's pictures of Campbell's soup cans or Brillo boxes are more
 significant than the cans and boxes themselves, why it is worthy of
 our attention that the late Joseph Beuys deposited a lump of lard on
 the floor of the Guggenheim Museum and called it art.

 The critics are correct. Still, we sometimes suspect a gigantic con
 game, and our suspicions are not much allayed by the monumental
 disputes among the credentialed experts themselves. It seems that
 discernment and training, while necessary, are clearly not sufficient. If
 outsiders are baffled, professional art discourse?so largely histori
 codescriptive, so often frustratingly inexact?seems to verge on the
 arbitrary, and it is easy to suspect confidence games.

 I return to AARON and its work, an apt conclusion for an essay on
 artificial intelligence. When Harold Cohen first began to work on
 AARON, he wished "to understand more about the nature of
 art-making processes than the making of art itself allows, for under
 normal circumstances the artist provides a near-perfect example of an
 obviously present, but virtually inaccessible body of knowledge."12
 AARON's drawings were not especially intended to be aesthetically
 pleasing, though the program was capable of generating such draw
 ings. The objective was to allow the examination of certain properties
 of freehand drawing?what Cohen calls, in a deliberately general
 phrase, "standing-for-ness."

 Specifically, Cohen wanted a more precise answer to certain
 important questions. What is an image? How do two-dimensional

 marks on a surface evoke in the human mind real objects in the
 world? Do certain universals exist within our cognitive structures
 that permit humans to infer meanings from two-dimensional images?
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 In brief, Cohen sought not only the grammar of two-dimensional
 images (closed figures standing for solid objects, occlusion standing
 for the third dimension of spatial relations) but also the beginnings of
 their semantics?the minimal conditions required for a set of marks
 to function as an image. AARON's first images were abstract, sharing

 with paleolithic art (and perhaps most human image-making) in the
 attempt to minimize the problem of dimension. Nothing was implied
 about depth by the spaces between pictorial elements. AARON then
 moved on to studies of edges and of implied depth.

 Lately the program has surprised its longtime viewers by doing
 figurative drawing, which Harold Cohen the painter avoided, but
 which Harold Cohen the student of image- and art-making feels is
 necessary to explore. "The first time the program accumulated closed
 forms into something it knew to be an approximation of a figure, and
 I found an array of quasi-people staring eyelessly at me from my old
 4014,1 recoiled in fright. What was I getting myself into?"13 Those
 quasi-people are distinctively AARON's: seen to frolic in recogniz
 able though fantastical tropical gardens, on playing fields, or (per
 haps in homage to C?zanne) on bathing beaches, they can be
 identified by gender.
 To repeat, AARON cannot "see" human figures, trees, leaves,

 playing fields, or any other part of the material world. Instead, Cohen
 has provided his program with ideas about these things, indirect
 knowledge. In the manner of an artist who is required to conceptu
 alize what a traveler tells him about a distant place he has never
 visited, or in the manner of an artist who illustrates a fairy tale,
 AARON has taken off. The human figures appear in many poses?
 AARON knows how joints move, how human figures keep their
 balance. He is able to summon up a nearly infinite repertoire of
 plausible human poses. When these figures are placed within a
 landscape, the general ideas AARON has about plant growth allow
 it to generate a great variety of individual plants and trees.

 In AARON a central idea of artificial intelligence is exemplified:
 the program is able to generate the illusion of a complete and
 coherent set of images out of a comparatively simple and sparse
 lower representation. But if AARON can stand as a representation of
 present AI research, it also stands, in my view, as an example of the
 surprising influence AI can have on fields very distant from its origins
 in the mathematical sciences and engineering.
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 What Aaron does is clearly image-making, but is it art? Yes, Cohen
 answers serenely, standing aside from his creation, his protege, as he
 calls it, which busies itself with its drawings. "Within Western
 culture," he goes on, "we have always afforded the highest level of
 responsibility?and praise or blame?to the individual who works on
 the highest conceptual level. We may hear a hundred different
 performances of a Beethoven quartet without ever doubting that we
 were listening to Beethoven. We remember the names of architects,
 not those of the builders who made their buildings. And, particularly,
 we value those whose work leaves art in a different state to the state

 in which they found it."14
 The program AARON, he believes, stands in relation to its

 individual drawings the way a Platonic ideal stands in relation to its
 earthly instantiations. It is a paradigm. That Cohen has found a way
 to work his will upon and through the paradigm rather than upon a
 single instantiation simply means that his level of involvement is
 much higher, conceptually speaking, than has ever before been
 possible for the visual artist. It is similar to the way a composer writes
 a score instead of giving a performance, although in AARON the
 program is responsible for all the performances. It is as if a score
 could play itself (a desire of composers throughout this century).15

 Art, Cohen argues, is humanity's most varied and subtle exercise in
 knowledge representation. The history of art is not simply a record of
 shifts in meaning or style, but of shifts in the relationship of meaning
 and style, all smaller by far within a specific culture than between
 cultures.

 A UNIVERSAL SYMBOLIC CODE?

 We have the capacity to understand times that are not our own,
 cultures that are not our own. Let us take all this much further, into
 the realm of speculation, and, borrowing Schank's continuum of
 language understanding, say that there are times when we encounter
 an artifact from a culture or a time not our own that makes sense,
 that allows us to achieve a more profound cognitive understanding,
 that makes for a deeper empathetic understanding.

 Yet, with some modernism and with what has followed it, we are
 often bewildered; we need to depend on experts who do not agree
 among themselves. We lack an objective, precise, and coherent

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:22 UTC�������������� 

All use subject to https://about.jstor.org/terms



 82 Pamela McCorduck

 language for defining, measuring, and otherwise interpreting the
 process or the products of representation?in this case, visual images.

 Cohen, for one, is dubious about the existence of such a code,
 dismissing the concept as the "telecommunications model of art."16
 He suggests the transaction between image-maker and image-reader
 takes place at a simple level of cognition; the sense of meaningfulness
 is generated by the structure of the image rather than by its content.

 Thus, the interpretations of the three drawings offered at the begin
 ning of this essay rest on one individual's life of acculturation,
 nothing more. Cohen would allow me my acculturated interpreta
 tions, satisfied that AARON's pictorial generative power had drawn
 me into a transaction that is not an image of two people in an
 imagined paradise but rather the pictorial record of an act of will?

 AARON's, and finally, Harold Cohen's. And this accords with the
 belief of a number of prominent aestheticians and philosophers that
 this is all that can be confidently said about any work of art.17

 Cohen may well be right to doubt the universality of higher
 representational forms (in the end Freud and Jung were unsuccessful
 in that search). At the same time he shows universality at a lower
 cognitive level, where certain motifs are ubiquitous in human expres
 sion?zigzags, crosses, squares, m?ndalas, combs, etc.?all built from
 even simpler elements.

 Yet suppose that he is not right. Suppose that at some level, yet to
 be defined, a set of universal concepts underlies all human symbolic
 expression, the visual arts being only one aspect of this. Can that level
 be elucidated? If it can, will it clarify the human urge to express things
 symbolically? Will it suggest that we cannot really speak meaning
 fully to one another or pretend that we do so? Precise expression,
 after all, has introduced a certain kind of cross-disciplinary muteness
 to science even as it has also introduced a set of larger universals.

 Artificial intelligence has properly set many ambitious goals for
 itself: a rigorous understanding of intelligence, wherever it manifests
 itself, including fuller evidence for the physical symbol system hy
 pothesis; more precise concepts of mind, understanding, learning,
 knowledge representation, and the uses of natural language. If
 Harold Cohen's doubts are mistaken?if artificial intelligence can
 begin to illuminate a universal code, if such a thing indeed exists, a
 level of meaning underlying the most important symbolic expressions
 of human experience?then the questions already raised in studies of
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 linguistic utterances and visual representations will become apparent
 also in other places. If such a question is to be moved beyond mere
 rhetoric (a phrase to chill any writer) and answered with empirical
 knowledge, artificial intelligence?of all things?is our best hope.

 ENDNOTES

 Figures 1-3 are reproduced courtesy of Harold Cohen.

 1Except where noted, this and other material on the early history of artificial
 intelligence that follows, with its references, is presented in Pamela McCorduck,

 Machines Who Think (San Francisco: W. H. Freeman & Co., 1979).
 2Joseph Needham, Science in Traditional China (Cambridge: Harvard University

 Press, and Hong Kong: Chinese University Press, 1981).
 3Patrick Henry Winston, Artificial Intelligence (Reading, Mass.: Addison-Wesley,

 1977).
 4McCorduck, Machines Who Think.
 5Allen Newell and Herbert Simon, "Computer Science as Empirical Inquiry:

 Symbols and Search," Communications of the Association for Computing
 Machinery (March 1976).

 6Allen Newell, "The Knowledge Level," Artificial Intelligence 18.
 7Marvin Minsky, The Society of Mind (New York: Simon and Schuster, 1986).
 8Ibid.
 9Ibid.
 10Edward A. Feigenbaum and Pamela McCorduck, The Fifth Generation: japan's

 Computer Challenge to the World (Reading, Mass.: Addison-Wesley, 1983;
 paperback edition, New York: Signet, 1984).

 11 Roger Schank, with Peter Childers, The Cognitive Computer (Reading, Mass.:
 Addison-Wesley, 1984).

 12Harold Cohen, "What is an Image?" Proceedings of the Sixth International Joint
 Conference on Artificial Intelligence?Tokyo (1979).

 13Private conversation with Harold Cohen.

 14Pamela McCorduck, The Universal Machine: Confessions of a Technological
 Optimist (New York: McGraw-Hill, 1985; paperback edition, New York:
 Harcourt Brace Jovanovich, 1986).

 15Ibid.
 16Private correspondence with Harold Cohen.
 17See, for example, Arthur Danto's The Transfiguration of the Commonplace

 (Cambridge: Harvard University Press, 1981).
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 Neural Nets and Artificial Intelligence

 Neural nets are aggregates of interconnected nerve cells, or
 neurons. The human brain, for example, is a neural net
 comprising about ten billion interconnected neurons. Some

 how, such a net learns and remembers, thinks and feels. It is the
 substrate for behavior and the embodiment of mind. In the past
 half-century many attempts have been made to model the ways in
 which neural nets work, particularly those involved in seeing and
 moving. In this article, however, we shall concentrate on a somewhat
 more abstract, but fundamental, problem?the representation of
 external events inside neural nets. In our view this problem is central
 to any understanding of intelligent behavior in minds or machines.

 We will conclude by discussing neural nets in relation to contempo
 rary studies of artificial intelligence.

 INTRODUCTION

 Neurons are living cells capable of receiving and transmitting elec
 trochemical signals in highly specialized ways. Their complexities can
 be accurately simulated only by intricate computer chips, and nets
 comprising many such chips are needed to simulate even the simplest
 processes that are thought to occur in the brain. The modeling of
 neural nets, however, started long before such complexities were

 Jack D. Cowan is a professor of applied mathematics and theoretical biology in the department
 of mathematics at the University of Chicago.

 David H. Sharp is a theoretical physicist in the theory division of Los Alamos National
 Laboratory.
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 apparent. Perhaps the first major contribution was in a paper by
 Warren S. McCulloch and Walter H. Pitts published in 1943.1 In this
 paper McCulloch and Pitts applied symbolic logic to the problem of
 describing what neural nets can do. In effect they proved that all
 processes that can be described with a finite number of symbolic
 expressions (e.g., simple arithmetic; classifying, storing and retrieving
 finite sets of data; and recursive application of logical rules) can be
 embodied in nets of what they called "formal" neurons. Fig. 1 shows
 several examples of McCulloch-Pitts neurons.

 I

 NOTx
 Fig. 1. McCulloch-Pitts formal neurons. Each unit is activated if and only if its total

 excitation reaches or exceeds zero. For example, the first unit is activated if and only if both the
 units x and y are activated, for only then does the total excitation, (-hl)jc -+- ( + l)y, balance the
 threshold of -2 set by the threshold unit, i, whenever both x and y equal +1 (activated). The
 i-unit is always active. The numbers ( ? 1) and so on shown above are called weights. Positive

 weights denote excitatory synapses; negative weights, inhibitory synapses. Similarly, open
 circles denote excitatory neurons; filled circles, inhibitory ones.

 McCulloch-Pitts Nets

 Nets of formal neurons, or McCulloch-Pitts nets, as they are now
 called, are extremely simplified representations of the real thing. For
 example, they are synchronous: switching occurs only at regular,
 discrete intervals. Thus, formal neurons are just simple logical
 switches, quite unlike real neurons. Despite these simplifications,

 McCulloch-Pitts nets are important in that they can embody what
 ever operations and processes can be described in logical terms.
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 Donald M. Mackay has expressed this capacity as follows: if you
 assert that there is a certain process that a computer cannot go
 through, and if you can describe in words exactly what constitutes
 such a process, then at least one McCulloch-Pitts net that can
 embody and carry out the process exists.2 McCulloch and Pitts thus
 proved that formal neural nets, if supplemented with indefinitely
 large memory stores, are equivalent to a class of computing machines
 that Alan M. Turing has shown to be computationally universal.3

 Reliable Computing with Unreliable Neurons

 McCulloch-Pitts nets were the first examples of model neural nets
 designed to perform specific logical tasks. But what happens if such
 nets malfunction from time to time or are damaged? This problem
 attracted one of the leading mathematicians of this century and a
 pioneer in the development of digital computers, John von Neumann.
 By introducing redundancy?using many neurons to do the job of
 one4?von Neumann solved the problem of making McCulloch
 Pitts nets function reliably. In such nets one bit of information (the
 choice between one and zero) is signaled by the synchronous activa
 tion of many neurons rather than by the all-or-nothing activation of
 one formal neuron: one obtains whenever more than half are
 activated, zero otherwise. Von Neumann proved that redundant

 McCulloch-Pitts nets operating in such a fashion can be designed to
 carry out arithmetical calculations with high reliability. Subsequent
 work by Shmuel Winograd and Jack D. Cowan provided more
 efficient ways of constructing highly reliable redundant neural nets, at
 the cost of requiring more complicated microchiplike neurons, each

 with many contacts, to implement the needed logical functions.5 The
 Winograd-Cowan construction was noteworthy in that it utilized a
 distributed representation of information: one bit of information was
 represented redundantly by many neurons, as in von Neumann's net,
 but in addition each neuron partially represented many bits.

 These solutions to the reliability problem provided an insight into
 the way neural nets in the brain might function reliably despite
 damage. Ever since John Hughlings Jackson's neurological studies of
 brain-damaged patients6 and Karl S. Lashley's demonstration of the
 spared cognitive abilities of brain-damaged rats,7 it has become
 apparent that although different regions of the brain are specialized
 for differing functions, the scale of such a localization of function
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 need not extend to single neurons. In terms of the von
 Neumann-Winograd-Cowan analysis, the representation of a bit of
 information need not be unary, but may be redundant or even
 distributed. There has been much debate on this point. Lashley, for

 example, proposed that the various brain regions are equipotent with
 respect to function8 (any region can implement a given task)?the
 very antithesis of regional localization. Conversely, Horace B. Barlow
 asserted that the further one moves from peripheral to central regions

 of the brain, the more the level of redundancy in brain functioning is
 reduced.9 Movement toward the central region culminates in a unary

 representation of information deep in the brain. In current terminol
 ogy, we speak of "grandmother" neurons, supposedly activated only
 when a grandmother is perceived.

 Cell Assemblies and Hebb Synapses

 Lashley's notion of the equipotentiality of brain regions is reflected in
 the work of Donald O. Hebb.10 In 1949 Hebb proposed that the
 connectivity of the brain is continually changing as an organism
 learns differing functional tasks and that cell assemblies are created
 by such changes. Hebb followed up an early suggestion of Santiago
 Ramon y Cajal and postulated that the repeated activation of one
 neuron by another through a particular contact, or synapse, increases
 its conductance, so that groups of weakly connected cells, if synchro
 nously activated, tend to organize into more strongly connected
 assemblies. Here again, the representation of a bit of information is
 distributed. Hebb's proposal has proved to be very influential.
 Despite the lack of definitive evidence to support Hebb's ideas, the
 cell-assembly theory has triggered many investigations of learning in
 neural nets and of the way in which synchronized neural activity is

 generated and propagated.

 PATTERN RECOGNITION, LEARNING, AND MEMORY

 Hebb's proposal of synaptic modification during learning triggered
 much work on adaptive neural nets, which can learn to perform
 specified tasks. Early work on these nets was carried out in the 1950s
 by Albert M. Uttley, who demonstrated that neural nets with
 Hebb-like modifiable connections could indeed learn to classify
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 simple sets of binary patterns (111010100, 101110101, etc.) into
 equivalence classes (e.g., all those beginning with 101).11

 The problem of pattern classification, or pattern recognition, is
 central to any theory of intelligent behavior in either animals or
 machines. Pitts and McCulloch were among the first investigators to
 address this problem.12 They noted that animals need to recognize
 many different versions of the same pattern, just as we need to be able
 to read many different versions of the same text?handwritten;
 printed in different sizes, fonts, colors; seen in different kinds of
 lighting. In effect, the need is to recognize not just one example of a
 pattern but all its examples. Pitts and McCulloch constructed two
 neural nets, each of which partly solves the problem. The first net
 attempts to find invariant properties of a given pattern (i.e., proper
 ties common to all possible variants of the pattern). The second net
 transforms any externally presented variant into a standard represen
 tation. Pitts and McCulloch then took a bold step: they proposed that
 the neural nets of the auditory and visual cortices embodied the first
 solution and that the neural net in the superior colliculus (involved in
 the control of eye movements) embodied the second solution. Both
 cortices were presumed to contain a mechanism that sampled or
 scanned all variants of a pattern at a frequency corresponding to the

 well-known alpha rhythm of the cortex,13 approximately ten cycles
 per second. McCulloch and Mackay later carried out experiments
 that proved the scanning hypothesis to be false.14

 Perceptrons

 Some ten years after the publication of Pitts and McCulloch's paper,
 a major approach to the pattern-recognition problem was introduced
 by Frank Rosenblatt, who showed how McCulloch-Pitts nets with
 modifiable connections could be "trained" to classify certain sets of
 patterns as similar or distinct.15 Rosenblatt called such nets percep
 trons, and we shall use this term in what follows. Fig. 2 shows the
 architecture of a typical elementary perceptron. It consists of a set of
 "sensory" units connected, through a single layer of McCulloch-Pitts
 neurons (which we shall refer to as M-P units), to a set of "motor"
 units. Initially, the strengths or weights of all contacts or synapses in
 the net are set to arbitrary values so that stimulation will generate an
 arbitrary response. To obtain a desired response from the net requires
 that all these synaptic weights be adjusted. Rosenblatt found a way to
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 Fig. 2. An elementary perceptron, i.e., an adaptive McCulloch-Pitts neural net with
 modifiable synaptic weights that are changed if they generate incorrect responses.

 obtain the desired response with the following training procedure:
 first, note an M-P unit's responses to a given stimulus. Some of its
 responses will be correct (i.e., will be the responses desired); others
 will be incorrect. Therefore, adjust the unit's weights as follows:
 make no adjustments if the unit's response is correct. If it is incorrect,
 however, increase the weights of all activated synapses if the unit
 should be activated but isn't; decrease the weights if the opposite
 obtains. Do the same for all possible desired stimulus-response
 patterns. It can be shown that after only a finite number of presen
 tations of stimulus-response patterns, the weights converge to a set of
 values representing whatever computation or classification is embod
 ied in these patterns.16

 Adalines

 Shortly after Rosenblatt's first publications there appeared a closely
 related variant of the perceptron invented by Bernard Widrow and

 M. E. Hoff. They called it the adaline (for adaptive linear neuron).17
 The only difference between perceptrons and adalines lies in the
 training procedure. In an adaline the excitation delivered to a given

 M-P unit is subtracted from its desired activity (taken to be +1 for
 activation and -1 for nonactivation, rather than 1 and 0). Call the
 result d. The weight of an activated synapse is increased if d is
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 positive, decreased if d is negative. Conversely, the weight of an
 inactivated synapse is increased if d is negative, decreased if d is
 positive. This rule corresponds closely to the perceptron's, for if an
 M-P unit is not activated by a given sensory unit when it should be,
 the weight of the relevant synapse increases, or if the converse is true,
 decreases.

 Limitations of Elementary Perceptrons and Adalines

 There are limits to the performance of elementary perceptrons and
 adalines. Seymour A. Papert and Marvin L. Minsky proved that
 elementary perceptrons cannot distinguish between such simple
 patterns as T and C.18 The difficulty lies in the nature of M-P units.
 As we said earlier, single units of this type can compute only such
 simple logical functions as x AND y, x OR y, NOT x, x AND NOT
 y, and so on. However, the function x OR ELSE y and its negation,
 NOT (x OR ELSE y), each require several M-P units. The reason is
 simply that x OR ELSE y is the same as (x AND NOT y) OR (y AND

 NOT x). This situation is unfortunate because the function NOT (x
 OR ELSE y) is computationally universal in Turing's sense: every
 other function can be expressed as a string of NOT (x OR ELSE y)'s.
 Fig. 3 shows the architecture of the simplest M-P net that implements

 Fig. 3. An M-P net that implements the logical function x OR ELSE y. The net comprises two
 M-P units, one of which is a hidden unit, and two threshold units. The weights of the hidden
 unit cannot be correctly modified with the procedures described earlier.
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 the function x OR ELSE y. It comprises two M-P units and two
 i-units. One of the M-P units lies entirely within the net; its output
 drives only the M-P unit, not the motor unit. In current terminology
 the interior unit is said to be "hidden," and what Papert and Minsky
 proved is that an elementary perceptron or adaline, which consists of
 only a single layer of M-P units, is not computationally universal,
 even with modifiable connections. In addition, they conjectured that
 hidden units in multilayer perceptrons cannot be trained?in other
 words, that the problem of assigning credit to hidden units is
 unsolvable.

 It turns out that the limitations of simple perceptrons and adalines
 can be overcome. In fact, in 1961 Rosenblatt introduced a training
 procedure that almost solved the problem.19 Despite this innovation,
 successful training procedures did not appear until 1985. We describe
 these in a later section.

 Associative Memory

 Another notable feature of the perceptron is that its memory of the
 learned task is distributed over all the connections modified during
 the training phase and is therefore less likely to be disrupted by
 damage. In these respects, it answers some of Lashley's concerns
 about human memory. However, there is an important aspect of
 human memory that perceptrons do not directly address?namely,
 that human memory seems to be associative as well as distributed.

 Whatever is common to two differing memories binds them together,
 so that one may elicit the other if the two have sufficient overlap.
 Neural nets with associative memory have been extensively studied

 since the mid-1950s, beginning with the work of Wilfrid K. Taylor.20
 Fig. 4 shows the structure of Taylor's original net. It consists of a
 layer of associative units sandwiched between arrays of sensory and

 motor units. It is similar in structure to a three-layer perceptron,
 except that all contact weights in the net are modifiable, and the units
 are not M-P neurons but analog devices. (Consider the difference
 between a dimmer and a light switch. With a dimmer one can change
 the level of illumination in a smooth fashion, whereas with a switch
 it is all or nothing. Analog devices operate like dimmers rather than
 like switches). The training procedure, also different from the per
 ceptron's, is simply Hebb's rule that activated synaptic weights
 increase if they activate their target units. Such changes have been
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 Fig. 4. A Taylor net. This net uses analog units with modifiable weights and can be trained
 to associate differing sets of stimulus patterns.

 observed in brain tissue.21 The net learns to associate differing
 sensory patterns through repeated presentation of pairs of patterns,
 one of which initially elicits a motor response. Eventually, the other
 pattern triggers the response. Thus, Taylor nets exhibit simple
 Pavlovian conditioning,22 and the associated memory is stored in a
 distributed fashion in the pattern of weights.

 In later work Taylor constructed a more elaborate net in which
 motor units reconnect with sensory units and with each other. Such
 a net is capable of forming associations with paired stimuli in a more
 reliable and controllable way than the earlier net and is also capable
 of pattern discrimination in the style of perceptrons and adalines.
 Taylor suggested that the association areas of the cerebral cortex and
 the thalamus contained such nets.23

 Shortly after this, a very similar net was introduced by Karl
 Steinbuch?the "learning matrix."24 It consists of an array of
 switches interposed between sensory and motor units. As in Taylor's
 scheme, the net learns to associate sensory patterns with motor
 patterns. The associated memory is stored in the pattern of open or
 closed switches. Learning matrices have a particularly simple math
 ematical structure, and their performance can be readily analyzed.
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 Following Steinbuch, but in most cases quite independently, many
 others devised similar nets?for example, James A. Anderson,25
 David J. Willshaw, O. Peter Buneman and H. Christopher Longuet
 Higgins,26 David Marr,27 and Teuvo Kohonen,28 all of whom
 discovered that associative nets are also content-addressable (i.e.,

 stimulating such a net with some fragment of an associated memory
 will elicit the complete response). Thus, the net can be addressed with
 the partial content of a memory rather than just its location. Because
 of this property, associative nets are now generally referred to as
 associative content-addressable memories (ACAMs). Marr's work on
 this property is particularly interesting in that it is formulated as a
 theory of how the cerebellum enables animals to make delicate and
 precise voluntary movements and how memories may be temporarily
 stored in the hippocampus.

 A Theory of the Cerebellum

 The cerebellum ("little brain") is present in all vertebrates. It com
 prises roughly as many neurons as does the cerebrum (brain) and is
 thought to be the organ that controls voluntary movements. Com
 pared with the cerebrum, the cerebellum has a strikingly regular and
 simple architecture. This architecture was revealed in the 1960s,29
 but its precise function and mode of operation remain to be discov
 ered. Marr introduced the idea that the cerebellum is an ACAM that

 is trained by the cerebrum to control the execution of sequences of
 voluntary movements.30 In Marr's theory (see Fig. 5), each of the five
 types of neuron comprising the cerebellar net is assigned a specific
 function. It is known that ACAMs work most efficiently when the

 stored patterns are uncorrelated with each other. Marr assigns to the
 granule cells the task of decorrelating activity patterns arriving along
 the mossy fibers. The resulting patterns are stored in the cerebellum
 via Hebb synapses, between granule and Purkinje cells and under the
 control of climbing fiber activation, exactly as patterns are stored in
 a learning matrix. It is easy to overload ACAMs with too many
 mossy fiber patterns. Golgi cells are supposed to prevent overload by
 raising the thresholds of granule cells. Since Golgi cells are themselves
 driven by mossy fiber activity, the more they are active, the more they
 inhibit and therefore raise the thresholds of granule cells. Thus, Golgi
 cells act like the automatic volume controls of radios and televisions.

 To retrieve patterns correctly from the store, the activation thresholds
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 Fig. 5. Marr's theory of the cerebellum. Granule cells (g) are the only excitatory cells in the
 cerebellum; all others are inhibitory. Golgi cells (Go) control granule cell thresholds; basket
 (Ba) and stellate (5) cells control Purkinje cell (Pu) thresholds. The net is trained in the standard

 ACAM style to associate mossy fiber (MF) and climbing fiber (CF) patterns.

 of Purkinje cells must be set high enough to suppress unwanted
 patterns. It is the task of basket and stellate cells, operating in a
 fashion similar to Golgi cells, to maintain these thresholds. The result
 of all this is that climbing fiber activation trains the cerebellar net to

 respond appropriately to mossy fiber activation patterns. This train
 ing is postulated to correspond to learning to execute complicated
 sequences of voluntary movements (e.g., driving, flying, playing the

 piano).31
 Marr's theory is noteworthy in that for perhaps the first time, a

 specific function was assigned to each neuron in a part of the brain.
 This theory was slightly modified by James S. Albus, who noted that
 since Purkinje cells inhibit cells in the cerebellar nucleus, it is more
 likely that granule-Purkinje cell synapses are weakened rather than
 strengthened by coincident activation (i.e., training weakens the
 inhibition of cerebellar nucleus cells by Purkinje cells).32 Since the
 publication of the Marr-Albus papers, a number of attempts have
 been made to test the theory.33 It is fair to say that its validity or
 otherwise has not yet been definitively determined, although some
 recent experimental results appear to support Albus's version of the
 theory.
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 A Theory of the Hippocampus

 Marr applied a very similar analysis to another part of the brain, the
 hippocampus,34 so called because its shape resembles that of a sea
 horse. The hippocampus lies in the temporal lobe of the cerebrum
 and is thought to be a region where short-term, or working,
 memories are formed, particularly those related to the spatial aspects
 of an animal's environment.35

 Like the cerebellum, the hippocampus has a particularly regular
 structure. Its principal region, the cornu ammonis (CA), comprises a
 single sheet of "output" neurons, the so-called pyramidal cells,
 together with ancillary "interneurons," mostly stellate neurons. In

 Marr's theory the pyramidal cells are analogous to cerebellar Pur
 kinje cells, and the various interneurons are analogous to cerebellar
 granule, Golgi, basket, and stellate cells. Thus, the hippocampus, like
 the cerebellum, is modeled as an ACAM. However, there are
 important differences between the two structures. According to

 Marr, the hippocampus has to learn to form its own internal
 classifications of the many input patterns it has to store. It therefore
 needs granule cells with modifiable synapses as well as pyramidal
 cells. In fact, Marr showed that at least two sheets of modifiable
 granule cells are needed for reliable operation. In addition, the
 hippocampus, given only a small fraction of the relevant cues, has to
 be able to retrieve patterns. It can do so only if the CA's pyramidal
 cells are interconnected via modifiable excitatory Hebb synapses, so
 that the entire sheet of CA pyramids acts cooperatively.

 A Theory of Cerebral Neocortex

 Marr's theory of the hippocampus is actually a specialization of his
 more general theory of the function of the cerebral neocortex.36 The
 neocortex, containing most of the neurons in the brain, is the major
 part of the cerebrum. Marr postulated that the primary function of
 neocortical nets is to form internal representations of classes and
 subclasses of objects, using perceptron-like procedures. In providing
 a role for climbing fibers to activate and guide the formation of new
 classificatory neurons, this theory differs from his theory of the
 hippocampus. To date, neither of these models has been definitively
 tested. However, considerable evidence has accumulated that many
 of the excitatory synapses on hippocampal pyramidal cells can be
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 strengthened for long times (from seconds to minutes) by suitable
 presynaptic stimulation. This effect, called long-term potentiation
 (LTP),37 is consistent with Marr's cortical theories.

 CURRENT DEVELOPMENTS

 Following Marr's work, there was a long hiatus in which little
 progress was made on how to train neural nets to represent infor
 mation. Much work was done on how the brain develops38 and on
 neurodynamics,39 the generation and propagation of synchronized
 neural activity. It was not until the early 1980s, however, that real
 progress was made on the problems pioneered by Rosenblatt and
 Marr. These new investigations are generally classified under the
 term connectionism, which stands for the old notion that information

 is stored in the brain in the pattern of synaptic weights laid down
 during learning. This idea has been around almost since Ramon y
 Cajal first discovered neurons,40 and as we have noted, was elabo
 rated by Hebb in 1949. It forms the basis for most of the work on
 perceptrons and adalines since then. We shall therefore use the term
 neoconnectionism to refer to current work.

 Hopfield Nets
 As our first example of neoconnectionism we describe the work of
 John J. Hopfield,41 who demonstrated the formal analogy between a
 net of neuronlike elements with symmetric connections,* now called
 a Hopfield net, and a material discovered in the past decade, called a
 spin glass.42 The origins of this work are to be found in a very
 penetrating paper published in 1954 by the neuroanatomist Brian G.
 Cragg and the physicist Nevill V. Temperley.43 Cragg and Temperley
 noted that just as neurons can be either activated or quiescent, so
 atoms in an assembly or a lattice can be in one of two states: they can
 be in spins pointing "up" or in spins pointing "down" (see Fig. 6).
 Furthermore, just as neurons either excite or inhibit one another, so
 atoms exert on their neighbors forces that tend to set their spins in
 either the same or the opposite direction. The properties of neurons
 in a densely connected net are probably somewhat similar to those of

 *If x and y are two neurons, then their connections are symmetric if the weight of the x to y
 synapse equals the weight of the y to x synapse.
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 Fig. 6. Lattice spin system. "Up" and "down" spins are arranged in a square lattice. Each spin
 interacts with its nearest neighbors to take up a stable configuration.

 atoms (or binary alloys) in a crystal lattice. Crystals, alloys, and other
 atomic assemblies can display differing types of order and disorder.
 These range from short-range order, in which, on the average, every
 "up" spin is surrounded only by "down" spins, to long-range order,
 in which, on the average, "up" spins persist at, say, every third lattice
 site in any given direction. Systems of spins showing various kinds or
 order provide good models of the properties of magnetic materials.
 For example, a ferromagnet, which consists of atoms tending to force
 each other to spin in the same direction, has long-range order; an
 antiferromagnet, which consists of atoms tending to force each other
 to spin in the opposite direction, also has long-range order; on the
 other hand, a paramagnet, which consists of atoms spinning both up
 and down in random patterns, is disordered. It is possible that neural
 nets exhibit analogous properties. Cragg and Temperley therefore
 suggested (a) that the domain patterns that are a ubiquitous feature of
 ferromagnets, comprising patches of up or down spins, should show
 up in neural nets as patches of excited or quiescent neurons and
 (b) that neural domain patterns, once triggered by external stimuli,

 would be stable against spontaneous random activity and could
 therefore constitute a memory of the stimulus.44 It is interesting to
 note that twenty years later William A. Little, via the mathematical
 analysis of a lattice spin system, arrived at virtually the same
 conclusions concerning the existence of persistent neural states as
 Cragg and Temperley did.45

 In 1975 David Sherrington and Scott Kirkpatrick discovered a new
 magnetic material consisting of a random mixture of both ferromagne
 tically and antiferromagnetically interacting spins and exhibiting no net
 magnetism.46 They called this material a spin glass. Spin glasses have
 interesting properties, one of which is the capacity to store many
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 different disordered spin patterns. Hopfield nets have similar properties,
 but they are not neural nets, since each element must both excite and
 inhibit its neighbors (see Fig. 7). Nevertheless, they are of interest as

 Fig. 7. A Hopfield net with symmetric connections. Units 1 and 2 excite one neighbor and
 inhibit another.

 artificial neural nets, particularly for memory storage.
 Hopfield recognized the formal analogy between a net of neuron

 like elements with random symmetric connection weights and a
 spin glass and, using Hebb's postulated rule for synaptic weight
 modification, showed that the weights can be modified so as to
 stabilize net activity.* Given such weights, any initial configuration of
 active and inactive elements will evolve toward a stable configura
 tion. Thus, the stable configurations can be used to store information
 in a reliable fashion. Hopfield nets, in fact, serve as reliable ACAMs
 and are similar in many respects to those constructed by Taylor,
 Steinbuch, Marr, and their associates.

 Hopfield nets represent an important conceptual advance in the
 theory of neural nets. Although they are not very realistic as models for

 * Hebb's rule can be stated as follows. Suppose neurons x and y are connected. Let X = ? 1
 be the state of the neuron x, and Y = ? 1 the corresponding state of the neuron y. Then the
 synaptic weight of the x to y contact is proportional to the average value of the product XY.
 This is an example of a local rule. The weight is determined only by the correlated activities of
 the neurons x and y.
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 nerve nets, the principle they embody?storing information in dynami
 cally stable configurations?is profound. Such a principle has its origins
 in the work of one of the early cyberneticians, W. Ross Ashby, who
 coined the term ultrastability to describe the way in which he thought
 brain activity patterns always tend toward dynamically stable configu
 rations.47 This principle is implicit in the work of many others.48

 Computing with Hopfield Nets

 Hopfield nets have proved to be of interest for solving computational
 optimization problems. A well-known application of these nets is the
 "traveling salesman problem," in which a salesman needs to visit
 each of a number of cities once on a schedule that minimizes the

 length of his journey. This is an example of what is called a
 constrained optimization problem.49 S. Kirkpatrick, C. D. Gelatt, Jr.,
 and M. P. Vecchi have shown that the equilibrium configurations
 taken up by a spin glass provide solutions to this problem.50 John J.

 Hopfield and David W. Tank have demonstrated that certain Hop
 field nets also find good solutions.51 Fig. 8 shows a solution involving

 Fig. 8. Comparison of procedures for solving the traveling salesman problem: (a) a random
 tour, of total length D = 11.9; (b) a tour found by the Kernighan-Lin procedure, D = 4.26;
 (c) a tour found by the Hopfield-Tank procedure, D = 5.07. It will be seen that the

 Hopfield-Tank tour is nearly as short as the Kernighan-Lin tour. (Redrawn from J. J. Hopfield
 and D. W. Tank, " 'Neural' Computation and Constraint Satisfaction Problems and the
 Traveling Salesman," Biological Cybernetics 55 [1985]: 141].)

 thirty cities. Although the Hopfield net does not find the shortest
 tour, it does find one that compares quite favorably with the solution

 found through the Kernighan-Lin procedure,52 one of the better
 procedures for solving constrained optimization problems. Recently
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 Richard Durbin and David J. Willshaw have devised another neu
 ronlike net that finds even shorter tours and works better on big
 problems.53

 Boltzmann Machines

 Hopfield nets suffer from one defect in their ability to find the best
 solution in constrained optimization problems. They can get trapped
 in metastable configurations. To find the true global minimum, the
 net must make random configurational changes from time to time,
 thereby gaining the ability to escape from metastable configurations.
 This is the essence of a well-known version of the Monte Carlo

 procedure, introduced at the Los Alamos National Laboratory in
 1953 by N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller,
 and E. Teller to find stable states.54 In this procedure the change
 produced by a random "flip" of one of the net spins is computed. If
 the new configuration is more stable, it is retained. Otherwise the
 configuration is rejected (i.e., the flip is cancelled). Such a procedure,
 although slow, will eventually find the most stable configurations.
 Geoffrey E. Hinton and Terrence J. Sejnowski accordingly used the
 Monte Carlo procedure to find stable configurations in Hopfield
 nets,55 in effect repeating Kirkpatrick, Gelatt, and Vecchi's use of

 Monte Carlo methods in spin-glass problems. In doing so they
 discovered a process by which the resulting nets, which they called
 Boltzmann machines, can modify their connectivity in a way that
 solves the hidden-unit credit assignment problem.

 The Boltzmann machine, an adaptive Hopfield net with hidden
 units, implements a Monte Carlo procedure for finding the stable
 configuration of active and inactive units; these units are not simple

 M-P neurons, which are all or nothing in their responses, but analog
 devices. Hinton and Sejnowski demonstrated that with these devices,
 stable configurations can be reached if contact weights change via the
 following rule: let p be the average probability of two units being
 simultaneously active when the S-units are activated by a stimulus
 pattern that clamps the motor units into some activation pattern, and

 let p' be the corresponding probability when the machine is freely
 running in the absence of stimulation. Let w be the weight of the
 contact between the two units. The rule by which w changes is very
 simple: if p is greater than p\ increase w; if p is less than p\ decrease
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 it. (The reader should compare this rule with the perceptron and
 adaline training rules given on pages 90 and 91). With such a rule
 in place, Boltzmann machines are capable of solving a variety of
 constrained optimization problems.56 Many such problems occur in
 computational approaches to vision.

 Learning Representations

 The Boltzmann machine also provides a solution to the credit
 assignment problem for hidden units, albeit in the special case of
 adaptive Hopfield nets. The rule given above solves the credit
 assignment problem for hidden units in terms of locally available
 information only (i.e., the change in weight of the contact between
 two units depends on their activation patterns alone). The Boltzmann
 machine learning process is autoassociative or unsupervised, depends
 only on correlations between pairs of units, and creates in the set of
 connection weights a distributed representation of the correlations
 that exist in and between members of the set of stimulus patterns. To
 put it another way, a Boltzmann machine can form a representation
 that eventually reproduces relations between classes of events in its
 environment.57 It therefore provides a possible solution to Marr's
 problem of how to construct such representations ab initio in the
 granule cells of the hippocampus and the neocortex. More generally,
 it provides a way in which distributed representations of abstract
 symbols can be formed and therefore permits the investigation by
 means of adaptive neural nets of symbolic reasoning.58

 Back-Propagation
 The Boltzmann machine represents a considerable advance in unsu
 pervised machine learning. However, because the machine uses a
 version of the Monte Carlo procedure to find stable configurations,
 the learning is very slow. In addition, the Boltzmann machine is a

 Hopfield net with only symmetric connections. These limitations
 have recently been overcome by David E. Rumelhart, Geoffrey
 Hinton, Robert J. Williams, and others in a successful implementa
 tion of the procedure originally suggested by Rosenblatt.59 Fig. 9
 shows the structure of the net. It is essentially a two-layer perceptron.
 It is also the basic architecture of Marr's model of the cerebellum,

 without inhibitory interneurons. The rules by which contacts are
 modified differ considerably from those of Marr's model, however,
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 Fig. 9. Structure of a multilayer perceptron. In contrast to an elementary perceptron (cf. Fig.
 2), there is a layer of hidden units, the synaptic weights of which are also modifiable. Ulis
 structure is, in fact, a subset of Marr's model of the hippocampus, but the procedure for
 changing weights is different.

 and derive from the adaline rules given earlier. Recall that in an
 adaline, weight changes are proportional to the differences between
 the desired activation pattern and the unit's total excitation. Rumel
 hart et al. have shown that for analog units a simple extension of the
 adaline rule solves the hidden-unit credit assignment problem.

 The actual computations are effected in two stages. In the first, the
 forward stage, the net is stimulated and motor unit responses are
 noted. In the second, the backward stage, these responses are used to
 adjust the weights of the motor units themselves, and then hidden
 unit weights are adjusted?hence the description of the procedure as
 back-propagation. It is here that the difference between the analog
 elements used by Rumelhart et al. and the simple M-P units used in
 elementary perceptrons and adalines proves decisive. The adaline
 procedure for modifying motor-unit synaptic weights can be ex
 tended to hidden-unit weights. Consider the weights in Fig. 10, which
 shows a section of the net depicted in Fig. 9. The requisite change in
 the hidden-unit weight W43 is related to the weights and weight
 changes of all units "downstream" of h3. Thus, given the changes in
 w31 and so on, which are determined by a slight modification of the
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 Fig. 10. How back-propagation works. The net is first stimulated, in this case via the unit S4
 The motor responses ml9 m2, and m3 are then obtained. The weights w31, w32, and w33 are
 then adjusted, and then the weight W43 is adjusted.

 adaline procedure described earlier (adapted to analog units), the
 change in W43 can be computed.

 The procedure of Rumelhart et al. provides a solution to the credit
 assignment problem and makes multilayered analog perceptrons and
 adalines into powerful tools for investigating supervised learning in
 adaptive neural nets. In what follows we describe a few applications
 of back-propagation.

 The x OR ELSE y Problem

 We have previously remarked on the failure of elementary percep
 trons and adalines to compute the logical function x OR ELSE y. This
 function is true if and only if x is true and y is false or vice versa, and
 is false otherwise. The truth table corresponding to x OR ELSE y is
 shown on page 105. With back-propagation the net shown in Fig. 11
 is obtained after training comprising 558 sweeps through the four
 patterns shown in the truth table. In this case both the hidden units
 and the motor unit have negative thresholds and are active unless
 sufficiently inhibited. The hidden unit hx is active if neither S-unit is
 active, and when hx is active it turns off the motor unit. The motor
 unit is also inactivated if both S-units are active. This net differs

 somewhat from that shown in Fig. 3, in which all threshold biases are
 positive; nevertheless, it also computes the logical function x OR
 ELSE y.
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 x y

 + 1 +1

 + 1 -1

 -1 +1

 -1 -1

 x OR ELSE y

 -1

 + 1

 + 1

 -1

 Truth Table for x OR ELSE y. A + 1 denotes "true" and a - 1 "false." Thus x OR ELSE
 y is false when x and y are both true or both false. Otherwise x OR ELSE y is true.

 Fig. 11. Net obtained via back-propagation, which computes correctly the logical function x
 OR ELSE y. The units tx and t2 have zero threshold and are always active. (Redrawn from
 David E. Rumelhart, Geoffrey E. Hinton, and Robert J. Williams, "Learning Internal
 Representations by Error Propagation," in vol. 1 of Parallel Distributed Processing: Explora
 tions in the Microstructure of Cognition, ed. David E. Rumelhart and James L. McClelland
 [Cambridge: MIT Press, 1986].)

 The TIC Problem

 Another problem solved by back-propagation is a geometric one?
 distinguishing between the letters T and C independently of transla
 tion and rotation. Fig. 12 shows the patterns, and Fig. 13 the
 architecture, of the net used by Rumelhart et al. to solve the
 problem.60 This structure is more or less the same as that used by
 Rosenblatt and many others on similar problems. It is noteworthy in
 that the hidden units are connected only with small regions of the
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 Fig. 12. T and C patterns to be distinguished by a three-layer back-propagating perceptron.
 (Redrawn from Rumelhart et al. [see Fig. 11].)

 sheet of S-units (called receptive fields), whereas the motor unit is
 connected with many widely separated hidden units. This connection
 pattern mimics the architecture of the visual brain to some extent.61

 After some 5,000 to 10,000 presentations of the T and C patterns,
 together with the appropriate responses, the net learns the appropri
 ate task. In doing so, the hidden-unit receptive fields become adapted
 to the task in a number of ways, the effect of which is to facilitate

 distinguishing T's from C's via the final motor unit.

 NETtalk
 In an even more striking application, Terrence Sejnowski and Charles
 R. Rosenberg trained another similar net to read and speak English
 text.62 The net comprises 203 S-units arranged in seven groups of 29;

 Fig. 13. Structure of a three-layer perceptron that can distinguish T's from C's. The input
 layer of S-units is a two-dimensional sheet, as is the layer of hidden units. The receptive field of
 each /?-unit comprises a 3 x 3 square of S-units; that is, it is area-limited (cf. Minsky and Papert,
 Perceptrons: An Introduction to Computational Geometry [Cambridge: MIT Press, 1969]).
 Hidden-unit weights are adjusted via back-propagation during the course of about 10,000
 presentations of T and C patterns and converge to a set that distinguishes T from C patterns.
 (Redrawn from Rumelhart et al. [see Fig. 11].)
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 80 fe-units; and 26 motor units. In each group of S-units, 26 encode
 one letter of the English alphabet, and the remaining 3 units encode
 punctuation and word boundaries. A stimulus pattern is thus a string
 of seven characters. The motor units encode speech sounds, or
 phonemes, and also stress and syllable boundaries. The net was
 trained by using back-propagation on a number of texts. One
 experiment used phonetic transcriptions of the informal continuous
 speech of a child. Approximately 1,000 words from this corpus were
 used, and after some 50,000 presentations, the net was able to read
 and speak with an accuracy of about 95 percent. Fig. 14 shows the

 Fig. 14. Receptive field of a hidden unit in NETtalk. It comprises 203 S-units plus 1 /?-unit
 to set its threshold. The S-units are arranged in seven groups of 29. Twenty-six of the 29 S-units
 encode letters of the alphabet, and 3 of them encode punctuation and spaces. Thus, each hidden

 unit responds to a string of seven characters in a specific fashion defined by its weights. The area
 of each square is proportional to the weight: open squares correspond to positive weights, filled
 squares to negative ones. (Redrawn from T. J. Sejnowski and C. R. Rosenberg, NETtalk, A
 Parallel Network that Learns to Read Aloud, Technical Report JHU/EECS?86/01 [Baltimore,
 Md.: Johns Hopkins University, Electrical Engineering and Computer Science, 1986].)

 receptive field of one of the hidden units. It is evident that this unit has

 a distributed representation of many attributes of input strings.
 The net was then presented with a 439-word continuation of text

 from the same child (containing many novel words), which it read
 and spoke with an accuracy of 78 percent. This is an example of
 generalization. The Sejnowski-Rosenberg net, called NETtalk, gen
 eralizes very well. In fact, multilayer perceptrons and adalines gener
 alize quite well over a variety of tasks, just as Rosenblatt claimed
 many years ago.63 Another property exhibited by NETtalk is resis
 tance to damage. A substantially damaged NETtalk can still read and
 speak with an accuracy of some 40 percent, and it recovers quickly

 with retraining. Such properties are to be expected in all nets with
 distributed representations, as suggested in the Winograd-Cowan
 theory. Overall, NETtalk works surprisingly well, but it is limited in
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 its ability to deal with syntactic and semantic ambiguities. More
 elaborately structured versions of NETtalk may be expected to
 perform better in this respect.

 Family Trees

 We describe as a final example of back-propagation a net that is
 trained to store abstract relationships64 (see the information in the
 two family trees shown in Fig. 15). The net comprises 24 S-units,

 Fig. 15. Two isomorphic family trees. The information can be expressed as a set of triples of
 the form (person 1) (relationship) (person 2), where the possible relationships are {father,

 mother, husband, wife, son, daughter, etc.}. A layered net can be said to "know" these triples
 if it can produce the third term of each triple when given the first two. (Redrawn from David
 E. Rumelhart, Geoffrey E. Hinton, and Robert J. Williams, "Learning Representations by
 Back-Propagating Errors," Nature 323 [1986]:533.)

 each representing a person; a further 12 S-units, each representing a
 relationship; 30 hidden units arranged in three layers; and 24 motor
 units, each representing a person. Fig. 16 shows the activity levels in
 such a net after it has been trained. The net learns both of the family
 trees, essentially by generalizing from one tree to the other, after
 about 1,500 presentations of the various triples. Once again, hidden
 unit receptive fields adapt to the task. Fig. 17 shows the fields of two
 units in the first hidden layer. Unit 5 encodes the distinction between

 English and Italian, whereas unit 6 encodes which branch of the
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 Fig. 16. Activity levels in a five-layer net after it has been trained. The top layer has 24 S-units
 on the left to represent (person 1) and 12 S-units on the right to represent (relationships). The
 white squares show activity levels of the various units. The S-units activated correspond to
 (Colin) (has aunt). Each of the two input groups is totally connected to its own group of 6
 /7-units in the second layer. These groups learn to encode people and relationships as distributed
 activity patterns. The second layer is totally connected to the central layer of 12 ??-units, and
 these are connected to the next layer of 6 /?-units. Activity in this layer must activate the correct

 motor units, each of which represents a particular (person 2). In this case, there are two correct
 answers (marked with +) because Colin has two aunts. (Redrawn from Rumelhart et al. [see
 Fig. 15].)

 Fig. 17. Receptive fields of two hidden units encoding family tree information. (Redrawn
 from Rumelhart et al. [see Fig. 15].)

 family 1 comes from. With such hidden-unit receptive fields, the net
 is able to generalize correctly when presented with novel triples.

 Receptive Fields and Neurobiology

 The examples described above show clearly that hidden units learn
 about the stimulus patterns that are presented to them, subject to
 feedback driven by the intended response of the net to such patterns.

 In learning about stimulus patterns, hidden units develop specialized
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 receptive fields (determined by their input weights) in a highly
 cooperative fashion (each field is affected by all the others in the net),
 and form a distributed representation of the stimulus class. This
 result has important implications for experimental neurobiology, for
 although it is highly unlikely that anything like the back-propagation
 procedure is employed in the brain, the end product?receptive fields
 adapted to a given task?can supply clues about how real neural nets
 performing similar tasks might work. These clues have very practical
 consequences, since one of the few ways neurobiologists can directly
 observe brain operation is by determining which stimulus patterns
 activate the neuron nearest to a microelectrode implanted in the
 brain.

 A first application of back-propagation along these lines has recently
 been reported by Richard Andersen and David Zipser in connection with
 the receptive fields of neurons in the monkey's posterior parietal cortex.65
 In such neurons, information about eye position in relation to the head
 and to the position of the image on the retina is combined to locate objects

 with respect to the position of the head in space. Neurons in this area have
 very large overlapping receptive fields, and their responses are tuned so
 that they fire at rates proportional to the difference between preferred and
 actual eye position. Andersen and Zipser modeled this situation with a
 three-layer back-propagating perceptron trained to learn spatial positions.

 After less than 1,000 trials, motor-unit responses accurately encoded
 object locations in head-centered coordinates, given eye and retinal image
 coordinates. The net learned to associate eye and retinal image positions,
 and of course the hidden-unit receptive fields reflected this. What is more

 important, these receptive fields resemble those in the monkey's parietal
 cortex. It is evident that multilayer perceptrons can be used in many
 similar situations to predict receptive field properties.

 Extension of the Back-Propagation Procedure

 The back-propagation procedure described above represents a major
 advance in the theory of perceptrons and adalines, and more gener
 ally in the theory and practice of supervised learning. There are,
 however, a few problems with the procedure. First, although it is
 much faster than the Monte Carlo procedure used in the Boltzmann
 machine, back-propagation is still rather slow. Much work is now
 being devoted to finding faster and more efficient procedures.66
 Another problem concerns performance on very large problems. It
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 does not always follow that procedures that work well on small
 problems also work well on larger versions of the same problem. This
 is known as the scaling problem. Two approaches to this problem
 have recently appeared.

 In the first of these, Dana H. Ballard notes that sometimes
 multilayer perceptrons using back-propagation become "trapped" in
 a pattern of activity that does not solve the given task, particularly in
 nets with more than one layer of hidden units.67 Ballard's solution to
 this situation is twofold. First, construct autoassociative learning

 modules in which the outputs of hidden units feed back to influence
 S-units. Learning in such a net is unsupervised, and the hidden units
 form a representation of correlations existing in and between S-unit
 patterns, just as in the Boltzmann machine. Second, use such autoas
 sociative nets as modules in a hierarchically organized net. These

 modules can be coupled in ways that permit the solving of larger and
 larger problems, so that the scaling problem is solved. In a related
 piece of work, Hinton and his colleagues have devised a similar
 procedure, called recirculation, that minimizes the rate of change of
 activity in the net and is claimed to be more neurobiologically
 plausible than back-propagation.68

 Eric Mjolsness and David H. Sharp have recently introduced
 another procedure that has been shown to scale well on certain
 problems and is based on the fact that the connectivity of a large class
 of nets can be specified recursively, that is, by the repeated application
 of a few simple rules.69 Such nets can be modified through rule
 changes rather than weight changes. Moreover, the procedure is
 designed to penalize nets with a large number of contacts and thus to
 increase the likelihood that such nets will generalize to larger input
 sets. This approach is closely related to what are called genetic
 algorithms, in which rules for generating adaptive nets are themselves
 subject to adaptation.70 The point is that genetic nets scale better
 than nets specified directly by weights.

 Master-Slave Nets

 Many other variants of Hopfield nets, Boltzmann machines, and
 multilayer perceptrons now exist.71 A particularly interesting exam
 ple is the "master-slave" net recently introduced by Alan S. Lapedes
 and Robert M. F?rber.72 As we have previously noted, Hopfield nets
 (and Boltzmann machines) are not realistic as models of neural nets,
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 since all their connections are symmetric. Nevertheless, the ability of
 these nets to find globally stable configurations is valuable. Con
 versely, multilayer perceptrons need not be symmetrically connected,
 but their operation is synchronous: they have no intrinsic dynamics
 other than what an external clock provides. The master-slave net
 introduced by Lapedes and F?rber has the best of both worlds. The
 slave is an asynchronous, asymmetric net of neurons, the weights of

 which are controlled and modified by a master Hopfield net. The
 different stable states of the master net can be used to control the

 weights of the slave net in such a way as to encode any desired
 dynamical behavior. Master-slave nets are, in fact, dynamical gener
 alizations of multilayer perceptrons and can be used to encode
 representations, not just those of static S-unit patterns and correla
 tions but also those of S-unit patterns that change in time.

 Neural Nets for Prediction and Simulation

 But if neural nets can learn to represent time-varying correlations,
 they can be used as predictors and as simulators of a variety of
 dynamical processes. Lapedes and F?rber have recently extended
 their investigation of generalized back-propagation in this direction
 and have demonstrated the efficacy of neural nets for such
 purposes.73 With this development, the theory of perceptrons and
 adalines has renewed contact with cybernetics, the branch of engi
 neering that deals with predicting, filtering, and simulating dynamical
 processes.74

 In this respect, it is of considerable interest to compare the
 structure of a multilayer perceptron with that of the learning filter
 invented in 1954 by Dennis Gabor,75 one of the early pioneers of
 communication theory and cybernetics and the inventor of hologra
 phy. This filter operates in the following fashion. A long sample of a
 noisy message is stored on magnetic tape and sent periodically
 through the filter. The filter output and an advanced or a retarded
 copy of the message are fed into a comparator, which generates the
 difference between the two signals. This difference is then used to
 adjust the filter so as to minimize the difference. Thus the filter output
 ends up looking like the message sample. Gabor showed that such a
 machine could be trained to predict and filter messages of various
 kinds and also to recognize patterns. The adjustable filter is clearly
 analogous to a net of S, h, and motor units. (It seems evident that
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 Gabor solved the equivalent of the credit assignment problem in
 1954!) Lapedes and F?rber recognized the analogy and have shown
 that generalized back-propagating multilayer perceptrons are much

 more powerful and flexible simulators than the Gabor learning filter.

 NEURAL NETS AND ARTIFICIAL INTELLIGENCE STUDIES

 In this section, drawing on the material presented earlier in the paper,
 we discuss the relationship between neural nets and research on
 artificial intelligence.
 We take AI to be the attempt to embody in computing machinery

 a repertoire of intelligent behavior comparable with human behavior
 in similar contexts. Until recently this attempt has taken place almost
 entirely within the framework of the standard AI paradigm: first
 specify the context, next describe the logic of the desired behavior,
 and then try to achieve it by using various heuristics (i.e., search
 methods based on a background of prior knowledge supplied by the
 designer).76 It is evident that such a system will succeed only if the
 designer has analyzed the class of problems to be solved and is able
 to represent this class and the problem-solving heuristics in a suitable
 programming language. It is not clear if this approach can succeed in
 situations that have to be reanalyzed because the context has
 changed. Part of the problem lies in the need for context-sensitive
 logical descriptions. This is where neural nets (more specifically,

 multilayer perceptrons) become relevant. The designer of a multilayer
 perceptron needs no precise logical description, only an informal
 understanding of the complexities of the desired behavior sufficient to
 construct the overall architecture of an appropriate neural net.
 Back-propagation takes care of the rest of the details. Thus, given
 some overall hard-wiring, local connection weights can be soft-wired
 into the net by training. The resulting neural net embodies an implicit
 description of the desired behavior rather than the explicit declarative
 logical statements that control an AI system. In this respect, it is
 interesting to recall a remark of John von Neumann's concerning the
 question of whether every behavior can be expressed completely and
 unambiguously in words and therefore in logical symbols. Von
 Neumann foresaw the problem of vision as immensely complicated:
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 It is not at all certain that ... [a visual object] might not constitute the
 simplest description of itself-[Further,] it is ... not at all unlikely that it
 is futile to look for a precise logical concept, that is, for a precise verbal
 description [say] of "visual analogy." It is possible that the connection
 pattern of the visual brain itself is the simplest logical expression or
 definition of this principle.77

 Of course, multilayer perceptrons have not yet been used for
 problem solving in the way AI systems have, and it may be that as
 more difficult problems are tackled, the complexities of the required
 hard-wiring will prove to be too formidable. In this respect, the
 attempts by Ballard, Hinton, Mjolsness, and Sharp to build hierar
 chically organized soft-wireable nets may prove useful. In any event,
 it seems reasonable to expect improved multilayer perceptrons to be
 capable of embodying implicit descriptions of very complicated
 behavior, provided some prior understanding of the logical structure
 of this behavior is encoded in the overall architecture.

 Memory
 There is also the problem of memory. One of the factors limiting the
 development of AI systems is the cost of large, fast memories.78
 ACAMs in the form of Taylor-Steinbuch nets, or in their modern
 form as Marr nets,79 or more likely in the form of improved Hopfield
 nets, are likely to play a key role in providing such memories,
 particularly in light of the development of very large-scale integrated
 (VLSI) circuitry, which can be soft-wired for a variety of tasks.80 Such

 memory stores, in combination with the trainable nets described
 above, may well provide a suitable substrate for the embodiment of
 truly intelligent behavior in machines.

 Future Prospects

 Can w? therefore expect to see autonomous intelligent robots with
 silicon brains, built from hierarchically organized improved multilay
 ered perceptrons and ACAMs, in the not too distant future? It is our
 belief, based on the investigations we have described in this paper,
 that there is still a very long way to go before any kind of truly
 intelligent robot can be produced. It is clear that all progress to date
 in the soft-wiring of nets to perform intelligent tasks rests on prior
 analysis by a designer of the context-dependent tasks to be per
 formed. The intention and the meaning are supplied by the designer.
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 AI rests on the idea expressed very succinctly by Kenneth J. W. Craik
 in 1943, that "thought parallels reality through symbolism."81 But

 we have noted that explicit symbolic descriptions may not exist for
 many important thought processes, so can trainable neural nets
 "describe" such processes? The answer seems to be yes, but the
 trainer needs to know a lot about the structure of these processes.

 What about Hopfield nets and Boltzmann machines, which learn
 without trainers? Because of the restriction to symmetric weights,
 these seem more promising as models of how real brains work;
 several investigators have devised Hopfield nets with modifiable
 synaptic weights for this purpose. Christoph von der Malsburg, for
 example, has used such nets to model associative thinking, in which
 novel combinations of representations are produced by means of very
 rapid synaptic modifications.82 Such synapses have recently been
 referred to as Malsburg synapses.83 It is not clear, however, that

 Malsburg nets solve the credit assignment problem. Boltzmann
 machines certainly do, but only if there is a hidden external net that
 signals to hidden units that the net is being stimulated. (As we have
 said, the Boltzmann machine learning procedure requires that hidden
 units know the difference between stimulated and freely running
 activity.) This is a primitive attention mechanism. That such a
 mechanism is needed to control learning and thinking is not, of
 course, novel. In thinking about the brain, Francis Crick has sug
 gested that such a mechanism exists not in the cerebral neocortex but
 in the thalamus, the part of the brain that lies between the neocortex

 and the brain stem and that contains all the nets that control bodily
 functions. The need for such a mechanism in Hopfield nets has
 already been appreciated by Mjolsness as a way to serialize the search
 process that finds stable configurations.84 Can such nets replace
 back-propagating multilayer perceptrons? In our view, the answer is

 likely to be yes, but once again, only if a great deal of hard-wiring
 already exists in the net.

 It is hard-wiring that embodies prior knowledge and, in a sense, the
 intent of the designer. In the human brain the hard-wiring is the end
 product of a billion years of evolutionary adaptations to changing
 environments expressed through the action of gene products during
 the course of brain development. In a sense, evolution has acted not
 as a trainer to soft-wire neural nets but as a critic to hard-wire them:

 if it works, it survives, so that further soft-wiring is effective. Should
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 we expect to be able to telescope one billion years of evolution acting
 on protoplasm into a few decades of neural-net and AI research on
 VLSI silicon chips? Until we understand how ideas and intentions are
 embodied in the human brain, rapid progress seems unlikely. On the
 other hand, the developments we have described in the theory and
 practice of multilayer perceptrons permit the experimental investiga
 tion of hard-wiring itself. We predict that the top-down approach of
 conventional AI and the bottom-up approach of neoconnectionism
 will eventually join to produce real progress in what McCulloch once
 called experimental epistemology, the study of how knowledge is
 embodied in brains and may be embodied in machines.85

 ENDNOTES
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 Jacob T. Schwartz

 The New Connectionism: Developing
 Relationships Between Neuroscience and
 Artificial Intelligence

 Part of the confidence with which artificial intelligence
 researchers view the prospects of their field stems from the
 materialist assumptions they make. One is that "mind" is

 simply a name for the information-processing activity of the brain.
 Another is that the brain is a physical entity that aas according to the
 laws of biochemistry and is not influenced by any irreducible "soul"
 or other unitary, purely mental entity that is incapable of analysis as
 a causal sequence of elementary biochemical events. This broadly
 accepted view, together with the rapidly mounting mass of informa
 tion concerning nervous system physiology, microanatomy, and
 signaling behavior and with the current technology-based push to
 construct analogous computing systems involving thousands of ele
 ments acting in parallel, has encouraged a shift in emphasis among AI
 researchers that has come to be identified as "the new connection

 ism." The emphases that characterize this school of thought are as
 follows:

 1. The brain operates not as a serial computer of conventional type
 but in enormously parallel fashion. The parallel functioning of
 hundreds of thousands or millions of neurons in the brain's subtle

 information-extraction processes attains speed. Coherent percepts

 Jacob T. Schwartz is a professor at the Courant Institute of Mathematical Sciences at New York
 University.
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 are formed in times that exceed the elementary reaction times of
 single neurons by little more than a factor of ten. Especially for basic
 perceptual processes like sight, this observation rules out iterative
 forms of information processing that would have to scan incoming
 data serially or pass it through many intermediate processing stages.
 Since extensive serial symbolic search operations of this type do not
 seem to characterize the functioning of the senses, the assumption
 (typical for much of the AI-inspired cognitive science speculation of
 the 1960-80 period) that serial search underlies various higher
 cognitive functions becomes suspect.

 2. Within the brain, knowledge is stored not in any form resem
 bling a conventional computer program but structurally, as distrib
 uted patterns of excitatory and inhibitory synaptic strengths whose
 relative sizes determine the flow of neural responses that constitutes

 perception and thought.

 AI researchers developing these views have been drawn to involve
 ment in neuroscience by the hope of being able to contribute
 theoretical insights that could give meaning to the rapidly growing,
 but still bewildering, mass of empirical data being gathered by
 experimental neuroscientists (many of whom regard theoretical spec
 ulation with more than a little disdain). These AI researchers hope to
 combine clues drawn from experiment with the computer scientists'
 practiced ability to analyze complex external functions into patterns
 of elementary actions. By assuming some general form for the
 computational activities characteristic of these actions, they hope to
 guess something illuminating about the way in which the perceptual
 and cognitive workings of the brain arise. That is to say, computer
 scientists hope to relate to experimental neuroscience much as
 theoretical physicists relate to experimental physics?by contributing
 unifying theoretical insights and theoretically based conjectures that
 can guide experimentation along fruitful paths.

 The awesome complexity of the brain poses major obstacles to
 easy realization of this aim. The magnitude of the problems that need
 to be unraveled is indicated by a few intimidating estimates and a
 brief review of some basic facts of neuroscience. The human brain

 consists of approximately 100 billion neurons, possibly even ten
 times as many. Neurons usually communicate by transmitting dis
 crete electrical spikes (action potentials) to a population of follower
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 neurons. As far as is known, the precise amplitude and shape of such
 a spike, and the precise time of its arrival within an interval of two
 milliseconds or so, are physical details that the nervous system is not
 able to exploit. Hence, one can model each spike as a single
 information-carrying "bit" in a neuron's output stream and say that
 a neuron outputs information at a rate of approximately 100 bits per
 second. This way of thinking leads to an estimate of 10 trillion bits
 per second, give or take a factor of 100, for the internal "bandwidth"
 of the brain.

 The computational activity of each neuron involves a great variety
 of mechanisms, still most imperfectly understood. Nevertheless, a
 considerable mass of experimental evidence supports the following
 general picture. A neuron transmits information to its follower
 neurons at interneuron junctions called synapses. A single neuron can
 have as many as 10 thousand synaptic inputs, though in some cases
 many fewer inputs, and in other cases as many as 100 thousand
 inputs, converge on single neurons. The total number of synapses in
 the brain can be estimated as 1,000 trillion, though this estimate, like
 all those offered in the next few paragraphs, is uncertain by a factor
 of roughly 100. Input signals transmitted to a neuron (generally
 chemically) across a synapse trigger a wide variety of reactions. One
 is modulation of the ionic conductivity of the affected neuron's

 membrane, which either raises the voltage of a portion of its interior
 (excites the neuron) or lowers this voltage (inhibits the neuron). After
 attenuation in space and time in a manner determined by the
 chemistry and geometry of the affected neuron and its synapses, the
 neuron then combines the voltage changes generated by such synaptic
 effects. If the resulting combined (summed, for example) voltage
 exceeds a reaction threshold, the neuron generates an output spike or
 other electrical signal. This is then transmitted to all its output
 synapses. Though many other mechanisms play a role, this kind of
 effect seems basic to many of the fastest computations performed by
 the brain.

 Other forms of synaptic input are known to have slower but
 longer-lasting biochemical effects than these ionic effects, which
 probably support the bulk of the brain's information-transmuting
 activity. Stimulation of certain synapses can, for example, trigger
 enzymatic activities within a neuron that modify its biosynthetic
 activities?for instance, by increasing or decreasing its susceptibility
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 to excitatory or inhibitory stimuli that are acting ionically. Depend
 ing on the chemical effects involved, such synaptic modification of
 fast ionic responses may last for as little as fifty milliseconds or for as
 long as several seconds, minutes, or days; it may even become
 permanent. Other synaptically triggered enzymatic reactions can
 initiate sequenced biochemical changes. For example, a neuron's
 electrical response may be enhanced for several tens of milliseconds
 but then inhibited for a longer period, leading to complex patterns of
 alternation between excitation and inhibition. The variety of single
 neuron behaviors that the wide spectrum of enzymatic actions can
 engender has been explored in simple animals such as Aplysia, some
 of whose neurons are known to have highly individualized patterns
 of continuing, periodic, or burst activity.

 Though it is not easy to summarize the wide range of synaptic
 response patterns with a few numbers representing the information
 processing power and storage capacity of a single neuron, the
 following estimates do not seem unfair. One byte (eight bits, about
 one printed character) may well suffice for representing the long-term
 strength of each synapse. Four additional bytes can then be taken to
 give a sufficiently complete representation of the short-term biochem
 ical state of both sides of a synapse and of the state of the
 corresponding synaptic gap, as determined by its stimulation history
 up to a given moment. Such exceedingly rough quantitative guesses
 lead us to estimate that the long-term memory available to the brain
 is about 10,000 trillion bytes and that the amount of shorter-term
 data needed to characterize the state of each of its synapses is roughly
 the same. The logical activity of each neuron can then be regarded as
 a process that combines approximately 10 thousand input bytes with
 roughly 40 thousand synapse status bytes at a rate of 100 times each
 second. The amount of analog arithmetic required for this estimate is
 (again very roughly) 10 million elementary operations per neuron per
 second, suggesting that the computing rate needed to emulate the
 entire brain on a neuron-by-neuron basis may be as high as
 1,000,000 trillion arithmetic operations per second. (Of course,
 computation rates many orders of magnitude lower might suffice to
 represent the logical content of the brain's activity if it could be
 discovered what this is.)

 It is interesting to compare these exceedingly coarse estimates with
 corresponding figures for the largest supercomputer systems likely to
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 be developed over the next decade. These will probably not attain
 speeds in excess of 1 trillion arithmetic operations per second, which
 is about one one-millionth of the computation rate that we have
 estimated for the brain. Today's large magnetic storage disks hold
 around 1 billion bytes of digital information each, which is roughly
 one ten-millionth of the storage capacity that we have ascribed to the
 brain. Even if we assume continuing rapid advances in storage
 technology and systems equipped with hundreds of storage disks,
 supercomputers seem unlikely to achieve more than 1 percent of the
 brain's storage capacity over the next decade. Clearly, the neuro
 scientist confronts a system whose workings are difficult to approach
 physically and whose operations are of awesome complexity.

 CLUES TO BRAIN FUNCTION

 One of the most salient clues from which the "connectionist"
 theorists hope to work is the observation that mental (especially
 sensory) processes seem to be of very restricted "depth," in the sense
 that not many successive elementary neural reactions are required to
 form the higher-level reactions that the brain generates. There is
 simply not time for very many successive reactions to be involved.

 This is only a weak clue, however. Since neurons are vastly more
 complex than the elementary switches used to construct computers, a
 single stage of neural processing may compare to ten or more stages
 of electronic processing by elementary switchlike elements. Hence,
 outputs that the brain can generate in one-tenth of a second may
 compare in complexity with outputs requiring a hundred or more
 stages of processing by electronic switches. Moreover, so little is
 understood concerning the logical significance of the interconnec
 tions in the nervous system (even in cases where we know a great deal
 about the microanatomical structures involved) that it is hard to rule
 out any one of hundreds of conjectures about the way in which
 electronic devices should be connected so as to imitate the workings
 of the brain. A computer scientist, given a vast, almost totally
 unknown computer like the brain, with trillions of active elements
 connected in unfathomed ways, and asked to guess its mode of
 functioning with no other clue than the statement that it generates its

 outputs using highly parallel computations involving only a few
 hundred serially successive stages of processing, could feel only the
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 most minimal confidence in whatever guess he or she ventured. The
 problem is not that we cannot imagine how known properties of
 neurons could serve to support intelligent function; it is that too
 many lines of speculation lie open for definitive choice between them
 to be feasible without additional evidence. The theorist's task is

 therefore to cultivate a sensitivity to the clues that are available in the
 enormous and growing, but confusing, mass of data that laboratory
 neuroscience already furnishes. In the paragraphs that follow I review
 a few of the most helpful clues.

 Direct recording of the activity of single neurons has been possible
 for several decades, and by correlating controlled sensory inputs with
 single-neuron recordings one can get a crude picture of the workings
 of the brain's sensory systems, at least for the initial stages of neural
 processing. These stages seem to prepare incoming data for the first
 (still entirely mysterious) acts of recognition. Studies of this type
 suggest that certain general structures are common to several sensory

 modalities. In many cases, neurons that handle information generated
 by primary sensory systems having a natural one- or two-dimensional
 layout seem to be arranged in successive two-dimensional sheets (either

 within the cerebral cortex or in various smaller brain structures
 underneath the cortical lobes). The arrangement of cells in these sheets
 often seems to reflect the natural geometry, or at any rate some
 informationally significant dimension, of the sensory data itself. For
 example, the cells that accomplish the very first stages of image
 processing in the visual cortex are arranged retinotopically, which is to
 say in relatively precise one-to-one continuous correspondence with
 the retina of the eye (or, equivalently, with the geometry of images
 falling onto the retina). Cells devoted to the analysis of tactile sensa
 tions detected in the skin are arranged in much coarser, somatotopic
 correspondence with regions of the skin, while cells in the first stages of
 the auditory system are arranged tonotopically?that is, according to
 the auditory frequencies to which they react. Cells reacting to subtler
 properties of incoming stimuli are also arranged in regular geometries.
 For example, the angle of maximum response for orientation-sensitive
 cells of the visual cortex rotates systematically as one moves through
 small regions of the cortex; cells with corresponding retinal fields in the
 right and left eye reside in thin vertical strips of cortical tissue (ocular
 dominance columns) adjacent to, but sharply distinguished from, each
 other. Presumably these cell arrangements facu?tate the interchange of
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 information needed to detect significant features in incoming sensory
 streams, by highlighting sharp intensity and/or color changes, edge
 orientations, or sharp corners, for example. The picture suggested by
 the available evidence is one of the successive transformation of

 imagelike (because one- or two-dimensional) data structures to pro
 duce secondary imagelike structures in which stimulus features that are
 potentially useful for the formation of higher-level responses have been
 made explicit?a form of processing that is unsurprising in computer
 science terms. Even in the sensory realm, we do not know more than
 a few of the specific transformations that incoming data flows un
 dergo, but we do know enough to think of this data and its processing
 in geometrically extended, imagelike terms. Beyond these early, rela
 tively well-understood processing stages, one enters terra incognita, in
 which it has thus far proved impossible to correlate observed neural
 activity with any specific property of external stimuli.

 Additional insight, consistent with the evidence just reviewed,
 comes from neuroembryology?from consideration of the pattern in
 which the cells of the brain knit themselves together. Neurons, like
 the cells constituting all other tissues, are initially motile?that is,
 capable of migrating from their original positions, usually via a form
 of slow "walking" that is guided by the selective adhesiveness of a
 migrating cell to the tissues over which it pulls itself. This biochem
 ically regulated cell motility plays a fundamental role in shaping the
 tissues and organs of the body during embryonic development: the
 sheets of cells that come to constitute these tissues are in many cases
 erected by the collective migration of their constituent cells, some
 what in the manner that a large circus tent can be erected by the
 collective motion of many people walking along under it and pulling
 on its expanding edges.

 In neurons, however, similar patterns of motility act in a signifi
 cantly different way. After the earliest phases of embryonic develop
 ment, instead of the cell body itself migrating, a neuron throws out
 projections (its axons and dendrites to be), the ends of which carry
 small motile units known as growth cones. Each of these cones has
 twenty or so "feet" (pseudopodia) about one one-thousandth of a

 millimeter in diameter and thirty times as long, which allow the cone
 to move over the surface of any tissue with which it comes in contact.

 The pseudopodia extend themselves in an apparently random man
 ner from the growth cone in which they originate till they make
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 contact with some nearby tissue surface. They then adhere to it with
 a force that is determined by the sugar- or starchlike side chains
 attached to modified protein molecules (glycoproteins), which are
 present in the cell membranes of the two contacting cells. Once
 contact is made, the pseudopodia contract, pulling the growth cone
 and the growing axon that develops behind this cone, apparently in
 the direction of the greatest adhesivity, just as a fly is forced to walk
 in the direction of maximal stickiness along flypaper on which it is
 trapped. Though other direction-determining forces are undoubtedly
 involved, these adhesive effects, much elucidated through the brilliant

 work of Gerald Edelman and his collaborators at Rockefeller Uni

 versity, now appear basic not only to definition of interconnection
 patterns in the nervous system but also to embryological develop
 ment in general.

 Neurons' growth cones continue their walk, each apparently until
 it contacts any destination cell that is marked with some chemical
 substance to which the pseudopodia are sensitive, at which point
 some unknown enzymatic reaction destroys the capacity of the
 pseudopodia to continue moving. The growth cone then metamor
 phoses into a synapselike structure that subsequently develops into a
 mature synapse.

 This picture of the nervous system's development does not suggest
 that the pattern of connections formed in complex mammalian
 brains can be entirely specific in the sense of creating perfectly
 determinate connections between specifically identified neurons, as if
 the neurons were transistors on an artificially engineered silicon chip,
 and the connections between them were formed by laying down
 metal in very precise fashion. Rather, this picture suggests a system,
 perhaps containing hundreds, thousands, even tens of thousands of
 neuron subspecies, possibly distinguishable biochemically and per
 haps differing significantly in their detailed reaction to external
 stimuli but probably interconnected with relatively coarse specificity.
 The rules of growth that apply may, for example, only specify that a
 neuron of a particular type originating at a certain point in a
 particular brain layer will connect via an axon and a synapse to any
 neuron of some second type that is close to some other position in
 another brain region. Known growth mechanisms are sufficient to
 yield structures having this degree of specificity, but that they can
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 produce the vastly more specific structures that characterize com
 puter circuitry and that often enter into the neural system models of
 speculative thinkers coming from computer backgrounds seems
 doubtful.

 It is worth noting, in this connection, that we presently lack not
 only detailed knowledge of the interconnection pattern of the brain
 but also comprehensive understanding of the more fundamental and
 rudimentary question of how many biochemically distinct species of
 neurons inhabit the brain. Partly for this reason, theorists who
 propose abstract brain models often begin by assuming that all
 neurons are functionally identical and accordingly model neurons as
 simple threshold elements that emit signals whenever the sum of their
 incoming excitatory stimuli, minus the sum of their incoming inhib
 itory stimuli, exceeds some fixed or adjustable threshold value. It is as

 if an investigator faced with the problem of analyzing an immense
 computing system of wholly unknown internal architecture began by
 assuming that all its integrated circuit chips were identical simply
 because at first glance they looked roughly the same and because any
 hypothesis closer to the truth was too dispiriting. Cursory micro
 scopic examination of the brain's population of neurons, however,
 shows them to differ from one another as much as garden shrubs
 differ from giant redwoods. Moreover, even cells of apparently
 identical external morphology may differ biochemically in ways that
 cause their reactions to similar patterns of incoming stimuli to be
 widely different. Over the next decade or two, systematic use of the
 increasingly powerful battery of monoclonal antibodies available as
 ultrasensitive biochemical reagents will probably dispel much of our
 present ignorance about the varieties of neurons.

 Nevertheless, while ignorance persists, the utility of even standard
 neuroanatomical information is compromised, since what is wanted
 is knowledge of the manner in which informationally significant
 (and, presumably, biochemically distinguishable) cell populations
 interconnect. In contrast, the information available concerns only the

 manner in which brain regions interconnect.

 The massive cell death that occurs immediately after birth confirms
 the impression that the brain is designed to function correctly even if
 the neurons constituting it link up in a manner that is only approx
 imately correct. It is well known that in newborn mammals some 15

 percent of the neurons present in the neonate die out in early infancy.
 Evidence suggests that many of those neurons represent either
 overgrowth or neurons that for some reason have formed improper
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 connections and are therefore failing to receive the electrical or
 chemical stimuli needed to keep them viable. Still further evidence
 suggesting that the interconnections in the brain are not entirely
 specific comes from experiments in which the synaptic connections

 made by a population of neurons are destroyed by cutting the axons
 connecting these synapses to their originating cell bodies. Such
 cutting usually causes the sprouting of nearby neurons and subse
 quently the formation of abnormal synaptic connections among
 neurons that would not ordinarily form connections in the affected
 brain region. This evidence suggests that a mechanism of competitive
 growth is involved in the development of interconnections among
 neurons and that neurons invade unoccupied synaptic space in much
 the same way that growing grasses tend to invade an initially empty
 field?not a situation that favors computerlike wiring precision.

 These considerations suggest that the brain may be incapable of
 using the patterns of information processing that are most effective
 for artificial computers, even very large parallel computers. Artificial
 computing systems can often generate desired results most effectively
 (sometimes with remarkable efficiency) by using carefully designed
 and coordinated sequences of elementary processing steps. In such
 processing, the arrays of data being processed move through a sort of
 closely coordinated, massively parallel square dance, during which
 each data item interacts with all the items it encounters in such a way
 as to leave the desired output in place at the end of the procedure.
 Any failure in synchronization or in a local operation combining two
 operands when they meet generates a wave of error and leaves a
 meaningless result at the end. Such delicately balanced parallel
 processes only generate their intended results, or for that matter any
 useful result, if each motion of every one of the thousands of data
 items being processed takes place precisely at the moment specified
 for it and if every one of the millions of arithmetic or logical
 operations involved works perfectly. The evidence I have cited
 suggests that biological systems are not wired precisely enough to
 support this extremely delicate style of information processing. In
 particular, we have no evidence that the nervous system operates in
 other than perfect asynchrony, so that no form of information
 processing that requires close synchronization or that becomes sub
 stantially less expensive in its absence is an attractive candidate for
 use in neural systems.
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 Evolutionary considerations also suggest that the brain makes no
 use of delicately balanced processing patterns of the kind that are so
 common and effective in computer practice. Indeed, evolution pro
 ceeds by the accumulation of tiny random changes, each typically
 affecting but one detail of one of the thousands or tens of thousands
 of protein molecules whose interaction determines cell biology and
 function. For evolutionary pressures to carry change very far, each
 successive evolutionary step must provide change-carrying organisms

 with enough of an advantage to favor their survival, at least margin
 ally. This observation seems to rule out major qualitative jumps from
 an established pattern of activity to some other radically different and
 delicately balanced programlike pattern, no part of which is useful
 until an entire structure is put in place. Clever information-process
 ing algorithms require exactly such complex interlocking logical
 constructions?another reason their use in a biological setting is
 inappropriate.

 Our still insufficiently developed knowledge of neuroanatomy and
 the biochemistry of neurons does not provide the information that

 would enable us to model the activity of the nervous system at all
 specifically. Partly for this reason, theorists have remained attracted
 to homogeneous neural models and to highly conjectural (even if
 appealing) theories that the brain or important parts of it progress?
 from an informationally blank initial condition to a state in which

 much usable information is encoded?via a process of learning that
 acts at the synaptic level. The commonest theory of this type is one
 that Hebb initially proposed in the 1940s. According to Hebb,
 synapses receiving excitatory stimuli during periods in which the
 neuron to which they attach is active grow more sensitive and hence

 act more strongly on subsequent occasions to stimulate the firing of
 the same neuron. The efficacy of synapses not involved in a pattern of
 synaptic stimuli that repeatedly cause a cell to fire may then diminish
 in relative, perhaps also in absolute, terms; eventually, such synapses
 become partly or wholly incapable of stimulating their cell.

 Hebb's proposed mechanism allows initially undifferentiated cells
 to become selectively conditioned to a variety of patterns that can
 originate directly in sensory systems or indirectly in the earlier stages
 of neural processing. His hypothesis has appealed to theoretically
 minded neural modelers, since it does not conflict with any available
 evidence yet suggests a way in which learning can mold neural
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 structures about which little needs to be assumed. Moreover, it is easy
 to imagine biochemical mechanisms, compatible with Hebb's hy
 pothesis, that might allow very powerful information-processing
 capabilities, such as general forms of associative memory, to develop.

 In spite of this appeal, only recently have we begun to have hard
 experimental evidence to support Hebb's conjecture, and this only
 for a very few regions of the brain, most notably the cerebellum.
 Recent research on this important brain structure shows that it
 functions, at least in small part, as a mechanism for storage of simple
 conditioned reflexes. This function has been demonstrated by show
 ing that suitably patterned and intense simultaneous stimulation of
 appropriate neurons (specifically, the cerebellar "climbing" fibers and
 the parallel fibers originating in the granule cells of the cerebellum)
 causes long-lasting changes in the sensitivity of the large cerebellar
 Purkinje cells. These are the same cells as are presumably involved in
 the formation of simple Pavlovian conditioned reflexes. It is possible
 in this way to establish a conditioned reflex (for example, condition
 ing to a preceding auditory stimulus of the primitive eye-blink reflex
 triggered by a corneal air puff), even if one or both of the experimen
 tal factors (air puff or auditory stimulus) normally entering its
 formation is replaced by direct electrical stimulation of correspond
 ing cerebellar input. The modifications that occur during the forma
 tion of such electrically induced artificial conditionings can be
 localized to a single class of synapse, namely the synapses between
 parallel fibers and the multiple Purkinje cell layers these fibers
 traverse. This experimental work brilliantly verifies the theoretical
 conjectures concerning the role of the cerebellum that David Marr
 and James Albus put forth years earlier. These conjectures were
 inspired by the striking abstract resemblance between cerebellar

 microanatomy and the physical layout of certain types of computer
 memory.

 Beyond these profoundly intriguing, but still limited, insights,
 learning-based theories of the origin of neural function remain
 subject to the objection that we know hardly anything yet about the
 actual locus or mechanism of other memory storage within the brain
 and even less about the way memories are modified to accomplish
 abstract learning. Though it is widely believed that synapses represent
 the elementary loci of memory storage and that memory storage is
 somehow accomplished by modifying synaptic reactivity, we have
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 not yet been able to develop much clear biochemical evidence to
 support this belief. Most of the evidence relating to mammalian
 brains is still very indistinct. For example, certain often-cited studies
 indicate simply that experimental rats raised in stimulating environ

 ments apparently develop larger numbers of synapses than rats
 imprisoned in stimulus-free environments. Moreover, the process of
 synaptic modification revealed in studies of simpler nervous systems
 (Eric Kandel's famous work on Aplysia, for example) is not specifi
 cally Hebbian. The governing synaptic changes seen in these investi
 gations seem to occur in the transmitting (presynaptic) rather than in
 the receiving (postsynaptic) side of synapses and hence are not in
 agreement with the mechanism Hebb assumed. Thus, theorists who
 take some hypothesis about learning as their starting point are
 choosing to begin in a particularly dark area of neuroscience.

 To function effectively, theorists with research backgrounds in
 computer science and artificial intelligence need to extract an appro
 priate notion of neurocompatibility from the diffuse mass of evidence
 coming from wet-lab neuroscience. This notion must both reflect any
 detailed knowledge of nervous system function that is likely to cast
 light on the information-processing activities of the nervous system
 and define constraints on the modes of neural processing that can
 best guide the theorist's attempts to guess what is going on. Thus far,
 the following clues seem most useful:

 1. The nervous system must make use of highly parallel algorithms
 involving only very limited numbers of successive stages of transfor

 mation of incoming data streams.

 2. The best-known stages of early sensory processing seem to
 involve successive transformations of imagelike data structures to
 highlight data features that are probably important to subsequent
 formation of higher-level responses. The layout of this data in the
 neural sheets that process it is often in correspondence with contin
 uous, varying parameters inherent in the data being processed (retinal
 position or edge orientation in the case of the eye, for example, and
 pitch in the case of the auditory system).

 3. Neurons differing in the information they extract from a
 common incoming data stream are observed in the sensory system.
 Their existence may point to the existence of morphologically similar,
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 but biochemically distinct, neuron subspecies within local areas of
 tissue, which might serve to carry separate dimensions of an incom

 ing information flow. The number of these informationally signifi
 cant subspecies is unknown and may possibly be large. The manner
 in which such subspecies make connection with each other and the
 geometry of the dendrite and axon arborizations they form may be
 significant for the data transformations that are then realized.

 4. The crude picture of neurons as devices that sum incoming
 excitatory and inhibitory signals and that pass along as much of this
 sum as exceeds an inherent threshold may need to be sophisticated to
 allow for complex time lags and nonlinear effects, easily allowed by
 the very complex internal biocycle of all cells, neurons included.

 5. The level of wiring accuracy in the nervous system seems to be

 low, and it seems to make no use of processing steps that involve tight
 synchronization of data motion or highly artificial interconnection
 patterns. Forms of processing that would arise naturally in neuron
 populations, possibly consisting of multiple subspecies that are
 interconnected in ways determined by simple growth rules, are most
 appealing as conjectures.

 NEURAL NET MACHINES

 Besides reflecting a desire to give theoretical assistance to experimen
 tal neuroscientists in their search for the way the living brain
 functions, the rapidly growing involvement of computer scientists
 with neuroscience has a second motive. This is to use knowledge of
 the brain to guide the design of new, very highly parallel computers?
 the so-called neural net machines. Though by no means likely to yield
 results quickly or easily, the contributions of computer science to
 neuroscience will come to attain full scientific legitimacy. Whether
 today's neuroscience will guide computer design in the near term
 seems far more doubtful. A substantial list of arguments supports this

 judgment:

 1. Even in regard to the best-understood sensory systems, little is
 yet known about the detailed workings of the brain. Of brain
 function outside the sensory systems, we know essentially nothing.
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 Hence, any claim that a specific computer architecture imitates a
 neural system is pure conjecture.

 2. The living nervous system and the patterned silicon networks
 constituting computers differ much as technologies. The nervous
 system is three-dimensional and unsynchronized; it must probably
 tolerate very high degrees of miswiring but can form tens or hundreds

 of thousands of connections to each of its active computational
 elements, the neurons. At least for the moment, electronic circuit
 patterns are largely restricted to the two-dimensional surfaces of
 silicon chips and also (except where special, very regular patterns are
 used) to a few tens of connections per active element and a few
 hundred per chip; these circuits can, however, be wired with nearly
 perfect precision so that they operate in close synchrony.

 3. Computers can exploit any artificial pattern of hardware
 interconnection or software processing that the intellectual work of

 machine and algorithm designers brings to light. We have argued that
 only an unknown minuscule fraction of these processing patterns is
 available for the evolution-constrained activity of the living brain. It
 is revealing to note that all the current major projects to design and
 build large parallel machines make use of highly artificial structures
 for communication and processing. This remark applies equally well
 to the Thinking Machines Corporation's Connection Machine (hy
 percube and rectangular grid communication), to NASA's Massively
 Parallel Processor, to ICL's Digital Array Processor (rectangular
 grid), to Intel Corporation's Hypercube (hypercube communication),
 to IBM's RP3, and to New York University's Ultracomputer (omega
 net communication). Moreover, computations on these machines
 regularly use highly artificial and efficient parallel algorithms, not
 procedures suggestive of the constraints likely to affect information
 processing in natural neural structures.

 Thus, enthusiastic discussion envisaging vast potential for some
 obscurely characterized form of neural net machine (and especially
 proposals to build such devices) seems suspect. At any rate, no serious
 argument justifying such claims has as yet appeared. The difficulties
 encountered in past research certainly afford little encouragement.
 However, one exception must be made to this reservation about

 the prospect for neural analogies in electronic device design, in favor
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 of the striking work on integrated electronic sensors of Carver Mead
 at the California Institute of Technology. Mead's idea can be put as
 follows. Although as used in digital circuitry, a single transistor
 accomplishes only the most elementary operations of Boolean logic
 (so that, for example, several dozen transistors are required to
 implement operations as simple as the addition of two decimal
 digits), much more is possible if the same transistor is used in analog
 rather than digital fashion. The analog use of circuitry treats circuit
 voltages as representations of numerical values, accurate to one or
 more decimal digits; digital use gives thresholds to these voltages by
 classifying them as high or low. The digital approach has become
 overwhelmingly popular because it decisively improves the logical
 stability of electronic computations and somewhat simplifies circuit
 fabrication, but the loss of information and of potential processing
 speed is substantial. If used in analog fashion, a few transistors can do
 arithmetic operations as complex as multiplication or extraction of
 logarithms, at least approximately; done digitally, the same opera
 tions require hundreds of transistors.

 Though this potential advantage of analog computation has been
 well understood for decades, analog systems have steadily lost
 ground to their digital competitors. In the first place, the precision of
 digital systems can readily be extended to any desired level simply by
 adding as many digits as one likes to the representation of a
 numerical quantity. Only standard components of fixed cost are
 required. In contrast, the precision of analog systems is inherently
 limited by the accuracy with which their component devices can be
 fabricated and isolated from outside physical disturbances such as
 temperature changes. A consequence is that the cost of analog devices
 escalates very rapidly with each additional digit of precision required
 and soon reaches a limit of absolute infeasibility.

 A second advantage of digital systems is that they can retain
 information with perfect accuracy for indefinitely long periods by
 storing it in devices of essentially perfect stability?in the now
 commonplace computer "memories." Since analog information
 (voltage values, for example) inevitably degrades and drifts with time,
 nothing directly corresponding is available in the analog sphere.
 Purely analog computers cannot, therefore, store their programs in
 the same sense that digital systems can. Hence, the control informa
 tion for analog systems that are at all complex, plus any extensive
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 tables of constants or auxiliary functions that may be necessary, must
 be stored digitally and converted to analog form when needed for
 analog computation. Still worse, all intermediate data must be
 reconverted to digital form if it is to be stored for any length of time.
 The clumsiness and inherent limitations of this situation have re

 stricted analog computation to a steadily narrowing sphere until, at
 present, large-scale computation of this sort is almost nonexistent.
 Mead's insight is that there is an important area in which the

 disadvantages of analog computation are irrelevant, namely, in the
 processing of streams of sensory information like audio information
 or moving images. Here the precision of digital systems is of little
 advantage, since conversion from some raw analog sensory form is
 required in any case, implying that the incoming data fed to an
 analysis system, whether digital or analog, will necessarily be of
 limited precision. Moreover, many of the common procedures in the
 initial processing of this data, and especially those standing in any
 conjectural relationship to initial sensory processing in the nervous
 system, make little or no use of prestored information, so the absence
 of memory in analog systems is not an objection. Consequently, there
 is reason to hope that analog networks can process sensory data in a

 manner that will profit from their great simplicity and compactness in
 relation to comparably functional digital systems. Mead has con
 structed two interesting systems that do so: a sound-spectrum
 analyzer modeled after the cochlear membrane of the inner ear, and
 an optical motion detector whose structure is similar to the retinal
 neuroanatomy of the eye. His work may suggest many other appli
 cations that allow combination of the performance advantage of
 analog computation with the extremely sophisticated, ultra-high
 density packaging that current very large-scale integration (VLSI)
 technology supports. It may inspire much imitation and open a new
 direction in electronic design.

 Nevertheless, in my opinion, Mead's work is interesting as analog
 VLSI rather than silicon neuroscience; in particular, his sound
 spectrum analyzer models the mechanical structure of the inner ear

 rather than the neural structures that receive its outputs.
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 PERSPECTIVE

 Stunning new discoveries can be expected from experimental neuro
 science during the coming decade. The astonishing successes of
 molecular biology constitute one major ground for this optimistic
 assessment. Once the presence of some biochemically important,
 even if initially quite unknown, protein is suspected in a tissue of
 interest, molecular techniques can be used to produce substantial
 quantities of antibody to this protein. Once available ("raised," in the
 jargon of the molecular biologist), such an antibody (which is simply
 a protein containing a portion complementary to some molecular
 detail of the protein) detects the presence of its target protein with
 exquisite sensitivity. Moreover, the antibody can readily be marked
 radioactively, magnetically, or optically and can be used to make the
 particular cells containing the target protein, or even particular
 microanatomical features of these cells, visible under the electron
 microscope. In addition, the walls of glass tubes can be coated with
 the antibody, and these columns can then be used to concentrate the
 protein by factors of a million or more. Such concentration opens a
 path to the chemical and structural analysis of the protein and from
 this to the identification of biochemical antagonists to its normal
 activity. Then, by dosing living brain tissue with these antagonists,
 one can paralyze the portion of normal function that is mediated by
 the protein and thereby pinpoint its specific physiological role and
 relevance for the information-processing activity of the brain.

 As investigations of this sort are pursued more and more compre
 hensively for the entire battery of proteins significant as surface
 receptors in neurons, cell populations will become identifiable by the
 collections and concentrations of receptor molecules that their sur
 faces carry. Moreover, we will come to know the manner and speed
 with which neurons respond to the activation of particular surface
 receptors. These responses may be fast and electrically mediated or
 slow and activated through long chains of intermediate biochemical
 effects triggered by initial receptor molecules.

 As noted earlier, biochemical identification of the subpopulations
 of neurons resident in the brain will give new focus to the work of
 neuroanatomists, increasing the relevance of their painstaking tracing
 of the brain's internal connections to our understanding of the brain's
 information processing. Embryological studies of the specialization
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 and migration of biochemically identified cell populations within the
 developing brain will reveal the mechanisms that guide the formation
 of these connection patterns and improve our sense of what
 information-processing schemes the brain's substructures use and
 how complex they are. New chemically and optically mediated
 techniques are already beginning to improve our ability to observe
 the brain's electrical activity directly. Now, for instance, we can
 record the electrical activity of up to several hundred interconnected
 cells simultaneously. At some point we will also gain insight into the
 specific biochemical mechanism (or perhaps the many mechanisms)
 underlying memory, and that will enable us to formulate far more
 specific models of the memory processes, be these Hebb-like or not.

 Though these massive experimental efforts will involve thousands
 of biochemists and neuroscientists for many years, we can expect
 investigations like these as well as ingenious, entirely new techniques
 eventually to uncover a very revealing mass of detail concerning brain
 function. As this information surfaces, the present aspiration of
 computer scientists to integrate their knowledge with that of neuro
 scientists will grow in relevance. Those in the computer science
 community who have paid their dues to experimental neuroscience
 by digesting and tracking its mounting mass of information may then
 be able to play an important part in extracting broad systematizing
 principles from an initial forest of experimental detail. These will
 surely be insights standing at the very pinnacle of science.
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 Real Brains and Artificial Intelligence

 Artificial intelligence is a science that finds itself in
 somewhat the same epistemological position as Aristotelian

 fc dentistry. Aristotle stated that women have fewer teeth than
 men1 and attributed this characteristic to women's supposed lesser
 need, men being stronger and more choleric,2 but he never bothered
 to look in Mrs. Aristotle's mouth to verify his theory. Similarly, AI
 has developed as an almost entirely synthetic enterprise, quite iso
 lated from the complementary, analytic study of the biology of
 natural intelligence represented by psychology and the neurosciences.
 To a biologist, the AI approach to the study of intelligence seems like
 a strange way of trying to understand the brain, which is, after all, at
 the basis of human intelligence. Nonetheless, biologists and computer
 scientists for the most part share the monistic view that mental
 events, including the manifestations of intelligence, necessarily reflect
 the activity of neurons in the brain.

 It is important, then, to ask whether the goals of AI are really so
 different from those of neurobiology as to require entirely different
 methods of investigation and demonstration. For if they are not, there
 is much to be gained by joining experiment with theory and synthetic

 modeling to make a whole science of the brain.
 We shall argue that the ultimate goals of AI and neuroscience are

 quite similar but that they have become obscured by erroneous

 George N. Reeke, Jr., is associate professor of developmental and molecular biology at The
 Rockefeller University.

 Gerald M. Edelman is Vincent Astor Professor at The Rockefeller University and director of
 The Neurosciences Institute.
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 epistemological assumptions drawn on the one hand from the
 arguments of Alan Turing and Alonzo Church about the universal
 problem-solving capabilities of computers (suggesting that the brain
 may be understood as a computer) and on the other hand from the
 reductionism of molecular biology (suggesting that the brain may be
 understood as a collection of units that exchange chemical signals).
 These confining assumptions, along with enormous practical and
 experimental difficulties, have kept the practitioners of both ap
 proaches very busy, while placing the goals always well out of their
 reach. In fact, consideration of the magnitude of the problem with
 due modesty suggests that perception alone is hard enough to
 understand, without attempting to jump directly from perception to
 learning, through learning to social transmission and language, and
 from there to all the richness of ethology. At present, it is still a large
 challenge to understand how an animal can even move, and it would
 be well for AI to look first to such fundamental issues.

 As biologists (that is, as evolutionists) seeking to understand what
 we perceive as the nearly dogmatic neglect of our science?at least in
 recent years?by those attempting to create AI, we shall begin by
 asking just what it is that AI seeks to accomplish, and what are the
 basic assumptions about the nature of the solution that engender the
 standard paradigms of AI. We shall discuss some problems that have
 arisen in the application of these paradigms and some recent attempts
 to overcome them by what we call "looking sideways to biology," or
 "the physicist's approach to neural networks."

 These new approaches, the misleading label "neural network
 computing" notwithstanding, draw their inspiration from statistical
 physics and engineering, not from biology. They are immensely
 appealing to the AI community for several reasons. They provide a
 practical recipe for parceling out AI computations among large
 numbers of simple processors, with a potentially enormous increase
 in computing speed. Parallelism has proven difficult to apply to AI,
 although it has already emerged in numerical computing as the only
 indefinitely extensible way to overcome the "von Neumann bottle
 neck" (the fundamental limits imposed on the speed of single
 processors by the laws of physics, for example, because signals
 cannot travel from one part of a computer to another faster than the

 speed of light). By virtue of their imitation of statistical systems, the
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 new approaches also provide statistical approximations to optimiza
 tion problems that have proven recalcitrant to all attempts at exact
 computation.

 Nonetheless, these statistical approaches share with mainstream AI
 the implicit notion that objects and events, categories and logic are
 given and that the nature of the task for the brain is to process
 information about the world with algorithms to arrive at conclusions
 leading to behavior. This information-processing paradigm funda

 mentally fails to come to grips with certain basic problems concern
 ing the nature of information and the ways that systems capable of
 analyzing information-bearing signals can come to exist. The as
 sumption that categories and signals encoding information about
 them are the basic stuff around which computations are organized
 constitutionally biases AI to equate perceptual and intellectual per
 formance with algorithms. This "category problem" leads directly to
 the inability of AI systems to cope with the complexity and unpre
 dictability of the real world.

 Our goal in this essay is to point out the fundamental nature of this
 problem. By characterizing observable forms of intelligence in the
 biological world (among others, human intelligence), we will intro
 duce an approach based on the most basic of biological principles,
 namely, Darwin's theory of natural selection. We will present a
 theory that suggests how selection can provide the solution to the
 category problem and how it might occur in the nervous system.3 We
 will describe several automata that carry out tasks involving percep
 tual categorization by selective mechanisms. Finally, we will discuss
 some ways that this purely biological principle might contribute to
 further progress in AI.

 THE NATURE OF THE AI ENTERPRISE

 Artificial intelligence is one of those terms with such an apparently
 self-evident meaning that it is rarely defined carefully. As a result, it
 has come to have an overly broad interpretation that adds confusion
 to the debate about its merits and prospects. Some have gone so far
 as to define AI as "whatever people in AI are working on." However,
 we will require a more meaningful, nonrecursive definition. To help
 us see the fundamental issues most clearly, we will exclude endeavors

 that have purely engineering goals, that is, projects aimed at devising
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 effective computer solutions for problems that are already well
 understood in principle. (We include in this category essentially all
 work on so-called expert systems and logical programming.)

 In his influential textbook Artificial Intelligence, Patrick Winston
 defines AI as "the study of ideas that enable computers to be
 intelligent." As for the goals of this study, he states (in this order) that
 "one central goal of Artificial Intelligence is to make computers more
 useful. Another central goal is to understand the principles that make
 intelligence possible."4 Neurobiologists would find the mention of
 these two goals in the same discourse rather lacking in balance. They

 would acknowledge the great practical importance of the first but
 consider it to have very little fundamental interest. They would agree,
 on the other hand, that the second goal captures much of the essential
 nature of their own enterprise, although they would consider its
 formulation rather abstract. In contrast, neurobiologists would al

 most certainly refer to their own interest in discovering and validating
 such principles by observing existing intelligent systems. For the time
 being, such systems remain confined to the world of biological
 organisms.

 Thus, as already suggested, the major goals of AI and neuroscience
 are indeed similar. AI, however, starts off with a more formal
 approach to these goals that directs it away from the study of
 "messy" biological systems. What are the subjects of inquiry that AI
 considers appropriate to a pursuit of its goals, and what are the
 research paradigms these subjects engender? In 1961 Marvin Minsky
 presented a list that most workers in AI would probably still accept
 today: to find effective procedures for search, pattern recognition,
 learning, planning, and induction.5 Perhaps language understanding

 would now be added as a separate category; in agreement with
 Minsky, "search" would include a variety of optimization and
 reasoning problems as well as retrieval of coded information from

 memory, and "pattern recognition" clearly would have to encompass
 the decomposition of sensory data into component objects as well as
 the categorization of these objects and events after (or while) they

 were being recognized.
 This choice of subject matter reflects the epistemological assump

 tions alluded to earlier. In the standard AI paradigm, as presented by
 Winston, the key to finding powerful procedures that can solve these
 problems is to discover appropriate representations of the relevant
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 information. Once a representation is given that "make[s] the right
 things explicit and expose[s] natural constraints,"6 it is a much
 simpler matter to devise purely computational procedures to manip
 ulate the information, still in its encoded representation, so as to
 obtain the desired solutions. Winston is right. Once an appropriate
 representation is available, many problems do become amenable to
 automatic solution. In our view, however, the problem requiring
 intelligence is the original one of finding a representation. To place
 this problem in the domain of the system designer rather than in that
 of the designed system is to beg the question and reduce intelligence
 to symbol manipulation.

 The line of reasoning that leads to this oversimplified and mechan
 ical view of intelligence has distinguished origins. It can be traced
 back at least to Pascal and Leibniz, and it took on its present form in
 the earliest days of modern computers. The most important under
 pinning of the theory of digital computers, Turing's universality
 principle, was developed before any workable machines existed;
 perhaps this is why people were encouraged to think in very general,
 abstract terms about computers and their capabilities. The very real
 limitations of actual computers and computer programs only became
 clear later, after the initial excitement was over and the basic
 paradigm was well established. The limitations then came to be
 viewed as purely practical and eventually surmountable; after all,
 those who believed otherwise did not remain in the field to invest

 their creative energies in building what they saw as a house of cards.
 Thus, only now is it becoming more widely suspected, as it always
 was by some,7 that AI may have fundamental difficulties as opposed
 to merely practical ones. This situation is quite unlike the case with
 such inventions as the steam engine, where practice preceded theory
 and guided it into the most fruitful channels.

 The basic justification for AI, which we shall criticize in detail later,
 goes essentially like this:

 1. Objects and events exist in the world. Information about them
 may be gathered by appropriate sensors. It is the goal of intelligent
 systems to process or transform this information so as to provide the
 basis for the "planning" and "induction" of which Minsky speaks.

 2. Given a representation of information as strings of symbols, its
 manipulation can be carried out by purely formal rules that need
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 make no reference to the meanings of the symbols. These rules may
 be expressed as algorithms.

 3. An algorithm may be executed by any universal Turing
 machine.8 The very existence of these machines implies that the
 particular mechanism of operation of any one of them is unimpor
 tant. The important thing for understanding intelligence is the
 algorithms, not the hardware on which they are executed. In partic
 ular, what the brain does may be described by algorithms.

 4. Church's thesis further suggests that if any consistent, terminat
 ing method exists to solve a given problem, then a method exists that
 can run on a Turing machine and give exactly the same results.9
 Therefore, at least for problems that can be solved consistently in a
 specified, finite amount of time, a Turing machine is as powerful as
 any other entity that can solve the problem, including the brain.

 5. Since inconsistency makes science impossible and infinite time
 requires immortality, it only makes sense to discuss problems of the
 kind that can be solved by Turing machines.

 6. Once the informational requirements for such a problem have
 been identified and an algorithm presented, the problem is in some
 sense understood. Other algorithms may be found that are more
 elegant or more efficient in some implementation, but all algorithms,
 including those used by the brain, are subject to the same informa
 tional requirements and may be understood in the same way.

 7. Therefore, the brain is equivalent to a computer, or at least
 the computer is an adequate model for the interesting things the
 brain does.

 The standard, entirely synthetic, paradigm for carrying out AI
 research immediately follows from this line of argument: Choose a
 significant problem that everyone would agree requires the exercise
 of intelligence for solution; identify the items of information needed
 to reach a solution to the problem; determine how this information

 might best be represented in a computer; find an algorithm that can
 manipulate the information to solve the problem; write a computer
 code implementing this algorithm; and test it with sample (usually
 also simple) instances of the problem.

 This approach has led to a number of impressive demonstrations.
 For reasons that are no accident, the most successful of these have
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 come in areas that most obviously meet the conditions for applying
 Church's thesis: logical problem solving and theorem proving (GPS,
 MACSYMA, and the Prolog language, for example), identification of
 objects in images (ACRONYM, CONSIGHT), playing chess and
 other games (CHESS, KAISSA, BELLE, PARADISE), understanding
 human language in limited domains (SHRDLU, BORIS), and expert
 systems, which combine rule-based inference and natural-language
 interface techniques with domain-specific data bases (MYCIN, DE

 NDRAL, PROSPECTOR, XCON). However, all of these programs
 share a common quality that John McCarthy10 and others have
 repeatedly pointed out: they are "brittle" in the sense that, if pressed
 around the edges, they tend to "crack." In other words, the programs
 lack commonsense knowledge and reasoning?they do not "know"
 their own limitations. They are insensitive to context and are likely to
 give quite incorrect responses to queries that are slightly outside the
 domains for which they were programmed. These responses are
 perfectly logical consequences of the rules built into each system, but
 to the observer equipped with normal human reasoning faculties,
 they can appear arbitrary and even mysterious.

 A general solution to this problem of brittleness is not easy to find.
 While it may appear to be just another instance of the general
 difficulty of setting up and maintaining reliable large software
 systems, there seems to be a qualitative difference stemming from the
 open-endedness of natural language and the need for experience in
 the real world to acquire a competent repertoire of common sense. In
 the next section, we will look at some of the solutions to this problem
 attempted from within the standard AI paradigm. Then we will
 explain why we believe the problem lies with the paradigm itself and
 how the solution may be found by looking to real nervous systems
 and the ways they deal with complexity and novelty in the world.

 LOOKING SIDEWAYS TO BIOLOGY

 When one experiences difficulties in any large endeavor, the first
 impulse is to do more of the same or to do the same thing better. In
 the case of AI, this impulse has taken two directions?to improve the
 hardware and to improve the software. Each of these directions has
 given impetus to the development of new methods involving the
 representation of information by the states of simple processors and
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 the connections between them (the so-called connectionist, or neural
 net, models).

 First, improved hardware has made it possible to evaluate more
 conditionals (programmed logical tests) per second, to store larger
 data bases, and to examine images in more detail than before. This
 faster computation has certainly led to the improved performance of
 traditional AI systems. Chess automata, for example, can now "look
 deeper" (more moves ahead) into board positions.11 Ultimately,
 however, hardware speeds can be improved only to a point. Eventu
 ally, parallel processing must be introduced to bring about further
 progress?but effective use of parallel processing requires new soft
 ware techniques. Among the most intriguing of the new techniques
 being developed to replace traditional AI software are network
 models, which are ideally suited for implementation on multiproces
 sor systems whose physical arrangement matches or can be made to
 imitate the network structure of the models.

 Second, new software techniques have been widely heralded as
 ways to approach the brittleness problem. Nonprocedural computer
 languages promise to relieve the programmer of the responsibility for
 specifying the sequence of steps needed to solve a particular problem
 (in reality, they substitute standard sequencing methods that are built
 into a compiler and that, on account of their generality, are rarely
 optimal for particular problems). These languages allow program
 mers to introduce large numbers of domain-specific rules into expert
 systems before the complexity becomes totally unmanageable. Some
 form of "nonmonotonic" reasoning12 must then be introduced to

 mitigate the problems that arise when such rules are applied without
 precise consistency checks before the program is used. However, even
 these techniques require a vast software engineering effort for each
 problem that is attacked. The possibility of solving some of these
 problems with network-oriented methods that reduce the amount of
 explicit programming still further has provided the second major
 impetus for the development of simulated network methods within

 AI. Curiously, however, these developments have taken place in
 relative isolation from prior and contemporaneous work by biolo
 gists that was aimed at making models that incorporate some of the
 rich functional diversity of real nervous systems. (Some examples
 from our own work appear later in this article.)
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 We shall trace only the major currents in the development of these
 nonbiological networks; more details may be found in the works
 listed in the endnotes. While much of the activity has been recent, the
 notion that networks might be employed to carry out computations
 actually antedates the introduction of the programmable digital
 computer. The most influential of these early discussions was prob
 ably the 1943 paper of Warren McCulloch and Walter Pitts,13 in
 which activity in neuronal* networks was identified with the opera
 tions of the propositional calculus. Actual simulations of recognition
 automata based on networks were carried out by Frank Rosenblatt
 before 1958,14 but the theoretical limitations of his "perceptrons"
 were soon pointed out by Marvin Minsky and Seymour Papert,15
 and interest in network models waned until the recent introduction of

 more complicated nonlinear models that do not share these limita
 tions. Other lines of development that have influenced many of the
 current models include networks that are specially crafted for specific
 purposes, such as the system of David Marr and Tomaso Poggio for
 computing stereo disparity,16 and networks in which nodes are
 identified with cognitive "units" and interconnections with relation
 ships between concepts, as in John R. Anderson's ACT model for
 retrieving information from memory.17

 Thus the stage was set for the "physicist's approach to neural
 networks" as many scientists perceived a need to design networks for
 which convergence and learning properties could be predicted by
 mathematical theorems rather than by lengthy computer runs. Linear
 systems provided a relatively tractable starting point,18 but nonlinear
 ity is essential if categories are to be distinguished without overlap. A
 convenient physical analogy was the spin-glass, for which an exten
 sive theory was already available. Never mind if the analogy had to
 be a highly strained one. The possibility of analysis was more
 important to these workers than whether what their systems did was
 related to the basic problem of intelligence. All one had to do was
 identify network nodes with spins and connections with spin inter
 actions, and one could then speak of an "energy" that increased with
 the number of incompatibly connected spin pairs. From any starting
 state, the system would "relax" toward a state of minimum energy,

 * We use the term neuronal when a close identification with the properties of actual neurons is
 implied. We use the term neural when only a general similarity to actual neurons is involved.
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 and these states could be identified with "memories" encoded in the

 connectivity coefficients of the network. Each memory would have a
 "zone of attraction" in the surrounding "state space." This descrip
 tion neatly tied in the neural networks with recent advances in the
 dynamics of nonlinear systems and the theory of chaos. The best
 known models of this class are those of John Hopfield and his
 coworkers, who have been concerned primarily with the construction
 of ready-made networks for various tasks rather than with learning
 algorithms for such networks.19 The latter element has been added in
 "Boltzmann machine" models, which take their name from their use
 of the concept of energy from statistical mechanics associated with
 the late nineteenth-century physicist Ludwig Boltzmann.20 The rep
 resentation of concepts from cognitive psychology in such networks
 has been zealously explored, and illustrative applications presented.21

 Even with parallel computation and new learning algorithms,
 however, the possibility of training a network in a sufficient number
 of circumstances to confer common sense on it appears to recede
 forever into the distance as one contemplates the exceptions to the
 exceptions that are present in real-life situations. This unending
 compounding of exceptions comes close to revealing the true nature
 of the brittleness problem, which is that no amount of anticipation,
 planning, and programming can ever enumerate, a priori, all the
 variants of even a routine situation that may occur in daily life. It
 would seem, in what is perhaps an analogy to the classic "halting
 problem" in the analysis of algorithms (the problem of determining
 whether a given algorithm will run forever or eventually halt), that
 the only way to determine all the responses a system needs to have to
 deal with the vagaries of the real world is to expose it to the world
 and let it "run." Thus, each system will be different and fundamen
 tally unprogrammable.
 We say that connectionist models "look sideways to biology"

 because they take their inspiration and much of their terminology
 from the neural networks in living organisms, but they are not model
 neural networks (nor are they intended to be). Physicists, in their
 search for simplicity, are not prepared to deal with systems whose
 fundamental aspect lies in variability rather than regularity. In the
 attempt to find regularity in biological systems, many features have
 been introduced into their simulation in connectionist systems that
 are quite unbiological. These include the notion of memory as a
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 replica or a transformation of "information" given in the world
 (human memories are highly context- and affect-sensitive and to
 some extent nonveridical); the conception of memory retrieval as the
 relaxation of a network to a stable state (a brain is continually
 exposed to changing input patterns and has no opportunity to freeze
 them while waiting for the approach to equilibrium); the idea of
 energy minimization through simulated annealing (a brain decides
 actions more quickly than known annealing procedures could attain
 in model networks operating at the speeds of real neurons); the
 notion of bidirectional and symmetric single connections (synaptic
 connections in the brain are monodirectional); and the idea that
 learning can proceed by clamping the output of the system to a
 desired value while synaptic weights are adjusted according to some
 rule (the motor output of a brain can in general not be imposed
 externally). Yet each of these elements is present in one or another of
 the connectionist models.

 These unrealistic features should be a warning sign that something
 is seriously amiss in the basic assumptions behind the AI paradigm,
 even as modified by the introduction of parallel processing in
 neural-network-inspired systems. The ad hoc quality of these as
 sumptions suggests that the true problem lies deeper than the details
 of the network simulations; it must have to do with the concept of
 information and the way it comes to be represented and transformed
 in the intelligent systems that have evolved in nature.

 Standing at the start of the chain of deductions enumerated on
 pages 147-48, which for AI justify the notion of the brain as a
 computer, is the assumption that information exists in the world?
 that it is just there to be manipulated. There is also the idea that the
 organism is a receiver rather than a creator of criteria leading to
 information. Once the prior existence of such external information is
 conceded, it is entirely natural to proceed without further ado to the
 business of programming the rules to deal with it. At this point, the
 damage is already done. All efforts to program such rules run quickly
 into five vicious problems that have in common the transfer to the

 programmer of functions that belong properly to the putatively
 intelligent system:

 1. The coding problem. The programmer must find a suitable
 representation of the information to put it in the proper form for
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 symbolic manipulation. It will usually not be clear in advance just
 what symbolic manipulations may be required and what the ante
 cedent requirements on the representation may be.

 2. The category problem. The programmer must specify a suffi
 cient set of rules to define all the categories with which the program
 must deal. It is difficult to see in advance what these categories must
 be in a real world, much less how to define them.

 3. The procedure problem. The programmer must specify in
 advance the actions to be taken by the system for all combinations of
 inputs that may occur. The number of such combinations is enor

 mous and becomes even larger when the relevant aspects of context
 are taken into account. The behavior of biological organisms with
 real nervous systems becomes quite unpredictable in such circum
 stances.

 4. The homunculus problem. Separate mechanisms are required to
 interpret the strings of symbols produced as output by any formal
 information-processing system. The strings can have no meaning

 within the formal system itself. But then, the necessary properties of
 intelligence are embodied in the observer, not the system. To avoid an
 infinite regress, the programmer is obliged to specify all the proce
 dures the observer must follow.

 5. The developmental problem. Can a programmed system come
 to exist without a programmer? Intelligent biological systems exist,
 yet they evolved and were not programmed, either as species or as
 individuals. Thus, the AI argument that brains carry out computa
 tions as computers do leads to a contradiction: brains must have
 programs, yet at the same time must not be programmed.

 We hold that the solution to these conundrums may be found by
 examining existing natural intelligences and other biological systems
 in an attempt to understand how they come to exist and how they
 operate without prior programs. In the remainder of this essay, we
 shall argue that a form of selection, akin to Darwinian selection but

 operating among collections of neurons in the brain of a single
 organism during its lifetime, provides the only tenable basis for a
 theory of categorization and intelligence.22 Evolution, by extending
 selection in this way to the individual brain, was able to remove the
 need for the programmer.
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 LOOKING DIRECTLY TO BIOLOGY

 From the preceding analysis, it is clear that the notion of information
 preexisting in the world must be rejected. The essential requirement
 for learning, logic, and the other mental functions that are the usual
 subjects of AI research is the prior ability to categorize objects and
 events based on sensory signals reaching the brain. The variety of
 sensory experiences is both vast and unique for each individual. The
 categories themselves are not present in the environment but must be
 constructed by each individual according to what is adaptive for its
 species and its own particular circumstances. The a priori specifica
 tion of rules for categorization, applicable to all individuals and all
 contexts, is precluded by the complexity, variability, and unpredict
 ability of the macroscopic world. To make matters worse, the
 categories constructed by an organism cannot be fixed but must
 constantly change in response to new experiences and new realities in
 its part of the environment. The only way categories constructed in
 this individualistic manner can be validated is by constant coupling
 back to the world through behavior. However, once this adaptive
 categorization process has been established, the rest of the task?the
 construction of higher categories, memories, and associations?is
 enormously simplified.

 Our first task, then, is to build a satisfactory theory that goes
 beyond the formal processing of information to a consideration of
 how that information comes to exist in an unlabeled world, what
 relationship exists between signals in the brain and the categories it
 has constructed, and how the interactions of those signals yield
 behavior without the benefit of prearranged codes to give them
 meaning or of prearranged algorithms to process them. The problems
 encompass memory as well as transient signals: How can memory
 function in the absence of a replicative store like that found in a
 computer, and how can memory be combined with current sensory
 signals to produce behaviors that enhance the survival of the organ
 ism? To make such a theory, we must consider the entire biological
 system, its evolutionary origins, and its development as an individual
 from embryo to functioning adult.

 It would be well to begin by considering some basic facts of
 neurobiology. First, nervous systems are organized as networks with
 distinct areas having different patterns of connectivity, apparently
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 specialized for different functions. Often these networks are con
 nected to one another in a sequence of maps. We characterize this
 anatomy as a "heterarchy" (an arrangement in which the subnet
 works are cross-connected in ways that do not follow a strict
 hierarchy). In such an arrangement, subnetworks with different
 functions interact to yield more complex functions that they do not
 possess alone. Successive regions appear to have been added gradu
 ally during the course of evolution, each contributing a new function
 but working in conjunction with older regions to confer a high degree
 of functional redundancy on the brain. There is no apparent analog
 to the functions of the clock and the instruction decoder in a
 computer. Instead, there is apparently a high degree of parallelism in
 the operations of the functional regions as well as in the responses of
 individual neurons. Extensive overlaps of dendritic and axonal
 arborizations suggest a functional degeneracy in which there are
 many alternative paths between any two points in the network, even
 within a single map. That no single neuron appears to be indispens
 able for any function suggests that only patterns of response over
 many neurons can have functional significance. Inasmuch as neu
 rons have limited speed and dynamic range, they probably do not
 carry out computational algorithms in anything like the way a com
 puter does.

 The final, and most telling, observation is the enormous diversity
 of neuronal populations. This diversity is seen at all phylogenetic
 levels but, if anything, is greater in higher forms. Diversity extends to
 the number and arrangement of neurons in genetically identical
 animals and even to the detailed structure of individual neurons of
 known function in those animals in which such structures can be

 identified. It can easily be calculated that there is not enough
 information in the DNA to specify uniquely the locations of all these
 neurons and their connections. Thus, indeterminate, dynamic, epige
 netic mechanisms (mechanisms reflecting the influence of the local
 environment on the unfolding genetic programs of individual cells)
 must operate during development to determine the fine structure of
 the nervous system. This is not what one would expect if nervous
 systems were optimized by design to carry out specific cognitive
 functions. Furthermore, the variability appears to be not just an
 unavoidable consequence of essential developmental processes but an
 evolutionarily selected trait. While such variation in wiring would
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 lead to total failure in a computer, it seems to serve a functional role
 in the brain. The nature of this role will become clear when we

 consider how selective processes can act to give the kind of flexible,
 adaptive categorization that we have argued is necessary to enable an
 animal to deal with the world without benefit of a preordained
 program.

 The biological facts we have pointed out, particularly the struc
 tural variation at all levels in the nervous system, together suggest
 that selection has a role not only in the development of nervous
 systems but also in their functioning at maturity. In selective systems
 the functional units are not specifically constructed to carry out their
 functions in an optimal way but instead are selected from much
 larger sets called "repertoires." The component units in a repertoire
 are constructed with a wide structural variety that is sufficient to
 cover, with overlap, the range of possible functions needed in any
 particular instantiation of the system. Selection occurs during expe
 rience without further alteration of the functional properties of units
 already constructed. Rather, the selected units are multiplied or
 amplified in such a manner as to make a larger contribution to the
 future responses of the system than the unselected units. Selective
 processes of this kind, with different amplification modes appropriate
 to each system, provide the basic mechanisms of the immune system
 and, of course, of evolution itself.

 Consideration of the need for nervous systems to provide organ
 isms with the behavioral adaptability to survive in a hostile environ

 ment without prior knowledge or programming, consideration of the
 structural variability found in all nervous systems, and other consid
 erations have prompted the idea embodied in the neuronal group
 selection (NGS) theory23 that the brain is in fact a selective system
 operating in somatic time (that is, during the lifetime of an individual
 organism). Population thinking, the fundamental theoretical mode of
 biology in which the properties of populations as well as those of
 individuals are taken into account, is thereby introduced into consid
 erations of how individual brains work.

 THE NEURONAL GROUP SELECTION THEORY

 According to the NGS theory, two kinds of selection events play
 critical roles in shaping the development of the nervous system.
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 During the formation of the brain in the embryo, selection among
 competing neuronal cells and their processes determines the anatom
 ical form and the pattern of synaptic connectivity of the nervous
 system. This selection for connectivity is elaborated through the
 developmental mechanisms of cell adhesion and movement, differ
 ential growth, cell division, and cell death. Because of their dynamic
 properties, these selective mechanisms introduce individual variance
 into the neuronal networks. Later, during postnatal experience,
 selection among diverse preexisting groups of cells, accomplished by
 differential modification of synaptic strengths or efficacies without
 change in the connectivity pattern, shapes the behavioral repertoire of
 the organism according to what is of adaptive value to it in its
 econiche.

 A system must have three features if it is to be selective: (1) it must

 have an a priori repertoire of variant entities capable of responding to
 relevant environmental states; (2) the individual members of this
 repertoire must have extensive opportunities to encounter the rich
 diversity of the environment, providing opportunities for selection,
 and (3) the system must have a mechanism for differentially ampli
 fying the relative contributions of those members of the repertoire
 that are in some sense favored or selected in their interactions with

 the environment. According to the NGS theory, the repertoires in the
 nervous system comprise groups of perhaps 50 to 10,000 neurons,
 capable, as a result of their interconnections, of responding to
 particular patterns of activity that arrive at their synapses. These
 interconnections are formed during development, prior to experi
 ence. The inputs to which the groups respond originate ultimately at
 the sense organs (encounter with the environment) but frequently are

 relayed first through other neuronal groups. Selective modification in
 the strengths of synaptic connections (differential amplification) leads
 to the compartition and stabilization of functioning circuits out of
 fixed networks. In higher forms, responses of neuronal populations
 are significantly influenced by similarities between present and past
 constellations of sensory signals. This reevocation of previous re
 sponses constitutes the basis of what we call memory. Memory is a
 consequence of selective amplification, which leads to increased
 speed or strength of selected responses when similar patterns of
 stimulation are repeated.
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 To be able to respond adequately to a wide range of novel inputs,
 a selective system must have a sufficient number of units in its
 repertoires. A relationship can be derived between the sizes of the
 repertoires and the specificities of the individual groups.24 If recog
 nition is too specific, the system will fail because there will be no way
 to place enough groups in a finite repertoire to recognize all possible
 stimuli; similarly, if specificity is too broad, the system will fail
 because stimuli with significant differences may be confused. The
 specificities must therefore be intermediate, allowing several groups
 to respond more or less well to any given stimulus. This phenome
 non, which we call "degeneracy," is critical to an understanding of
 selective recognition systems. Degeneracy ensures that any perceptual
 problem has multiple potential solutions. Context determines exactly
 which combination of groups responds in a given situation and
 therefore which solution is selected. Degeneracy also ensures that the
 entire "space" of possible stimuli is covered and that the system has
 the functional redundancy needed to make it fail-safe against the loss
 of individual groups.

 One additional concept that is critical to the NGS theory is that of
 "reentry," or the exchange of output signals, usually in a mapped
 arrangement, from one repertoire to another at the same or an earlier
 stage of neuronal processing. Reentry provides a mechanism for
 correlating responses at corresponding positions in related maps so as
 to ensure consistency across the entire system with respect to the
 current state and spatiotemporal continuity of the environment.
 Reentry ensures that subrepertoires at all levels in the nervous system
 are constantly mapped to each other and to the outside world,
 obviating any need for the context switching, time stamps, or other
 bookkeeping apparatus used in computers. It encompasses feedback
 but is more general. For example, two different repertoires in
 independent parallel pathways, each disjunctively sampling different
 aspects of signals, can classify stimuli according to different criteria
 and can be cross-connected at higher levels. Such interacting reper
 toires form "classification couples," which, by their mutual interac
 tion, can perform classifications more complex than either repertoire
 could accomplish alone. Another form of reentry involves the total
 system of creature plus environment. In this "global" form of reentry,
 the motor output of the organism influences sensory systems by
 changing the relative arrangement of objects or the organism's
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 position in space. Mappings at all levels of the nervous system thus
 become joined in a global loop. Iteration of activity in this loop can
 alter reentry in local maps and lead to modified behaviors that are
 more adaptive for the organism.

 The NGS theory is consistent with the biological facts we have
 summarized. It takes advantage of the unavoidable variance in
 connectivity introduced by epigenetic events during the construction
 of neuronal networks to provide a plausible mechanism for catego
 rization without programmed descriptions, homunculi, or reinforced
 learning. The theory is based on principles of selection similar to
 those that govern the evolution of species; the mechanisms, of course,
 are different. Such an approach is not all-inclusive, but it does give
 one a way to confront the fundamental problem of categories before
 taking on social psychology and all the intervening problems between
 perception and language.

 Like any scientific theory, NGS must be tested by experiment. Data
 from several lines of study already provide significant support for it.
 Studies of development in the nervous system show that the dynamic
 regulation of a small number of cell-adhesion molecules is responsible
 for the growth patterns of neuronal processes,25 and there is no
 evidence for the kind of extensive system of chemical markers that
 would be required if all connectivity were somehow genetically
 specified. Indeed, there is evidence for extensive variance of connec
 tivity, even in genetically identical animals. In adult animals, data now
 show that neuronal mappings, such as those in the somatosensory
 cortex (a brain area that responds to touch receptors in the skin), are
 not nearly as rigid and unvarying as had previously been thought. 26
 Rather, competition occurs to determine map boundaries. The evi
 dence shows that certain connections that are anatomically present
 but not used in the normal functioning of these cortical regions can
 become active by selection when normal patterns of activation are
 disrupted. These inactive connections correspond to the ones not
 selected in normal functioning; their existence would make no sense
 in a nonselective system. A complete discussion27 of this evidence28 is
 beyond the scope of this article. Instead, we shall briefly describe a
 series of automata that we have constructed in comjputer simulations
 to test the self-consistency of NGS as well as to demonstrate the
 ability of selective recognition systems to carry out interesting recog
 nition and categorization tasks. Such models can be invaluable in
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 helping to focus experimental questions for the biologist. Ultimately,
 we hope also to learn from them how to construct machines capable
 of carrying out context-sensitive classification tasks far better than
 any computers that are now available.

 SELECTIVE RECOGNITION AUTOMATA

 We have been exploring the properties of selective recognition
 systems by constructing and testing a series of automata. These
 automata address some of the problems of the standard AI paradigm
 by avoiding preestablished categories and programming altogether.
 Instead, they are constructed as networks of simulated neuronlike
 units that, by a process of selection, can carry out simple categoriza
 tion and association tasks in variant worlds full of novelty. Program
 ming is used to instruct the computer how to simulate the neuronal
 units, but the function of these units is not itself programmed. The
 first automaton, called Darwin I, dealt with the process of recognition
 itself by using strings of binary digits as both recognizands and
 recognizers.29 The second, Darwin II, was used for the recognition
 and classification of two-dimensional patterns presented on a retina
 like array.30 A third system, Darwin III, combines the recognition
 and categorization networks of Darwin II with motor circuits and
 effectors that act upon the environment to form a complete autom
 aton capable of autonomous behavior. Unlike the previous two
 automata, Darwin III can be observed behaving without our looking
 into its "nervous system."
 The arrangement of networks in Darwin III may be varied at will

 to suit various experimental protocols. A simplified functional sche
 matic of one such arrangement, which we will describe in detail
 shortly, is shown in the diagram on page 162.
 Networks may be constructed from multiple repertoires, corre

 sponding to functional regions in the brain. Each repertoire may
 contain several layers of cells, just as the cerebral cortex does. Each
 layer may have its own rules for connectivity and synaptic modifica
 tion. Once established, the connectivity is fixed, but the connection
 strengths vary in accordance with rules for synaptic modification that
 provide the mechanism of NGS. Stimuli are presented on a retinalike
 input array. An environmental module permits these stimuli to be
 generated and moved about in various ways in order to test the
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 This diagram shows the functional relationships in one arrangement of Darwin III. The box at
 the top represents the environment, in which an unnamed object is moving about. The
 remaining boxes represent functions, each of which is subserved by several repertoires of
 neuronal groups with appropriate interconnections. The arrows suggest causal relationships,
 which generally reflect the existence of anatomical connections among the various regions. The
 two separate sampling systems of the automaton, Darwin and Wallace, are at the left and the
 right, respectively.

 The result of the automaton's neuronal activity is externally apparent as motor activity
 responsive to its categorization of objects. This categorization proceeds according to internal
 criteria that emerge because the automaton has biases or values. For example, the value "seeing
 is better than not seeing" is expressed in terms of changes in connection strengths in oculomotor

 repertoires when visual units become more active following eye movements. Note that value
 does not prespecify categories, but when categories do emerge, it biases the selection of
 behaviors consequent upon them. Note also that the automaton reflects its experience in more
 or less stable alterations of connection strengths but does not have coded representations for
 memory. Instead, memory is exhibited as an enhanced ability to recognize and categorize
 objects in classes seen before.
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 responses of the automaton. Two devices are provided for motor
 output from Darwin III: a multijointed arm and a movable head with
 one or two eyes. Motions of the arm can actually displace objects in
 the environment, while motions of the head affect only their per
 ceived positions. Specialized networks may be incorporated that
 respond by simple innate criteria to the relative adaptive value to the
 automaton of its various motor actions. Selective amplification may
 be made to depend on adaptive value as registered by these internal
 structures. External criteria for amplification (such as might be
 provided by a programmer) are not permitted.

 An important rule, one that distinguishes the Darwin automata
 from AI systems with similar goals, is that no specific information
 about the stimulus objects to be presented is built into the system
 when it is constructed. General information about the kinds of

 stimuli that will be significant to the system (for example, the fact that
 they will be line drawings) is, however, implicit in the choice of
 feature-detecting elements that are used. This choice is akin to the
 specializations built into the receptor organs of each species during
 the course of evolution.

 A part of Darwin III is specialized, like Darwin II, to deal with
 categorization. Psychological studies suggest that humans use several
 different methods to make classifications.31 Accordingly, both au
 tomata incorporate two separate categorization functions. The first is
 to recognize aspects of individual objects according to their unique
 characteristics; the second is to recognize similarities among things in
 the same class and differences among things in different classes and
 thus to define objects. To accomplish these tasks, two sets of
 repertoires are used that operate in parallel. They both incorporate
 series of maps, but the maps are constructed differently and they
 make classifications according to quite different principles. These
 complementary subsystems interact via reentrant reciprocal connec
 tions to give associative functions not possessed by either set alone.

 The two subsystems are arbitrarily named Darwin and Wallace
 (see the diagram). Darwin is the one designed to respond uniquely to
 individual stimulus patterns. Its responses loosely correspond to an
 approach to categorization known in the psychological literature as
 "matching to exemplars." In this approach, objects are compared to
 stored exemplars, and categories are assigned according to the

 maximum degree of match obtained with features; Darwin, however,
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 does not store feature patterns but rather produces patterns of
 response corresponding to each unique input that it recognizes. In
 itself, Darwin cannot define an object, because it is insensitive to the
 continuities of features. Wallace, on the other hand, is designed to
 respond in the same way to different objects in a class by correlating
 a variety of features; this process loosely corresponds to a probabi
 listic matching approach to categorization and cannot in itself
 distinguish individuals. Of course, the particular response specificities
 of Darwin and Wallace (mainly to contour in a two-dimensional
 world) are intended to be merely exemplary, and other stimulus
 properties such as color and texture would also be represented in real
 nervous systems.

 The Darwin and Wallace networks both have hierarchical struc
 tures. Each has a level that is connected directly to sensory input and
 that deals with features of the stimulus; connected to that is an
 abstracting or combining level that receives its main input from the
 first level and responds to combinations of the elementary responses
 that are relevant to categorization. The initial layer of the Darwin
 subsystem comprises groups of cells that respond to local features on
 the input array, such as line segments oriented in certain directions or

 with certain bends. These are connected in various combinations to

 higher-level abstracting groups that give the desired unique responses
 to each stimulus pattern. These responses include elements contrib
 uted by the surrounding context.

 On the other hand, Wallace deals with object and class properties.
 In Darwin III, the Wallace subsystem makes use of the automaton's
 arm to trace over the contours of stimulus objects, much as a blind
 person reading braille text might do. The first-level repertoire of

 Wallace receives input from the arm's kinesthetic sensory neurons. It
 responds to correlations of trace activities that distinguish objects as
 entities from the background by their spatial continuity. Cells in this
 repertoire are in turn connected to an abstracting network similar to
 the one in Darwin. Because the trace responds to the presence or
 changes of direction of lines in the environment with little regard for
 their lengths and orientations, Wallace is insensitive to both rigid and
 nonrigid transformations of stimulus objects and tends to respond to
 class characteristics of whole families of related objects.

 The networks in the two abstracting repertoires are connected to
 each other at higher levels to form a classification couple. It is
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 important that in such a couple the earlier levels not be connected, for
 if they were, the separate modes of sampling for later classification

 would be confounded and their distinct characteristics lost. In other

 words, the sampling of the world by parallel channels must be
 disjunctive for rich, context-sensitive classification to occur.

 The responses of the neuronal groups in Darwin III are determined
 by their present inputs and past histories in a manner that incorpo
 rates the most important features of the far more complicated
 responses of real neurons. Input connections are specified by lists that
 are constructed when the model is set up. These lists are constructed
 differently for each repertoire according to its function. Each input
 contributes to the output of the group according to the current
 strength of its connection. In addition, the groups are subject to
 random fluctuations in their activity analogous to those found in real
 neuronal networks. The recognition specificity of each group depends
 on its connection list and connection strengths; the best response is
 obtained when the most active inputs are connected via synapses with
 high connection strengths. For other inputs, a group will respond
 more or less well, overlapping in specificity with other groups and
 conferring degeneracy on the system as a whole.

 The connection strengths among cells, both within and between
 groups, are modified during selective amplification. The amplification
 rule depends only on quantities that could reasonably have an
 influence on the efficacies of real synapses in real neuronal networks
 and is purely local in nature. In the scheme we have used most often,
 a connection is strengthened if the activities of both pre- and
 postsynaptic cells exceed specified thresholds. In other words, a
 connection from an active input to an active cell is strengthened and
 leads to a stronger response the next time a similar input is encoun
 tered. In certain other circumstances, connection strengths are weak
 ened, preventing the system from eventually reaching a state in which
 all synapses have maximum efficacy. If this were to happen, any input
 would drive the network as a whole to a state of maximal activity
 corresponding to a kind of "epileptic seizure."
 With appropriate stimulation sequences, Darwin II and Darwin III

 are capable of producing responses corresponding to behaviors such
 as categorization, recognition, generalization, and association. A
 detailed treatment of some typical experiments has been presented
 elsewhere.32 Categorization is most evident in the Wallace responses.
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 It does not involve naming, which requires a linguistic convention,
 but only similarity of response to items in the same category. As we
 have already seen, such similarity is characteristic of the operation of

 Wallace. (The particular categories arrived at for various kinds of
 stimuli are dependent on the particular choice of kinesthetic trace
 correlations that Wallace groups respond to, and might or might not
 agree with the categories we define for the stimuli. The existence of
 discrepancies is consistent with the idea that categories are not
 inherent in the environment, but depend on the evolutionarily
 dictated predispositions of organisms to attend to categories that are
 relevant to their adaptive needs. The construction of information
 depends on these internal adaptive criteria.)

 The effect of synaptic modification on the responses of groups in
 these networks is to alter cells that respond above a certain level (the
 amplification threshold) so that they will give a stronger response
 when later they experience a similar input pattern; groups with
 weaker responses generally are changed so as not to respond at all
 after amplification. Groups that are not involved in the response to a
 particular stimulus remain unchanged and available for response to
 novel stimuli not yet encountered. These selective changes demon
 strate recognition, or the enhancement of meaningful response to a
 stimulus after it has been experienced before. In addition, amplifica
 tion can be shown to improve the ability of the system to categorize.

 Generalization occurs when responses to novel shapes are more
 like the responses to previously encountered shapes in the same class
 than would have been the case without prior experience. In Wallace,
 generalization is already present without amplification as a conse
 quence of the feature-correlating property of that network, but in
 Darwin, generalization is not built in and can occur only with the
 help of Wallace. Reentrant connections between Darwin and Wallace
 make it possible for common patterns of response in Wallace to bias
 the units amplified in Darwin in accord with the class membership of
 the various stimuli. After a number of repetitions of this process, with

 shapes from several different classes, the Darwin responses become
 more alike within each class. To the extent that novel stimuli in the

 same class elicit responses in the feature-detecting layer of Darwin
 that have elements in common with the responses to the stimuli used

 during amplification, responses to these new stimuli will also become
 more similar, consistent with generalization in Darwin.

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:13 UTC���������6 UTC 

All use subject to https://about.jstor.org/terms



 Real Brains and Artificial Intelligence 167
 Reentrant connections in both directions between Darwin and

 Wallace are also essential for the process of association. Association
 is achieved when individual responses in Darwin are linked to
 different stimuli in the same class via Wallace in such a way that
 presentation of one of the individual stimuli evokes elements of the
 response in Darwin proper to another. Such associative properties
 among individuals could not be displayed by Wallace alone.

 These capabilities of categorization, recognition, generalization,
 and association all underline the point that these critical aspects of
 perception can, and indeed must, occur before conventional learning.
 They also show how systems based on more than one principle of
 categorization can be joined in classification couples to give modes of
 classification not available to any single system.

 Darwin III is also being used to study problems involving motion,
 perceptual invariance, figure-ground discrimination, and memory,
 among other phenomena. The NGS theory suggests that object
 motion is a critical factor in the selective process, particularly in early
 visual learning, where it provides to the perceptual system a major
 clue that the world in fact can be parsed adaptively into separate
 objects. This view is consistent with experiments suggesting that
 human infants have a conception of objects as spatially connected,
 coherent, continuously movable entities.33 For this reason, the first
 experiments using the motor systems in Darwin III have been aimed
 at gaining a better understanding of this parsing process, beginning
 with the simple ability to track a moving object on a plain back
 ground.

 In these experiments, connections are provided from retinotopi
 cally mapped visual layers (corresponding to the superior colliculus
 or optic tectum in various biological species) to motor layers con
 necting ultimately to the muscles that control the position of the eye.
 These connections are made indiscriminately to motor cells corre
 sponding to all directions of eye movement. Thus, there is no a priori
 specificity with regard to input in any particular part of the visual
 field and there are no prearranged motor skills; performance can
 develop and improve only by selection from spontaneous movements

 generated by pairs of mutually inhibitory motor pattern-generating
 layers. Amplification of connections from sensory to motor regions is

 modulated by value schemes based respectively on the appearance of
 activity in a circumfoveal region and in the fovea itself. (The fovea is
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 the region of greatest visual acuity near the center of the retina.) Thus,
 connections from a particular point on a visual layer to a particular
 motor area will tend to be strengthened when the appearance of an
 object at that point is correlated with activity in the motor area that
 leads to foveation of the stimulus. These same connections will tend

 to be weakened when the motor activity does not lead to foveation.
 After a suitable period of experience with various moving stimuli,

 Darwin III in fact begins to make the appropriate saccades and fine
 tracking movements with no further specification of its task than that
 implicit in the value scheme. The automaton finally displays a system
 of behavior in which the eye scans at random when no stimulus is
 visible, makes a rapid saccade to any stimulus that appears within the
 outer limits of its widest visual field, and finely tracks any stimulus
 that has successfully been foveated. During fine tracking, the Darwin
 and Wallace networks are able to respond to the now-centered
 object, permitting position-independent categorization to occur. Ha
 bituation eventually sets in, permitting occasional saccades to other
 parts of the visual field. After such a saccade, a new stimulus object
 can take over as tracking target.

 In a similar fashion, the multijointed arm of Darwin III can be
 trained to reach for and touch objects that are first detected and
 tracked by the visual system. This performance, which entails the
 coordination of gestural motions involving the various joints to
 different extents, requires the participation of a whole series of
 repertoires that perform functions similar to those thought to be
 carried out by the cerebellum in real nervous systems.

 Of course, these selective systems make mistakes. For example, in
 the oculomotor system, amplification errors may occur when a
 stimulus crosses the edge of a visual field diagonally, and very large
 stimuli may confuse the tracking mechanism. By the use of standard
 engineering techniques, a better tracking system could surely be
 designed, one in which the correct motions for a spot of light at any
 location on the visual field would all be calculated in advance and

 incorporated in the logic of the design. The selective system needs
 experience to develop its functional capabilities. But this very lack of
 built-in function is its biggest advantage; the machinery in a selective
 system "doesn't know what it is for," permitting the same networks
 to accomplish various tasks depending on what we, acting as external
 agents of "evolution," decide they should find "adaptive." This
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 flexibility is possible precisely because the functional organization of
 the system arises only after interaction with the environment. Equally
 simple training regimes should work for a wide variety of tasks, such
 as finding a desirable object in a background of distracting objects
 and picking it out with the arm. The modular combination of
 subsystems capable of carrying out recognition tasks provides an
 attractive approach to the construction of automata with increasingly
 complex perceptual capabilities and should have eventual signifi
 cance for efforts at machine vision. As for output, the corollary for
 motor control is the ability to generate complex behavioral sequences
 by selection from simple and innate motion patterns. This has
 obvious significance for developments in robotics and the control of
 complex systems, particularly in connection with "attentional
 tasks."34 Such context-sensitive tasks present an apparently insuper
 able barrier to traditional AI approaches.

 From a purely economical point of view, it might be argued that
 artificial selective systems would be impractical because they must
 always contain some units that do not respond to any of the inputs
 actually encountered, and thus are never used at all. The fraction of
 such units does not increase with system size, however, and the extra
 units provide redundancy that may well yield overall cost savings
 because of reduced repairs and downtime. Speed of execution is also
 no barrier to the usefulness of selective systems implemented on
 parallel processors; responses require only a few times the response
 latency of the individual units because relaxation is not required as it
 is in systems based on the statistical-mechanical concept of lattice
 (network) energy minimization. It is therefore reasonable to expect
 that practical systems based on selection could be constructed with
 hardware that is presently available or forseeable in the near future.
 Such systems will have more components but a simpler overall design
 than possible systems based on information-processing network

 models. Obviously, such systems, if proven feasible, will have a great
 influence on the design of computer hardware.

 SUMMARY AND CONCLUSIONS

 The automata we have described are intended to illustrate certain

 aspects of the NGS theory without attempting to emulate real
 nervous systems in a detailed way. The experimental data and the
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 computer resources to do that are not yet at hand. Thus, the models
 do not provide evidence for the applicability of the theory to real
 nervous systems; such evidence can come only from experiment.
 Nonetheless, NGS provides satisfying explanations for a whole
 panoply of perceptual processes involving categorization, and as
 inanimate examples of selective systems, the models can help to
 demonstrate the consistency of the theory as an abstract description
 of these processes. Such demonstrations are important for under
 standing complicated biological systems and at the same time can
 provide real insight into the computer-science problem of designing
 artificial systems with brainlike capabilities.

 In particular, it is quite clear that nervous systems do not work in
 anything like the way that has been assumed in the standard AI
 paradigm, yet the performance of at least some nervous systems is
 definitive of the term intelligence as used in the phrase "artificial
 intelligence." It is therefore very curious that AI, even in its new
 connectionist guise, has for the most part neglected the fundamental
 biology of the nervous system, from which the very definition of
 intelligence is derived. We suggest that in order to make progress in
 overcoming the obstacles we have discussed, AI must recognize these
 origins and incorporate what can be learned from a study of nervous
 systems. It must stop reasoning by analogy with well-studied, but
 irrelevant, physical systems such as spin glasses, and must instead
 reason by analysis of relevant facts about biological systems that
 actually have intelligence. This change will require AI to abandon the
 notion of intelligence as a purely abstract information-processing
 activity.

 A confrontation of the number of interactive levels in a real

 organism capable of intelligent behavior reveals a staggering com
 plexity of nonlinear interactions. If social transmission through
 language is added, the complexity increases even more. It appears to
 be the height of arrogance, in the face of this complexity, to think that
 all problems intelligent creatures confront can be understood by just
 pondering them in the abstract. One must instead begin by analyzing
 such systems in terms of their basic necessary structures and functions
 and their modes of origin?developmental as well as evolutionary.
 The separation of hardware from software implicit in the traditional
 AI approach needs to be abandoned, even though it served well as a
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 guiding principle in the development of von Neumann-type comput
 ers, which may be logic engines and?to some extent, culture
 engines?but are not biological engines. We believe that AI will
 eventually be achieved only in non-von Neumann systems in which
 specialized variants of hardware, based on a common theme of
 selection and population thinking, will work without programs to
 adapt to the particular environments in which they find themselves,
 just as biological organisms do. Programs and intelligence based on
 communication can come later.

 ENDNOTES

 We thank the International Business Machines Corporation and the Cornell
 National Supercomputer Facility for their support of part of this work.
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 Intelligence as an Emergent Behavior; or,

 The Songs of Eden

 Sometimes a system with many simple components will exhibit
 a behavior of the whole that seems more organized than the
 behavior of the individual parts. Consider the intricate structure

 of a snowflake. Symmetric shapes within the crystals of ice repeat in
 threes and sixes, with patterns recurring from place to place and

 within themselves at different scales. The shapes formed by the ice are
 consequences of the local rules of interaction that govern the mole
 cules of water, although the connection between the shapes and the
 rules is far from obvious. After all, these are the same rules of
 interaction that cause water to suddenly turn to steam at its boiling
 point and cause whirlpools to form in a stream. The rules that govern

 the forces between water molecules seem much simpler than crystals
 or whirlpools or boiling points, yet all of these complex phenomena
 are somehow consequences of those rules. Such phenomena are
 called emergent behaviors of the system.

 It would be very convenient if intelligence were an emergent
 behavior of randomly connected neurons in the same sense that
 snowflakes and whirlpools are emergent behaviors of water mole
 cules. It might then be possible to build a thinking machine by simply
 hooking together a sufficiently large network of artificial neurons.
 The notion of emergence would suggest that such a network, once it
 reached some critical mass, would spontaneously begin to think.

 W. Daniel Hillis is the designer of the Connection Machine, a parallel computer that was the
 subject of his Ph.D. thesis at the Massachusetts Institute of Technology.
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 This is a seductive idea because it allows for the possibility of
 constructing intelligence without first understanding it. Understand
 ing intelligence is difficult and probably a long way off, so the
 possibility that it might spontaneously emerge from the interactions
 of a large collection of simple parts has considerable appeal to the
 would-be builder of thinking machines. Unfortunately, that idea does
 not suggest a practical approach to construction. The concept of
 emergence in itself offers neither guidance on how to construct such
 a system nor insight into why it would work.

 Ironically, the apparent inscrutability of the idea of intelligence as
 an emergent behavior accounts for much of its continuing popularity.
 Emergence offers a way to believe in physical causality while simul
 taneously maintaining the impossibility of a reductionist explanation
 of thought. For those who fear mechanistic explanations of the
 human mind, our ignorance of how local interactions produce
 emergent behavior offers a reassuring fog in which to hide the soul.

 There has been a recent renewal of interest in emergent behavior in
 the form of simulated neural networks and connectionist models,
 spin glasses and cellular automata, and evolutionary models. Each of
 these is a model of some real system. For neural networks and
 connectionist models, the system being modeled is a collection of
 biological neurons, such as the brain; for spin glasses it is molecular
 crystals. Cellular automata and evolutionary models are based on the
 ontogenesis and phylogenesis of living organisms. In all of these
 cases, both the model and the system being modeled produce
 dramatic examples of emergent behavior.
 Most of these models are not new, but interest in them is being

 stirred because of a combination of new insights and new tools. The
 insight/s come primarily from a branch of physics called dynamical
 systems theory. The tools come from the development of new types
 of computing devices. Just as we thought of intelligence in terms of
 servomechanism in the 1950s, and in terms of sequential computers
 in the sixties and seventies, we are now beginning to think in terms of

 parallel computers, in which tens of thousands of processors work
 together. This is not a deep philosophical shift, but it is of great
 practical importance, since it is now possible to study large emergent
 systems experimentally.

 Inevitably, antireductionists interpret such progress as a schism
 between symbolic rationalists, who oppose them, and gestaltists, who
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 support them. I have often been asked which "side" I am on. Not
 being a philosopher, my inclination is to focus on the practical
 aspects of this question: How would we go about constructing an
 emergent intelligence? What information would we need to know in
 order to succeed? How can this information be determined by
 experiment?

 The emergent system that I can most easily imagine would be an
 implementation of symbolic thought rather than a refutation of it.
 Symbolic thought would be an emergent property of the system. The
 point of view is best explained by the following parable about the
 origin of human intelligence. As far as I know, this parable of human
 evolution is consistent with the available evidence (as are many
 others), but because it is chosen to illustrate a point, it should be read
 as a story, not as a theory. It is different from most accepted theories
 of human development in that it presents features that are measur
 able in the archeological records?such as increased brain size, food
 sharing, and neoteny?as consequences rather than causes of intelli
 gence.

 Once upon a time, about two and a half million years ago, there
 lived a race of apes that walked upright. In terms of intellect and
 habit they were similar to modern chimpanzees. The young apes, like
 young apes today, had a tendency to mimic the actions of others. In
 particular, they had a tendency to imitate sounds. If one ape shrieked
 "ooh, eeh, eeh," another would repeat "ooh, eeh, eeh." Some
 sequences of sounds, or "songs," were more likely to be mimicked
 than others.

 Let us ignore the evolution of the apes for the moment and
 consider the evolution of the songs. Since the songs were replicated by
 the apes, and since they sometimes died away and were occasionally
 combined with others, we may consider them (very loosely) a form of
 life. They survived, bred, competed with one another, and evolved
 according to their own criterion of fitness. If a song contained a
 particularly catchy phrase that caused it to be repeated often, then
 that phrase was likely to be incorporated into other songs. Only
 songs that had a strong tendency to be repeated survived.

 The survival of a song was only indirectly related to the survival of
 the apes; it was more directly affected by the survival of other songs.
 Since the apes were a limited resource, the songs had to compete with
 one another for a chance to be sung. One successful competition
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 strategy was for a song to specialize; that is, for it to find a particular
 niche in which it was apt to be repeated. Songs that fit particularly
 well with specific moods or activities of apes had a special survival
 value for this reason. (I do not know why some songs fit well with
 particular moods, but since it is true for me, I do not find it hard to
 believe that it was true for my ancestors.)

 Before songs began to specialize they were of no particular value to
 the apes. In a biological sense the songs were parasites, taking
 advantage of the apes' tendency to imitate. As songs became special
 ized, however, it became advantageous for apes to pay attention to
 the songs of others and to differentiate between them. By listening to
 songs, a clever ape could gain useful information. For example, an
 ape could infer that another ape had found food or that it was likely
 to attack. Once the apes began to take advantage of the songs, a
 symbiotic relationship developed: songs enhanced their own survival
 by conveying useful information to apes; apes enhanced their own
 survival by improving their capacity to remember, replicate, and
 understand songs. Thus the blind forces of evolution created a
 partnership between the songs and the apes that thrived on the basis
 of mutual self-interest. Eventually this partnership evolved into one
 of the world's most successful symbionts: the human race.

 Unfortunately songs do not leave fossils, so unless some natural
 process has left a phonographic trace, we may never know if the
 preceding story describes what really happened. But if the story is
 true, the apes and the songs became the two components of human
 intelligence. The songs evolved into the knowledge, mores, and

 mechanisms of thought that together are the symbolic portion of
 human intelligence. The apes became apes with bigger brains, per
 haps optimized for late maturity so that they could learn more songs.
 Homo sapiens is a cooperative combination of the two.

 It is not unusual in nature for two species to live together so
 interdependently that they appear to be a single organism. Lichens
 are symbionts of a fungus and an alga that live so closely intertwined
 that they can only be separated under a microscope. Bean plants need
 living bacteria in their roots to fix the nitrogen they extract from the
 soil, and in return the bacteria need nutrients from the bean plants.
 Even the single-celled Paramecium bursarra uses green algae living
 inside itself to synthesize food.
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 Another example of two entirely different forms of "life" that form
 a symbiosis may be even closer to the example of the songs and the
 apes. In The Origins of Life, Freeman Dyson suggests that biological
 life is a symbiotic combination of two different self-reproducing
 entities with very different forms of replication.1 Dyson suggests that
 life originated in two stages. While most theories of the origin of life
 start with nucleotides replicating in some "primeval soup," Dyson's
 theory starts with metabolizing drops of oil.

 In the beginning these hypothetical replicating oil drops had no
 genetic material, but were self-perpetuating chemical systems that
 absorbed raw materials from their surroundings. When a drop
 reached a certain size it would split; about half of its constituents
 would go to each part. Such drops evolved efficient metabolic systems
 even though their rules of replication were very different from the

 Mendelian rules of modern life. Once the oil drops became good at
 metabolizing, they were infected by another form of replicators that,
 like the songs, had no metabolism of their own. These were parasitic

 molecules of DNA; like modern viruses, they took advantage of the
 existing machinery of the host cells to reproduce. The metabolizers
 and the DNA eventually coevolved into the mutually beneficial
 symbiosis that we know today as life.

 This two-part theory of life is not conceptually far from the
 two-part story of intelligence. Both suggest that a preexisting homeo
 static mechanism was infected by an opportunistic parasite. The two
 parts reproduced according to different sets of rules, but were able to
 coevolve so successfully that the resulting symbiont appears to be a
 single entity. Viewed in this light, choosing between emergence and
 symbolic computation in the study of intelligence is like choosing
 between metabolism and genetic replication in the study of life. Just
 as the metabolic system provides a substrate in which the genetic
 system can work, so an emergent system may provide a substrate in

 which the symbolic system can operate.
 Currently the metabolic system of life is far too complex for us to

 fully understand or reproduce it. By comparison the Mendelian rules

 of genetic replication are almost trivial, and it is possible to study
 them as a system unto themselves without worrying about the details
 of the metabolism that supports them. In the same sense, it seems

 likely that symbolic thought can be fruitfully studied and perhaps
 even recreated without worrying about the details of the emergent
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 system that supports it. So far this has been the dominant approach
 in artificial intelligence and the approach that has yielded the most
 progress.

 The other approach is to build a model of the emergent substrate
 of intelligence. This artificial substrate for thought would not need to
 mimic in detail the mechanisms of the biological system, but it would
 need to exhibit those emergent properties that are necessary to
 support the operations of thought.
 What is the minimum that we would need to understand in order

 to construct such a system? For one thing, we would need to know
 how big a system to build. Information theory suggests that the
 appropriate unit of measure is the number of binary digits, or bits,
 required to store the information. How many bits are required to
 store the acquired portion of human knowledge of a typical human?

 We need to know an approximate answer in order to construct an
 emergent intelligence with humanlike performance. Currently the
 amount of acquired information stored by an average human brain is
 not known to within even two orders of magnitude, but it can in
 principle be determined by experiment. There are at least three ways
 to estimate the storage requirements for emergent intelligence.

 One way would be through an understanding of the physical
 mechanisms of memory in the human brain. If information is stored

 primarily by modifications of synapses, then it would be possible to
 measure the information-storage capacity of the brain by counting
 the number of synapses. Elsewhere in this issue of Dcedalus, Jacob T.
 Schwartz estimates that the brain contains roughly 1015 synapses.
 Each synapse could store several bits. But even knowing the exact
 amount of physical storage in the brain would not completely answer
 the question of storage requirement, since much potential storage
 capacity might be unused or used inefficiently. But at least this
 method can help establish an upper bound on the requirements.

 A second method for estimating the storage requirements for
 emergent intelligence is to measure the information in symbolic
 knowledge by some form of statistical sampling. For instance, it is
 possible to estimate the size of an individual's vocabulary by testing
 him or her on words randomly sampled from a dictionary. The
 fraction of test words known by the individual is a good indication of
 the fraction of words that he or she knows in the complete dictionary.
 The estimated vocabulary size is the test fraction multiplied by the
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 number of words in the dictionary. Such an experiment depends on
 having a predetermined body of knowledge against which to mea
 sure. For example, it would be possible to estimate how many facts
 in the Encyclopaedia Britannica were known by a given individual,
 but this would give no measure of facts known by the individual but
 not contained in the encyclopedia. The method is useful only in
 establishing a lower bound.

 A related experiment is the game of twenty questions, in which one
 player identifies an object chosen by another by asking a series of
 twenty yes-or-no questions. Since each answer provides no more than
 a single bit of information, and since skillful players generally need to
 ask almost all of the twenty questions to correctly identify the chosen
 object, we can estimate that the number of allowable choices known
 in common by the two players is on the order of 220, or about one

 million. Of course, this measure is inaccurate because the questions
 are not perfect and the choices of objects are not random. It is
 possible that a refined version of the game could be developed and
 used to provide another lower bound.

 A third approach to gauging the human brain's storage require
 ments for information in the symbolic portion of knowledge is to
 estimate the average rate of information acquisition and to calculate
 the amount that would accumulate over time. For example, experi
 ments on memorizing random sequences of syllables indicate that the
 maximum rate of memorization of this type of knowledge is about
 one "chunk" per second. A chunk, in this context, can be safely
 assumed to contain less than 100 bits of information, so the results
 suggest that the maximum rate at which a human is able to commit
 information to long-term memory is significantly less than 100 bits
 per second.2 If this is true, a twenty-year-old human learning at the
 maximum rate for sixteen hours a day (and never forgetting) would
 know less than 50 billion bits of information. I find this number

 surprisingly small.
 A difficulty with this estimate of the rate of acquisition is that the

 experiment measures only information coming through one sensory
 channel under one particular set of circumstances. The visual system
 sends more than a million times this rate of information to the optic
 nerve, and it is conceivable that all of this information is committed

 to memory. If it turns out that images are stored directly, it will be
 necessary to significantly increase the 100-bit-per-second limit, but
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 there is no current evidence that this is the case. In experiments
 measuring the ability of exceptional individuals to store eidetic (i.e.,
 extraordinarily accurate and vivid) images of random-dot stereo
 grams, the subjects are given about five minutes to memorize an
 image formed in a square array of 100 x 100 dots. Memorizing only
 a few hundred bits is probably sufficient to pass the test.

 I am aware of no evidence suggesting that more than a few bits per

 second of any type of information can be committed to long-term
 memory. Even if we accept reports of extraordinary feats of memory
 (such as those of Luria's showman in Mind of the Mnemonisi3) at
 face value, the average rate of commitment to memory never seems to
 exceed a few bits per second; experiments should be able to refine this
 estimate. Even if we knew the maximum rate of memorization

 exactly, the rate averaged over a lifetime would probably be very
 much less?but knowing the maximum rate would establish an
 upper bound on the requirements of storage.

 The sketchy data cited above suggests that an intelligent machine
 would require 109 bits of storage, plus or minus two orders of
 magnitude. This assumes that the information is encoded in such a
 way that it requires a minimum amount of storage; for the purpose
 of processing information, this would probably not be the most
 practical representation. As a would-be builder of thinking machines,
 I find this number encouragingly small, since it is well within the
 range of current electronic computers. As a human with an ego, I find
 it distressing: I do not like to think that my entire lifetime of

 memories could be placed on a reel of magnetic tape. It is to be hoped
 that experimental evidence will clear this up one way or another.

 There are a few subtleties in the question of storage requirements
 that involve defining the quantity of information in a way that is
 independent of its representation. Information theory provides a
 precise way of measuring information in terms of bits, but it requires
 a measure of the probabilities over the ensemble of possible states.
 That is, it requires assigning an a priori probability to each possible
 set of knowledge, which is the role of inherited intelligence. Inherited
 intelligence provides a framework in which the knowledge of ac
 quired intelligence can be interpreted. Inherited intelligence defines
 what is knowable; acquired intelligence determines what of the
 knowable is known.
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 Another potential difficulty is how to count the storage of infor
 mation that can be deduced from other data. In the strict
 information-theoretical sense, data that can be inferred from other
 data add no information at all. An accurate measure would have to

 take into account the possibility that knowledge is inconsistent, and
 that only limited inferences are actually made. These are the kinds of
 issues currently being studied on the symbolic side of the field of
 artificial intelligence.

 One issue that does not need to be resolved to measure storage
 capacity is localized versus distributed representation?that is,
 whether each piece of information is stored in a specific place or
 spread "holographically" over a large area. Knowing what types of
 representation are used in what parts of the human brain is of
 considerable scientific interest, but it does not have a profound
 impact on the amount of storage in the system or on our ability to

 measure it. Nontechnical commentators have a tendency to attribute
 almost mystical qualities to distributed storage mechanisms such as
 those used in creating holograms and neural networks, but the
 limitations on the capacities of these storage mechanisms are well
 understood.

 When a holographic plate is cut in two, each half contains a
 slightly degraded version of the entire image. Distributed representa
 tions with properties similar to holograms are often used within
 conventional digital computers, and they are invisible to most users
 except in the system's capacity to tolerate errors. The error-correcting
 memory system used in most computers is a good example. The
 system is composed of many physically separate memory chips, but
 any single chip can be removed without losing any data. This is
 because the data are not stored in any one place, but in a distributed,
 nonlocal representation across all of the units. In spite of this
 "holographic" representation, the information storage capacity of
 the system is no greater than it would be with a conventional
 representation, in which each piece of data is stored in a single chip.
 In fact, it is slightly less. This is typical of distributed representations.

 Storage capacity offers one measure of the requirements of a
 humanlike emergent intelligence. Another measure is the required
 rate of computation. Here there is no agreed-upon metric, and it is
 particularly difficult to define a unit of measure that is completely
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 independent of representation. The measure suggested below is
 simple and important, if not sufficient.

 Given an efficiently stored representation of human knowledge,
 what rate of access to that storage (in bits per second) is required to
 achieve humanlike performance? Here, efficiently stored representa
 tion means any representation requiring only a multiplicative con
 stant of storage over the number of bits of information. This is a

 mathematical restriction that eliminates, for example, any represen
 tation that stores a precomputed answer to every question. Such a
 restriction does limit the range of possible representations, but it
 allows most representations that we would regard as reasonable. In
 particular, it allows both distributed and local representations.

 The question of the memory bandwidth required for humanlike
 performance is accessible by experiment through approaches similar
 to those outlined for the question of storage capacity. If the time
 required for a primitive operation of human memory is limited by the
 firing time of a neuron, then the ratio of this "cycle time" to the total
 number of bits indicates what fraction of the memory is accessed
 simultaneously. This gives an indication of whether the brain is a
 parallel or a serial device. In a serial device, data items are operated
 on sequentially, one at a time. In a parallel device, all data are
 operated on concurrently. Both serial and parallel behaviors are
 exhibited by the brain, but there is a question as to which model best
 describes the way that it reasons and accesses knowledge. Informed
 opinions differ greatly in this matter, but the bulk of the quantitative
 evidence favors serial computation. Memory retrieval times for items
 in lists, for example, depend on the position and the number of items
 in the list. Except for sensory processing, most successful artificial
 intelligence programs have been based on serial models of computa
 tion, although this may be a distortion caused by the common
 availability of serial machines.
 My own guess is that the reaction-time experiments are misleading

 and that human-level performance will require that large fractions of
 knowledge be accessed several times per second. Given a representa
 tion of acquired intelligence with a realistic representation efficiency
 of 10 percent, the 109 bits of memory mentioned earlier would
 require a memory bandwidth of about 1011 bits per second. This
 bandwidth seems physiologically plausible, since it corresponds to
 about a bit per second per neuron in the cerebral cortex.
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 By way of comparison, the memory bandwidth of a conventional
 sequential computer is in the range of 106 to 108 bits per second. This
 is less than 0.1 percent of the imagined requirement. For parallel
 computers the bandwidth is considerably higher. For example, a
 65,536-processor Connection Machine can access its memory at
 approximately 1011 bits per second.4 It is not entirely coincidence
 that this fits well with the estimate above.

 Another important question is, What sensory-motor functions are
 necessary to sustain symbolic intelligence? An ape is a complex
 sensory-motor machine, and it is possible that much of this complex
 ity is necessary to sustain intelligence. Large portions of the brain
 seem to be devoted to visual, auditory, and motor processing, and it
 is unknown how much of this machinery is needed for thought. A
 person who is blind and deaf or totally paralyzed can undoubtedly be
 intelligent, but this does not prove that the portion of the brain
 devoted to these functions is unnecessary for thought. It may be, for
 example, that a blind person takes advantage of the visual processing
 apparatus of the brain for spatial reasoning.

 As we begin to understand more of the functional architecture of
 the brain, it should be possible to identify certain functions as being
 unnecessary for thought by studying patients whose cognitive abili
 ties are unaffected by locally confined damage to the brain. For
 example, binocular stereo fusion is known to take place in a specific
 area of the cortex near the back of the head. Patients with damage to
 this area of the cortex have visual handicaps but show no obvious
 impairment in their ability to think. This suggests that stereo fusion
 is not necessary for thought. This is a simple example, and the
 conclusion is not surprising, but it should be possible by such
 experiments to establish that many sensory-motor functions are
 unnecessary. One can imagine metaphorically whittling away at the
 brain until it is reduced to its essential core. Of course, it is not quite
 this simple. Accidental damage rarely incapacitates a single area of
 the brain completely and exclusively. Also, it may be difficult to
 eliminate one function at a time because one mental capacity may
 compensate for the lack of another.

 It may be more productive to assume that all sensory-motor
 apparatus is unnecessary until proven useful for thought, but this is
 contrary to the usual point of view. Our current understanding of the
 phylogenetic development of the nervous system suggests a point of
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 view in which intelligence is an elaborate refinement of the connec
 tion between input and output. This is reinforced by the experimental
 convenience of studying simple nervous systems, or of studying
 complicated nervous systems by concentrating on those portions
 most directly related to input and output. By necessity, most every
 thing we know about the function of the nervous system comes from
 experiments on those portions that are closely related to sensory
 inputs or motor outputs. It would not be surprising to learn that we
 have overestimated the importance of these functions to intelligent
 thought.

 Sensory-motor functions are clearly important for the application
 of intelligence and for its evolution, but these issues are separate from
 whether sensory-motor functions are necessary for thought to exist.
 Intelligence would not be of much use without an elaborate system of
 sensory apparatus to measure the environment and an elaborate
 system of motor apparatus to change it, nor would it have been likely
 to evolve. But much more apparatus is probably necessary to exercise
 and evolve intelligence than to sustain it. One can believe in the
 necessity of the opposable thumb for the development of intelligence
 without doubting a human capacity for thumbless thought. It is quite
 possible that even the meager sensory-motor capabilities that we
 currently know how to create artificially would be sufficent for the
 fundamental operation of emergent intelligence.

 Although questions of capacity and scope are necessary in defining
 the magnitude of the task of constructing an emergent intelligence,
 the key question is one of understanding. While it is possible that we

 will be able to recreate the emergent substrate of intelligence without
 fully understanding the details of how it works, it seems likely that we

 would at least need to understand some of its principles. There are at
 least three paths by which such understanding could be achieved.

 One is to study the properties of specific emergent systems?to build
 a theory of their capabilities and limitations. This kind of experimen
 tal study is currently being conducted on several classes of promising

 man-made systems, including neural networks, spin glasses, cellular
 automata, evolutionary systems, and adaptive automata. Another
 possible path to understanding is the study of biological systems,
 which are our only real examples of intelligence and our only
 examples of an emergent system that has produced intelligence. The
 disciplines that have so far provided the most useful information of
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 this type have been neurophysiology, cognitive psychology, and
 evolutionary biology. A third path would be a theoretical under
 standing of the requirements of intelligence or of the phenomena of
 emergence. Relevant examples are theories of logic and computabil
 ity, linguistics, and dynamical systems theory. Anyone who looks to
 emergent systems as a way of defending human thought from the
 scrutiny of science is likely to be disappointed.

 One cannot conclude, however, that a reductionist understanding
 is necessary for the creation of intelligence. Even a little understand
 ing could go a long way toward the construction of an emergent
 system. A good example of this is how cellular automata have been
 used to simulate the emergent behavior of fluids. The whirlpools that
 form as a fluid flows past a barrier are not well understood
 analytically, yet they are of great practical importance in the design of
 boats and airplanes. Equations that describe the flow of a fluid have
 been known for almost a century, but except for a few simple cases
 they cannot be solved. In practice the flow is generally analyzed by
 simulation. The most common method of simulation is the numerical

 solution of continuous equations.
 On a highly parallel computer it is possible to simulate fluids with

 even less understanding of the system by simulating billions of
 colliding particles that reproduce emergent phenomena such as
 vortices. Calculating the detailed molecular interactions of so many
 particles would be extremely difficult, but a few simple aspects of the
 system, such as conservations of energy and particle number, are
 sufficient to reproduce the large-scale behavior. A system of simpli
 fied particles that obey these two laws but are otherwise unrealistic
 can reproduce the same emergent phenomena as reality. For exam
 ple, it is possible to use particles of unit mass that move only at unit
 speed along a hexagonal lattice, colliding according to the rules of
 billiard balls.5 Experiments show that this model produces laminar
 flow, vortex streams, and even turbulence that is indistinguishable
 from the behavior of real fluids. Although the detailed rules of
 interaction are very different from the interactions of real molecules,

 the emergent phenomena are the same. The emergent phenomena
 can be created without understanding the details of the forces
 between the molecules or the equations that describe the flow of the
 fluid.
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 The recreation of intricate patterns of ebbs and flows within a fluid

 demonstrates that it is possible to produce a phenomenon without
 fully understanding it. But the model was constructed by physicists
 who knew a lot about fluids. That knowledge helped to determine
 which features of the physical system were important to implement
 and which were not.

 Physics is an unusually exact science. Perhaps a better example of
 an emergent system that we can simulate with only a limited
 understanding is evolutionary biology. We understand, in a weak
 sense, how creatures with Mendelian patterns of inheritance and
 different propensities for survival can evolve toward better fitness in
 their environments. In certain simple situations we can even write
 down equations that describe how quickly this adaptation will take
 place.6 But there are many gaps in our understanding of the processes
 of evolution. We can explain why flying animals have light bones in
 terms of natural selection, but we cannot explain why certain animals
 have evolved flight while others have not. We have some qualitative
 understanding of the forces that cause evolutionary change, but
 (except in the simplest cases) we cannot explain the rate or even the
 direction of that change.

 In spite of these limitations, our understanding is sufficient to write
 programs of simulated evolution that show interesting emergent
 behaviors. For example, I have recently been using an evolutionary
 simulation to evolve programs to sort numbers. In this system, the
 genetic material of each simulated individual is interpreted as a
 program specifying a pattern of comparisons and exchanges. The
 probability of an individual survival in the system is dependent on the
 efficiency and accuracy of this program in sorting numbers. Surviving
 individuals produce offspring by sexual combination of their genetic

 material with occasional random mutation. After tens of thousands

 of generations, a population of hundreds of thousands of such
 individuals will evolve very efficient programs for sorting. Although
 I wrote the simulation that produced these sorting programs, I do not
 understand in detail how they were produced or how they work. If
 the simulation had not produced working programs, I would have
 had very little idea about how to fix it.

 The fluid flow and simulated evolution examples suggest that it is
 possible to make a great deal of use of a small amount of under
 standing. The emergent behaviors exhibited by these systems are a

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:12 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Intelligence as an Emergent Behavior 189

 consequence of the simple underlying rules defined by the program.
 Although the systems succeed in producing the desired results, their
 detailed behaviors are beyond our ability to analyze and predict. One
 can imagine that if a similar process produced a system of emergent
 intelligence, we would have a similar lack of understanding about
 how it worked.

 My own guess is that such an emergent system would not be an
 intelligent system itself, but rather the metabolic substrate on which
 intelligence might grow. In terms of the apes and the songs, the
 emergent portion of the system would play the role of the ape, or at
 least that part of the ape that hosts the songs. This artificial mind

 would need to be inoculated with human knowledge. I imagine this
 process to be not so different from teaching a child. This would be a
 tricky and uncertain procedure because, like a child, this emergent
 mind would presumably be susceptible to bad ideas as well as good.
 The result would be not so much an artificial intelligence, but rather
 a human intelligence sustained within an artificial mind.

 Of course, I understand that this is just a dream, and I will admit
 that I am propelled more by hope than by the probability of success.
 But if this artificial mind can sustain itself and grow of its own accord,
 then for the first time human thought will live free of bones and flesh,
 giving this child of mind an earthly immortality denied to us.

 ENDNOTES

 freeman Dyson, The Origins of Life (Cambridge: Cambridge University Press,
 1985).

 2Allen Newell, Human Problem Solving (Englewood Cliffs, N.J.: Prentice Hall,
 1972).

 3A. R. Luria, Mind of the Mnemonist (New York: Basic Books, 1968).
 4Daniel W. Hillis, The Connection Machine (Cambridge: MIT Press, 1985).
 5Stephen Wolfram, Theory of Applications of Cellular Automata (World Scientific,

 1986).
 6J. B. S. Haldane, The Causes of Evolution (Harper & Brothers, 1932).
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 David L. Waltz

 The Prospects for Building Truly
 Intelligent Machines

 Can artificial intelligence be achieved? If so, how
 soon? By what methods? What ideas from current AI re
 search will in the long run be important contributions to a

 science of cognition? I believe that AI can be achieved, perhaps within
 our lifetimes, but that we have major scientific and engineering
 obstacles to hurdle if it is to come about. The methods and perspec
 tive of AI have been dramatically skewed by the existence of the
 common digital computer, sometimes called the von Neumann
 machine, and ultimately, AI will have to be based on ideas and
 hardware quite different from what is currently central to it. Mem
 ory, for instance, is much more important than its role in AI so far
 suggests, and search has far less importance than we have given it.
 Also, because computers lack bodies and life experiences comparable
 to humans', intelligent systems will probably be inherently different
 from humans; I speculate briefly on what such systems might be like.

 OBSTACLES TO BUILDING INTELLIGENT SYSTEMS

 If we are to build machines that are as intelligent as people, we have
 three problems to solve: we must establish a science of cognition; we

 must engineer the software, sensors, and effectors for a full system;
 and we must devise adequate hardware.

 David L. Waltz, a professor of computer science at Brandeis University, is senior scientist and
 director of advanced information systems at Thinking Machines Corporation.

 191
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 Establishing a Science of Cognition

 We have no suitable science of cognition. We have only fragments of
 the conception, and some of those are certainly incorrect. We know
 very little about how a machine would have to be organized to solve
 the problems of intelligence. Virtually all aspects of intelligence?
 including perception, memory, reasoning, intention, generation of
 action, and attention?are still mysterious. However, even if we
 understood how to structure an intelligent system, we would not be
 able to complete the system because we also lack an appropriate
 science of knowledge. For some aspects of knowledge, any compu
 tational device will be on a strong footing when compared with a
 person. Machine-readable encyclopedias, dictionaries, and texts will
 eventually allow machines to absorb book knowledge quite readily.
 For such understanding to be deep, however, a system needs percep
 tual grounding and an understanding of the physical and social
 world. For humans, much of this knowledge is either innate or
 organized and gathered by innate structures that automatically cause
 us to attend to certain features of our experience, which we then
 regard as important. It will be extremely difficult to characterize and
 build into a system the kinds of a priori knowledge or structuring
 principles humans have.

 Engineering the Software

 Any truly intelligent system must be huge and complex. As Frederick
 Brooks argues, writing on his experience building the large operating
 system OS360 at IBM, it is not possible to speed up a software
 project by simply putting more and more people on it.1 The optimum
 team size for building software is about five people. For this reason,
 and because of the sheer scope of a project of this sort?which dwarfs
 any that have been attempted in programming to date?hand coding
 will certainly be too slow and unreliable to accomplish the whole
 task. Consequently, a truly intelligent system will have to be capable
 of learning much of its structure from experience.
 What structures must be built into a system to allow it to learn?

 This is a central question for current AI, and the answer depends on
 issues of knowledge representation: How should knowledge be
 represented? Out of what components (if any) are knowledge struc
 tures built?
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 Creating the Hardware
 We must be able to build hardware that is well matched to APs

 knowledge representation and learning needs and that compares in
 power with the human brain. No one should be surprised that the
 puny machines AI has used thus far have not exhibited artificial
 intelligence. Even the most powerful current computers are probably
 no more than one four-millionth as powerful as the human brain.
 Moreover, current machines are probably at least as deficient in
 memory capacity: today's largest computers probably have no more
 than about one four-millionth of the memory capacity of the human
 brain. Even given these extreme discrepancies, hardware will proba
 bly prove the easiest part of the overall AI task to achieve.

 I begin with a discussion of traditional AI and its theoretical
 underpinnings in order to set the stage for a discussion of the major
 paradigm shifts (or splits) currently under way in and around AI. As
 an advocate of the need for new paradigms, I here confess my bias. I
 see no way that traditional AI methods can be extended to achieve
 humanlike intelligence. Assuming that new paradigms will replace or
 be merged with the traditional ones, I make some projections about
 how soon intelligent systems can be built and what they may be like.

 LIMITS OF TRADITIONAL AI

 Two revolutionary paradigm shifts are occurring within artificial
 intelligence. A major force behind the shifts is the growing suspicion
 among researchers that current AI models are not likely to be
 extendable to a point that will bring about human-level intelligence.
 The shifts are toward massively parallel computers and toward
 massively parallel programs that are more taught than programmed.
 The resultant hardware and software systems seem in many ways
 more brainlike than the serial von Neumann machines and AI
 programs that we have become used to.

 For thirty years, virtually all AI paradigms were based on variants
 of what Herbert Simon and Allen Newell have presented as "physical
 symbol system" and "heuristic search" hypotheses.2 (See also the
 article by Hubert and Stuart Dreyfus in this issue of Dcedalus.)

 According to the physical symbol system hypothesis, symbols
 (wordlike or numerical entities?the names of objects and events) are
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 the primitive objects of the mind; by some unknown process, the
 brain mimics a "logical inference engine," whose most important
 feature is that it is able to manipulate symbols (that is, to remember,
 interpret, modify, combine, and expand upon them); and computer

 models that manipulate symbols therefore capture the essential
 operation of the mind. In this argument it does not matter whether
 the materials out of which this inference engine is built are transistors
 or neurons. The only important thing is that they be capable of a
 universal set of logical operations.3 The physical symbol system
 hypothesis in turn rests on a foundation of mathematical results on
 computability, which can be used to show that if a machine is
 equivalent to a Turing machine?a simple kind of computational
 model devised by the pioneering British mathematician Alan Tur
 ing?then it is "universal"; that is, the machine can compute any
 thing that can be computed. All ordinary digital computers can be
 shown to be universal in Turing's sense/

 In the heuristic search model, problems of cognition are instances
 of the problem of exploring a space of possibilities for a solution. The
 search space for heuristic search problems can be visualized as a
 branching tree: starting from the tree's root, each alternative consid
 ered and each decision made corresponds to a branching point of the
 tree. Heuristics, or rules of thumb, allow search to be focused first on
 branches that are likely to provide a solution, and thus prevent a
 combinatorially explosive search of an entire solution spaced Heu
 ristic search programs are easy to implement on ordinary serial digital
 computers. Heuristic search has been used for a wide variety of
 applications, including decision making, game playing, robot plan
 ning and problem solving, natural-language processing, and the
 classification of perceptual objects. Heuristic search has enjoyed
 particular prominence, for it is at the heart of "expert systems," AI's
 greatest commercial success by far.

 *There is perhaps one critical aspect in which all computers fail to match a Turing machine: the
 Turing machine includes an infinite tape, from which it reads its programs and onto which it
 writes its results. All computers (and presumably humans) have finite memories.
 tCombinatorially explosive problems are problems in which the computational costs of solving
 each slightly more difficult problem grow so rapidly that no computer will ever be able to solve
 them; that is, even a computer with as many components as there are electrons in the universe
 and an instruction execution time as short as the shortest measurable physical event might
 require times greater than the age of the universe to consider all possible problem solutions.
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 In retrospect it is remarkable how seriously heuristic search has
 been taken as a cognitive model. When I was a graduate student in
 the late 1960s, the standard AI view was that for any intelligent
 system, the nature of a problem constrains the nature of any efficient
 solution, and that any system, human or computer, given a problem
 to solve, tends to evolve a similar, or at least an analogous, internal
 structure to deal with it. Thus, it was argued, studying efficient
 problem solutions on computers is a good way to study cognition.4
 Virtually everyone in AI at the time accepted the centrality and
 immutability of heuristic search machinery unquestioningly and
 assumed that learning should be accomplished by evolving, adapting,
 or adding to the heuristics and the knowledge structures of the search
 space. (The exceptions were the "neural net" and "perceptron"
 researchers, who had been actively exploring more brainlike models
 since the early 1950s. More on this later.)

 It is now commonly recognized that the nature of the computers
 and computing models available to us inevitably constrains the
 problem-solving algorithms that we can consider. (John Backus
 introduced this idea to the broad computing community in his Turing

 Award lecture of 1977.5) As explained below, it has become clear
 that traditional AI methods do not scale up well and that new AI
 paradigms will therefore be needed. Despite this change in attitude,
 there have been few prospective replacements within AI for heuristic
 search (or for serial, single-processor digital computers) until very
 recently.

 The reasons AI has focused almost exclusively on the physical
 symbol system and heuristic search views are deeply rooted in its
 history and in part reflect the myopic concentration on serial digital
 computers that has characterized all of computer science. The focus
 on heuristic search also reflects the influence of the psychological
 research of the 1950s. AI began at a time when psychologists were
 much enamored of protocol analysis, a way of examining human
 behavior by having subjects give accounts of their mental experience
 while they are solving problems.6 Such psychological research was
 interpreted as evidence that the main human mechanism for problem
 solving is trial and error. AI adapted this model as its heuristic search
 paradigm. In this paradigm problems are solved by sequentially
 applying "operators" (elementary steps in a problem solution) and
 allowing "backtracking," a form of trial and error whereby a
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 program backs up to an earlier decision point and tries new branches
 if the first ones explored prove fruitless.

 It is difficult to see how any extension of heuristic-search-based
 systems could ever demonstrate common sense. In most AI systems,
 problem statements have come from users; the systems have not
 needed to decide what problems to work on. They have had relatively
 few actions or operators available, so search spaces have been
 tractable. Real-time performance hasn't generally been necessary.
 This way of operating will clearly not do in general. Eventually, AI
 must face the scale-up question: Given the immense range of possible
 situations a truly intelligent system could find itself in and the vast
 number of possible actions available to it, how could the system ever
 manage to search out appropriate goals and actions?

 Moreover, as John McCarthy has pointed out, rule-based systems
 may be inherently limited by the "qualification problem": given a
 certain general rule, one can always alter the world situation in such
 a way that the rule is no longer appropriate.7 For example, suppose
 we offered the rule:

 bird (x) ?? fly (x) (if x is a bird, then x can fly).

 Everyone knows that the rule must be amended to cover birds such
 as penguins and ostriches, so that it becomes:

 not flightless (x) and bird (x) ~> fly (x)9 where
 "flightless (x)" is true of the appropriate birds.

 However, we also know a bird cannot fly if it is dead, or if its wings
 have been pinioned, or if its feet are embedded in cement, or if it has
 been conditioned by being given electric shocks each time it tries to
 fly.8 There seems to be no way to ever completely specify rules for
 such cases. There are also serious difficulties in formulating rules for
 deciding which facts about the world ought to be retracted and which
 should still hold after particular events or actions have occurred. This
 is known as the "frame problem." "Nonmonotonic logic," which
 treats all new propositions or rules as retractable hypotheses, has
 been proposed for dealing with these problems.9 However, some
 researchers in this area10 are pessimistic about its potential, as am I.

 By objecting to traditional AI approaches, I am not disputing the
 notions of universal computation or the Turing machine results,
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 which are established mathematically beyond doubt. Rather, I dis
 pute the heuristic search metaphor, the relationship between physical
 symbol systems and human cognition, and the nature and "granu
 larity" of the units of thought. The physical symbol system hypoth
 esis, also long shared by AI researchers, is that a vocabulary close to
 natural language (English, for example, perhaps supplemented by
 previously unnamed categories and concepts) would be sufficient to
 express all concepts that ever need to be expressed. My belief is that
 natural-language-like terms are, for some concepts, hopelessly coarse
 and vague, and that much finer, "subsymbolic" distinctions must be
 made, especially for encoding sensory inputs. At the same time, some
 mental units (for example, whole situations or events?often remem
 bered as mental images) seem to be important carriers of meaning
 that may not be reducible to tractable structures of words or wordlike
 entities. Even worse, I believe that words are not in any case carriers
 of complete meanings but are instead more like index terms or cues
 that a speaker uses to induce a listener to extract shared memories
 and knowledge. The degree of detail and number of units needed to
 express the speaker's knowledge and intent and the hearer's under
 standing are vastly greater than the number of words used to
 communicate. In this sense language may be like the game of
 charades: the speaker transmits relatively little, and the listener
 generates understanding through the synthesis of the memory items
 evoked by the speaker's clues. Similarly, I believe that the words that
 seem widely characteristic of human streams of consciousness do not
 themselves constitute thought; rather, they represent a projection of
 our thoughts onto our speech-production faculties. Thus, for exam
 ple, we may feel happy or embarrassed without ever forming those
 words, or we may solve a problem by imagining a diagram without
 words or with far too few words to specify the diagram.

 what's the alternative?

 Craig Stanfill and I have argued at length elsewhere that humans may
 well solve problems by a process much more like lookup than search,
 and that the items looked up may be much more like representations
 of specific or stereotyped episodes and objects than like rules and
 facts.11
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 On the Connection Machine, built by Thinking Machines
 Corporation,12 we have now implemented several types of "asso
 ciative memory" systems that reason on the basis of previous
 experience.13 For example, one experimental system solves medical
 diagnosis problems with "memory-based reasoning": given a set of
 symptoms and patient characteristics, the system finds the most
 similar previous patients and hypothesizes that the same diagnoses
 should be given to the new patient. "Connectionist," or neural net,

 models, which I shall describe later, solve similar problems, though in
 a very different manner. While a great deal of research is still required
 before such systems can become serious candidates for truly intelli
 gent systems, I believe that these architectures may prove far easier to
 build and extend than heuristic search models. These new models can

 learn and reason by remembering and generalizing specific examples;
 heuristic search models, in contrast, depend on rules. It has proved
 difficult to collect rules from experts?people are generally not even
 aware of using rules. We do not know how to check sets of rules for
 completeness and self-consistency. Moreover, a finite set of rules
 cannot capture all the possible conclusions that may be drawn from
 a set of examples any more than a set of descriptive sentences can
 completely describe a picture.

 It is important to note, however, that some kinds of knowledge in
 rule-based systems are hard to encode in our memory-based model.
 For instance, as currently formulated, our system does not use
 patients' histories and is unable to figure out that medication dose
 size ought to be a function of a patient's weight. Recent research
 strongly suggests that humans reason largely from stereotypes and
 from specific variations of these stereotypes. Our system does not yet
 demonstrate such abilities.

 IMPLEMENTING ASSOCIATIVE MEMORY SYSTEMS

 In the short run, associative memory models can very nicely comple
 ment AI models. Associative models have been studied for quite a
 while but seldom implemented (except for very small problems)
 because they are computationally very expensive to run on tradi
 tional digital computers. One class of associative memory implemen
 tation is called the connectionist, or neural net, model. Such systems
 are direct descendents of the neural net models of the 1950s. In them,
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 thousands of processing units, each analogous to a neuron, are
 interconnected by links, each analogous to a synaptic connection
 between neurons. Each link has a "weight," or a connection strength.
 A system's knowledge is encoded in link weights and in the intercon
 nection pattern of the system. Some units serve as input units, some
 as output units, and others as "hidden units" (they are connected
 only to other units and thus cannot be "seen" from either the input
 or the output channels).

 Such networks display three interesting abilities. The first is
 learning. Several methods have now been devised that enable such a
 system, upon being given particular inputs, to be taught to produce
 any desired outputs. The second interesting ability is associative
 recall. Once trained to associate an output with a certain input, a
 network can, given some fraction of an input, produce a full pattern
 as its output. The third interesting property is fault tolerance: the
 network continues to operate even when some of the units are
 removed or damaged. In short, connectionist computing systems
 have many of the properties that we have associated with brains;
 these systems differ significantly from computers, which have tradi
 tionally been viewed as automatons with literal minds, able to do
 only what they are programmed to do.14

 These networks can now be implemented efficiently on such
 massively parallel hardware as the Connection Machine system or by
 using custom chips. While associative memory systems have been
 simulated on traditional serial digital computers, the simulations
 have been very slow; a serial computer must simulate each of the
 computational units and links in turn and must do so many times to
 carry out a single calculation. A massively parallel machine can
 provide a separate small processor for each of the units in the
 associative memory system and can thus operate much more rapidly.

 Stanfill and I have been exploring a functionally similar massively
 parallel method called memory-based reasoning. In this type of
 reasoning, a Connection Machine is loaded with a large data base of
 situations. Each situation in the data base contains both a set of

 attributes and an outcome. In a medical data base, for instance, the
 attributes would be symptoms and a patient's characteristics, and the
 outcome would be a diagnosis or a treatment. Each item in the data
 base is stored in a separate processor. When a new example to be
 classified is encountered, its properties are broadcast to all the
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 processors that hold situations; each of these processors compares its
 situation with the input situation and computes a score of nearness to
 the input. The system then finds the nearest matches to the input
 example and, provided they are sufficiently close, uses the outcomes
 of these matching items to classify the new example.
 Memory-based reasoning systems also have many desirable char

 acteristics. They are fault tolerant; they can generalize well to
 examples that have never been seen in their exact form before; they
 give measurements of the closeness of the precedents to the current
 example, which can serve as measures of confidence for the match. If
 there is an exact match with a previous example, the systems can give
 a decision with certainty. It is easy to teach such systems: one simply
 adds more items to their data bases.

 The complicated part of memory-based reasoning systems is the
 computation of nearness. To calculate the similarity of any memory
 example to the pattern to be classified, each memory item must first
 find the distance, or difference, between each of its attribute values
 and the attribute values of the pattern to be classified. These distances
 in turn depend on the statistical distribution of attribute values and
 on the degree of correlation between each attribute value and the
 outcomes with which it simultaneously occurs. All the distances for
 each attribute must then be combined for each memory item to arrive
 at its total distance from the item to be classified. Thus, computing
 the nearness score involves a great deal of statistical calculation
 across all records in the data base.15
 What is the role of associative memory systems in traditional

 artificial intelligence? While they can substitute for expert systems
 under certain circumstances, connectionist and memory-based rea
 soning systems are better viewed as complements to traditional AI
 than as replacements for it. In one very useful mode, associative

 memory systems can be used to propose or hypothesize solutions to
 complex problems, and traditional AI systems can be used to verify
 that the differences between the problems that are currently being
 attacked and examples in the data base are unimportant. If such
 differences are important, the associative memory systems can pro
 pose subgoals to attempt. Thus, the associative memory process can
 provide a very powerful heuristic method for jumping to conclusions,
 while traditional AI can be used to verify or disconfirm such
 conclusions. Such hybrid systems could help AI models avoid the
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 problems of searching combinatorially large spaces. Because of the
 computational resources required, the bulk of the computing power
 in an AI system of this sort would probably reside in the associative

 memory portion.
 In the long run, however, such models are still unlikely to provide

 a satisfactory explanation for the operations of human thought,
 though I suspect they will come much closer than AI has. To my
 mind, the best exposition on the ultimate architecture required is
 Marvin Minsky's "society of mind."16 Minsky argues persuasively,
 using a very wide range of types of evidence, that the brain and the
 mind are made up of a very large number of modules organized like
 a bureaucracy. Each module, or "demon," in the bureaucracy has
 only limited responsibilities and very limited knowledge; demons
 constantly watch for events of interest to themselves and act only
 when such events occur. These events may be external (signaled by
 sensory units) or purely internal (the result of other internal demons
 that have recognized items of interest to themselves). Actions of
 demons can either influence other demons or activate effectors and

 can thereby influence the outside world. One can make a simple
 analogy between a society of mind and associative memory models:
 in memory-based reasoning each data base item would correspond to
 an agent; in a connectionist model, each neural unit would corre
 spond to an agent.

 LOGICAL REASONING

 I believe logical reasoning is not the foundation on which cognition is
 built but an emergent behavior that results from observing a sufficient
 number of regularities in the world. Thus, if a society of demonlike
 agents exhibits logical behavior, its behavior can be described by
 rules, although the system contains no rules to govern its operation.
 It operates in a regular fashion because it simulates the world's
 regularities.

 Consider a developing infant. In the society-of-mind model, the
 infant first develops a large number of independent agencies that
 encode knowledge of the behavior of specific items in the physical
 world: when a block is dropped, it falls; when the child cries, its
 parent comes to attend; when the child touches a flame, it feels pain.
 Each of these examples is handled initially by a separate small
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 bureaucracy of agents. Each bureaucracy represents the memory of
 some specific event. A particular agency becomes responsible for an
 episode because of the initial "wiring" of the brain; shortly after an
 agency is first activated, it changes its synaptic weights, so that any
 new event that activates any part of the agency will cause the entire
 agency to be reactivated. When similar events reactivate these agen
 cies, new bureaucracies encoding the similarities and differences
 between the new and the old events are constructed out of previously
 unused, but closely connected (hence activated), agents. After many
 such incremental additions to the society of agents, a child eventually
 develops agents for abstract categories and rules; cuts, pinches, and
 burns all cause pain, and thus other agents that happen to be
 activated in these cases become associated with the concept of pain.
 Eventually, the concepts of the constant conjunction of pain with its
 various causes become the specialty of particular "expert" agents
 responsible for certain regularities in the world. Ultimately, these
 agents become part of the bureaucracy for the concept of causality
 itself. Thus agents come to reason about very general categories, no
 longer necessarily rooted directly in experience, and can understand
 abstract causal relationships. Take pain in the abstract, for example:
 if one breaks a law and is apprehended, one knows one will probably
 be punished; if one does not keep promises, one understands that
 other people may be angry and may retaliate; and so on.

 On the surface it might seem that what is being proposed is to
 replace a single expert program with many expert programs, ar
 ranged in a hierarchy. However, each of the expert agents is
 extremely simple, in the sense that it "knows" only about one thing.
 The experts are connected to a perceptual system and to each other
 in such a way that they are triggered only when the conditions about

 which they are expert are actually satisfied.
 While this may be a satisfactory description of the composition of

 the mind, it is not yet sufficiently precise to serve as a design for a very

 large-scale program that can organize itself to achieve intelligence.
 Programs that operate on the principles of the society of mind may
 well be the end point of many steps in the evolution of the design of
 intelligent systems. I believe that hybrids of associative memory and
 traditional AI programs for logical reasoning show the greatest
 promise in the near term for AI applications. It is possible that they
 will also prove to be useful models of cognition.17
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 LIMITS OF TRADITIONAL COMPUTER HARDWARE

 Researchers' suspicion that current AI models may not be extensible
 to systems with human-level intelligence is not the only force driving
 the paradigm shift toward massively parallel computing models.
 Economic considerations, which transcend AI concerns, are another.
 Today's serial computers have begun to reach limits beyond which
 they cannot be speeded up at reasonable cost. For a serial, single
 processor computer to operate more rapidly than at present, its
 processor must execute each instruction more rapidly. To accelerate
 processing, manufacturers have brought new, faster-acting materials
 into use. They have also shrunk circuits to smaller and smaller sizes
 so as to shorten signal paths, since internal communication speeds,
 and therefore overall processing rates, are limited by the speed of
 light. The smaller the computer, the faster its internal communica
 tions. Because each component generates heat, and because dense
 chips produce more heat than others, ultradense chips of exotic
 materials often require the addition of elaborate and expensive
 cooling systems. All this means that doubling the power of a serial
 machine usually increases its cost by more than a factor of two?
 sometimes much more.

 In contrast, parallel designs promise the possibility of doubling
 power by simply doubling the number of processors, possibly for less
 than two times the cost, since many system components (disk storage
 units, power supplies, control logic, and so on) can be shared by all
 processors, no matter how numerous. For example, the Connection
 Machine system contains up to 65,536 processors. Even in its initial
 version, the Connection Machine is very inexpensive in terms of the
 number of dollars it costs per unit of computation; its cost in relation
 to its performance is about one-twentieth that of serial
 supercomputers.* Moreover, the cost of highly parallel processors is
 likely to drop dramatically. Initially, any chip is expensive because of

 *The cost/performance figure is the cost per standard computing operation. The typical
 standard computing operation is either a fixed-point addition or a floating-point multiplication.
 Fixed-point performance is measured in millions of instructions per second (MIPS). Floating
 point performance is measured in millions of floating operations per second (MFLOPS-?
 pronounced "megaflops"). Cost/performance is measured in dollars per MIPS or dollars per MFLOPS.
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 low yield (only a fraction of usable chips results from initial produc
 tion) and the need to recover research, design, and development costs.
 The price of chips follows a "learning curve," a drop-off in cost as a
 function of the number of chips fabricated. Memory is the prime
 example: the cost per bit of memory storage has dropped by a factor
 of ten every five years for thirty-five years running, yielding a cost that
 is one ten-millionth that of the 1950 price?one one-hundred mil
 lionth after adjustment for inflation! Since the processors of a

 massively parallel computer are mass-produced, as memory chips
 are, the cost of a given amount of processing power for parallel
 machines should drop as rapidly as the cost of memory?that is, very
 rapidly indeed.

 The cost of computer systems involves, of course, both hardware
 and software. How is one to program a machine with tens of
 thousands or perhaps millions of processors? Clearly, human pro
 grammers cannot afford the time or the money to write a program for
 each processor. There seem to be two practical ways to program such
 machines. The first, which has been in most use to date, is to write a

 single program and have each processor execute it in synchrony, each
 processor working on its own portion of the data. This method is
 "data-level parallelism." A second way is to program learning
 machines that can turn their experiences into a different code or data
 for each processor.

 Research in machine learning has grown dramatically during the
 last few years. Researchers have identified perhaps a dozen distinctly
 different learning methods.18 Many massively parallel learning
 schemes involve the connectionist, or neural net, models mentioned
 earlier. Connectionist systems have usually been taught with some
 form of supervised learning: an input and a desired output are both
 presented to a system, which then adjusts the internal connection
 strengths among its neuronlike units so as to closely match the
 desired input-output behavior. Given a sufficiently large number of
 trials, generally on the order of tens of thousands, such systems are
 able to learn to produce moderately complex desired behavior. For
 example, after starting from a completely random state and being
 trained repeatedly with a 4,500-word data base of sample pronun
 ciations, a system called NETtalk was able to learn to pronounce
 novel English words with fairly good accuracy.19
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 The central problem to be solved in connectionist and society-of
 mind learning research is the "credit assignment problem," the
 problem of apportioning simple rewards and punishments among a
 vast number of interconnected neuronlike computing elements. To
 show the relevance of this problem to the ultimate goals of AI, I will
 couch the problem in terms of the "brain" of a robotic system that we
 hope will learn through its experiences.

 Assume a large set (perhaps billions) of independent neural-like
 processing elements interconnected with many links per element.
 Some elements are connected to sensors, driven by the outside world;
 others are connected to motor systems that can influence the outside
 world through robotic arms and legs or wheels, which generate
 physical acts, as well as through language-production facilities, which
 generate "speech acts." At any given time a subset of these elements
 is active; they form a complex pattern of activation over the entire
 network. A short time later, the activation pattern changes because of
 the mutual influences among processing elements and sensory inputs.

 Some activation patterns trigger motor actions. Now and then
 rewards or punishments are given to the system. The credit assign
 ment problem is this: which individual elements within the mass of
 perhaps trillions of elements should be altered on the basis of these
 rewards and punishments so the system will learn to perform more
 effectively?that is, so the situations that have led to punishments can
 be avoided in the future and so the system will more often find itself
 in situations that lead to rewards?

 The credit assignment problem has at least two aspects. The
 simpler is the static credit assignment problem, in which rewards and
 punishments occur shortly after the actions that cause them. Such
 systems receive instant gratification and instant negative feedback.
 The static credit assignment problem has been found reasonably
 tractable: units that are active can be examined, and those that have
 been active in the correct direction have their connections with action

 systems strengthened, while those that have been inappropriately
 active have their connection strengths reduced. If the reward or
 punishment occurs substantially after the fact, however, we have a
 temporal credit assignment problem, which is significantly more
 difficult. To solve this problem, a system must keep memories of the
 past states through which it has passed and have the capacity to
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 analyze and make judgments about which earlier states were respon
 sible for the rewards and punishments. Progress on the temporal
 credit assignment problem has been promising, but much remains to
 be done before it can be considered solved.20

 In my estimation, these learning methods will only be suitable for
 producing modules of an overall intelligent system. A truly intelligent
 system must contain many modules. It seems very unlikely that the
 organization of an entire brain or mind could be automatically
 learned, starting with a very large, randomly interconnected system.
 Infants are highly organized at birth. They do not, for instance, have
 to learn to see or hear in any sense that we would recognize as
 learning. Their auditory and visual systems seem already organized to
 be able to extract meaningful units (objects, events, sounds, shapes,
 and so on), Elizabeth Spelke and her research associates have found
 that two-month-old infants are able to recognize the coherence of
 objects and that they show surprise when objects disappear or
 apparently move through each other.21 At that age they cannot have
 learned about the properties of objects through tactile experience. It
 is not too surprising that such abilities can be "prewired" in the
 brain: newborn horses and cattle are able to walk, avoid bumping
 into objects, and find their mother's milk within minutes of birth. In
 any case, the necessity for providing intelligent systems with a priori
 sensory organization seems inescapable. On what other basis could

 we learn from scratch what the meaningful units of the world are?22

 THE FUTURE OF ARTIFICIAL INTELLIGENCE

 Any extrapolation of current trends forces one to conclude that it will
 take a very long time indeed to achieve systems that are as intelligent
 as humans. Nevertheless, the performance of the fastest computers
 seems destined to increase at a much greater rate than it has over the
 last thirty years, and the cost/performance figures for large-scale
 computers will certainly drop.

 The effect of a great deal more processing power should be highly
 significant for AI. As claimed earlier, current machines probably have
 only one four-millionth the amount of computing power that the
 human brain has. However, it is quite conceivable that within about
 twenty-five years we could build machines with comparable power
 for affordable prices (for the purposes of this argument, let an
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 affordable price be $20 million, the cost of today's most expensive
 supercomputer).

 The Connection Machine system, currently probably the fastest in
 the world, can carry out the kinds of calculations we think the brain
 uses at the rate of about 3.6 x 1012 bits a second, a factor of about
 twenty million away from matching the brain's power (as estimated
 by Jack Schwartz in his article in this issue of Dcedalus). One may
 build a more powerful Connection Machine system simply by
 plugging several of them together. The current machine costs about
 $4 million, so within our $20 million budget, a machine of about five
 times its computing power (or 1.8 x 1013 bits per second) could be
 built. Such a machine would be a factor of four million short. The

 stated goal of the DARPA (Defense Advanced Research Projects
 Agency) Strategic Computing Initiative is to achieve a thousandfold
 increase in computing power over the next ten years, and there is
 good reason to expect that this goal can be achieved. In particular,
 the Connection Machine system achieves its computation rates
 without yet using exotic materials or extreme miniaturization, the
 factors that have enabled us to so dramatically speed up traditional
 computers. If a speedup of one thousand times every ten years can be
 achieved, a computer comparable in processing power to the brain
 could be built for $20 million by 2012.

 Using Schwartz's estimates, we find that the total memory capacity
 of the brain is 4 x 1016 bytes. The current Connection Machine can
 contain up to two gigabytes (2 x 109 bytes). In today's computer
 world, two gigabytes of memory is considered a large amount, yet
 this is a factor of twenty million short, or a factor of four million
 short for a system with five Connection Machines.

 At today's prices, two gigabytes of memory costs roughly $1
 million, so to buy enough memory to match human capacity would
 cost on the order of $20 trillion, roughly ten times our current
 national debt. Given its long-term price decline of roughly a factor of
 ten every five years, the cost of 4 x 1016 bytes of memory will be in
 the $20 million range within thirty years, so that the time at which we

 might expect to build a computer with the potential to match human
 intelligence would be around the year 2017.* As suggested earlier,

 *Well before the 2017 date, however, mass storage devices (disk units and other storage media)
 will certainly be capable of storing this much material at an affordable price.
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 however, building the hardware may be the easiest part; the need to
 untangle the mysteries of the structure and functioning of the mind,
 to gather the knowledge both innate and learned, and to engineer the
 software for the entire system will probably require time that goes

 well beyond 2017. Once we have a piece of hardware with brain-level
 power and appropriate a priori structure, it still might take as long as
 the twenty years humans require to reach adult-level mental compe
 tence! More than one such lengthy experiment is likely to be required.
 What could we expect the intelligence of such powerful machines

 to be like? Almost certainly they will seem alien when compared with
 people. In some ways such machines will eclipse maximum human
 performance, much as pocket calculators outperform humans in
 arithmetic calculation. The new machines may have perfect recall of
 vast quantities of information, something that is not possible for
 people. (While humans apparently have vast amounts of memory, we
 are quite poor at the literal memorization of words, images, names,
 and details of events.) Unless deliberately programmed in, such
 machines would not have a repertoire of recognizable human emo
 tions. Nor would they have motivation in any ordinary human sense.
 Motivation and drive seem to be based on innate mechanisms
 developed over eons of evolution to ensure that we make species
 preserving decisions?to avoid pain, continue to eat and drink, get
 enough sleep, reproduce, care for our young, act altruistically (espe
 cially toward relatives and friends)?without requiring that we
 understand that the real reason for carrying out these actions is
 species preservation.23 (It is, however, quite possible that it will prove
 useful to endow machines capable of problem solving and learning
 with the ability to experience some analogues of frustration, pleasure
 at achieving a goal, confusion, and other such emotion-related
 attitudes toward emergent phenomena in order that they can gener
 ate useful abstractions for deciding when to abandon a task, ask for
 advice, or give up.)

 AI researchers can grasp the opportunity to build human-level
 intelligent machines only if they find ways to fill prodigious quantities
 of memory with important material. They will be able to do so only
 if AI can produce adequate sensory systems (for hearing, vision,
 touch, kinesthesia, smell, and taste). With sensory systems, AI
 systems will for the first time be able to learn from experience. Such
 experience may initially be little more than rote memory?that is,
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 storing records of the partially digested sensory patterns seen by the
 system. Yet, as argued earlier, the storage of vast amounts of
 relatively literal material may be a key to intelligent behavior. The
 potential for artificial intelligence depends on the possibility of
 building systems that no longer require programming in the same
 sense that it is now required. Then we could overcome the tendency
 of systems development to be very slow because of software engi
 neering difficulties.

 There is also the question of what kind of "body" such an
 intelligence must be embedded in for it to really understand rather
 than to merely simulate understanding. Must the machine be wired to
 have emotions if it is to understand our human emotional reactions?

 If a machine were immortal, could it understand our reactions to our
 knowledge of our own mortality? Intelligent machines might be
 cloned by simply copying their programming or internal coding onto
 other identical pieces of hardware. There is no human analogue to a
 machine that would have experience as a unitary entity for an
 extended period and then, at some point during its "lifetime,"
 suddenly become many separate entities, each with different experi
 ences. Exactly what kind of intelligence this would be is therefore an
 open question.

 SUMMARY

 We are nearing an important milestone in the history of life on earth,
 the point at which we can construct machines with the potential for
 exhibiting an intelligence comparable to ours. It seems certain that we
 will be able to build hardware that is a match for human computa
 tional power for an affordable price within the next thirty years or so.
 Such hardware will without doubt have profound consequences for
 industry, defense, government, the arts, and our images of ourselves.
 Having hardware with brain-level power will not in itself, how

 ever, lead to human-level intelligent systems, since the architecture
 and programs for such systems also present unprecedented obstacles.
 It is difficult to extrapolate to future effects from the rate of progress
 that has been made to date. Progress has been very slow, in part
 because the computational models that have been used have been
 inappropriate to the task. This inappropriateness applies most criti
 cally to the problem of learning. Without learning, systems must be
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 handbuilt. We don't know how closely we must match human brain
 details to foster appropriate learning and performance. With the right
 architectures, it is likely that progress, both in the building of
 adequately powerful hardware and in programming such hardware
 (by teaching), will accelerate. I believe that the construction of truly
 intelligent machines is sufficiently likely to justify beginning study and
 policy planning now. In that way we can maximize their benefits and
 minimize their negative effects on society.
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 21Elizabeth Spelke, "Perceptual Knowledge of Objects in Infancy," in Jacques

 Mehler, Edward C. T. Walker, and Merrill Garrett, eds., Perspectives on Mental
 Representation: Experimental and Theoretical Studies of Cognitive Processes and
 Capacities (Hillsdale, N.J.: Lawrence Erlbaum Associates, 1962).

 22In the Critique of Pure Reason Immanuel Kant argues essentially this point: that
 "the innate forms of human perception and the innate categories of human
 understanding impose an invariant order on the initial chaos of raw sensory
 experience." This is quoted from Paul M. Churchland in Matter and Conscious
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 Ironic, alas, for the first highly intelligent mobile robot will probably be embedded
 in tanks and fighter aircraft.
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 Making Machines (and Artificial
 Intelligence) See

 Vision is more than a sense; it is an intelligence. Imagine
 watching television: from the flickering light on a two
 dimensional screen you create a three-dimensional world of

 people, places, and things. The mental processes that lead from the
 pattern of light on your retina to an internal picture of the world are
 as "intelligent" as the analyses and interpretations that lead a doctor
 from symptoms to diagnosis. Yet when we marvel at the human
 brain, we are more apt to prize the deductive powers of a logician
 than the skill of the average person in recognizing a face.
 We humans are highly visual animals. Almost fifty percent of our

 neocortex?the part of the brain that arrived latest in evolution and
 hence is most characteristic of primates?is dedicated to vision.
 Vision is so integral to our understanding of the world that the ability
 to "see" means not only to decode light signals but also to compre
 hend the thrust of a verbal argument. Why, then, have we balked at
 calling vision intelligence?

 This question has special relevance for researchers in artificial
 intelligence (AI). The declared goal of AI research is to recreate
 intelligence on machines and, at the same time, to understand what

 Anya C. Hurlbert is an M.D. I Ph.D. student in the Harvard Medical School I Massachusetts

 Institute of Technology Health Sciences and Technology Program and the MIT Department of
 Brain and Cognitive Sciences.

 Tomaso Poggio is a professor in the Department of Brain and Cognitive Sciences at MIT.
 Professor Poggio directs research in computational vision in the Artificial Intelligence Labo
 ratory at MIT, where he is also codirector of the Center for Biological Information Processing.
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 intelligence is. Traditionally, AI research has tackled such blatantly
 advanced abilities as reasoning, problem solving, and language. Yet
 an undisputed assumption underlying AI research is that the goal of
 intelligence is to enrich our interaction with, and enhance our control
 of, the outside world. A disembodied intelligence, however clever at
 solving math problems, could not attain that goal if unable to sense
 or affect the world. Robotics, the study of how to join perception
 with action, is therefore a crucial adjunct to AI.

 Research in robotics naturally segments into two major efforts:
 machine vision and robot movement. The goal of machine vision
 research is to build machines that can see, and at the same time, to
 understand vision. Similarly, robot movement research seeks not only
 to build robots that can manipulate things and move about but also
 to understand motor control. The obvious temptation in AI research
 is to assign machine vision the task of supplying input to an
 intelligent machine and to assign robot movement the task of
 performing its output. In its beginnings, AI research did just that, and
 in doing so excluded both vision and motor control from the realm of
 intelligence.

 The reason for the early exile of machine vision was in part the
 same reason that we so readily take vision for granted and underes
 timate its everyday powers: seeing seems easy and immediate. But
 progress in machine vision in the past twenty years has exploded that
 delusion and revealed a humbling irony. Vision is not only "intel
 ligent," but also harder to understand or recreate than the most
 sophisticated mathematical reasoning. In fact, vision poses such
 difficult problems that AI today is much closer to developing systems
 that could serve as physicians or lawyers than to building robots that
 could replace gardeners or cooks.

 THE PROMISE OF VISION

 Today machine vision is integral to the entire AI effort, not only for
 its power, complexity, and sheer utility, but also for a salient message
 that its approach to studying intelligence bears. Recently, traditional
 AI (the term we use for AI research that excludes machine vision and
 robotics) has been challenged by an old charge under a new name,
 "connectionism." The challenge comes from modern Gestaltists who
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 believe that traditional AFs logical dissection of intelligence can never
 reveal the true structure or capacity of the mind's deepest powers.

 The dispute is aimed at a tradition that has taken to heart the
 physical symbol system hypothesis of Newell and Simon. The hy
 pothesis states that "a physical symbol system has the necessary and
 sufficient means for general intelligent action."1 A physical symbol
 system is a "machine," born or built in the real world, that deals in
 physical symbols?"physical patterns" that designate things in the
 real world. The system must be able to construct new symbols from
 old symbols. In turn, new symbols may instruct the system to create,
 change, or destroy other symbols. Ultimately the system must be able
 to influence real things through its symbols for them. The hypothesis
 vindicates the study of what computers can do: computers are
 physical symbol systems and are therefore intelligent.

 For traditional AI, studying what computers can do means pro
 gramming them to do things. The uprising against traditional AI is
 partly against the way it programs. The AI approach has been to
 break problems down into their smallest discrete tasks and to tackle
 each task in turn, following explicit rules that prune a tree of
 branching solutions. Expert systems, which follow tailor-made rules
 to draw inferences from a tailor-made data base, are the marketable
 fruit borne by this approach. MYCIN, a knowledge-based system for

 medical diagnosis, reasons from symptom to differential diagnosis by
 following "if-then" rules stored in its knowledge base. Cued by the
 results of a lab test to search through its data base for all possible
 pathogens, MYCIN would take its next instruction from an appro
 priate "if-then" statement: "If you find a bug, then look for a drug."
 Although much of the fruit has not ripened?physicians have yet to
 employ any medical expert system as more than a computerized
 reference library?expert systems in a few specialized areas such as
 configuring computers and repairing telecommunication lines have
 proved useful.

 The flip side of the hypothesis says that because humans are
 intelligent, they are physical symbol systems. Part of the new rage
 against traditional AI is against calling man a physical symbol
 system; the cathexis is on the word symbol. In a stria sense, a
 physical symbol could be text on a screen, a set of electronic switches,
 a mesh of neurons, or an electrical current across a cell membrane.
 But traditional AI research has taken an even stricter definition:
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 symbols are abstract terms that denote known things and obey a
 circumscribed grammar. Like logical symbols in mathematics or
 words in the Latvian language, symbols should behave according to
 formal rules. Newell and Simon listed the computer language LISP as
 one example of a physical symbol system, yet traditional AI seems to
 have considered it the only one. For traditional AI, engineering
 intelligence has come to mean manipulating the symbols of LISP-like
 languages to create systems whose every cog turns according to the
 rules of logic.

 The authors of the physical symbol system hypothesis meant it as
 a benediction on computer science. But some see the blessing as a
 curse on human intelligence if all that physical symbol systems can do
 is wield computer commands. The grandly named General Problem
 Solver (GPS), one of the first programs to seek out universal
 mechanisms for solving puzzles, was derived by listening to people
 solve problems out loud. How, asks the offended human, could even
 the best such GPS drive a car? An experienced driver does not
 consciously apply rules such as "when traveling above a speed of
 thirty miles an hour, shift into third gear," or "when shifting gears,
 depress the clutch pedal," or "when approaching a toll booth, let up
 on the accelerator pedal." She simply drives, performing the neces
 sary actions automatically. Or consider a mechanic reaching for a

 wrench to loosen a bolt. He decides on the right tool for the job by
 quick intuition, not by systematic search through the available
 implements. No expert system, argue traditional APs opponents,
 could maneuver chess pieces as cleverly and as quickly as a chess
 master could unless it were infinitely large and infinitely fast.

 The complaint against traditional APs model of intelligence crys
 tallizes in connectionism. Connectionists argue that the supremely
 characteristic features of human intelligence are, among others,
 associative thinking and the ability to learn and generalize from
 examples. They argue that these features are not captured by the
 serial search procedures and the dendriform structure of APs expert
 systems. Instead, they argue, intelligence will emerge only from a
 special hardware that reproduces the massive parallelism of the
 human brain, in which huge numbers of interconnected cells tackle
 different parts of the same task at the same time.

 Yet what we must remember before succumbing to arguments
 against the traditional AI approach is where and why it does succeed.
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 The very things that AI, in its beginnings, so eagerly labeled intelli
 gent?mathematical reasoning, language understanding, abstract
 logic?are the things that expert systems do best. We would go so far
 as to argue that the things that we consider most mentally challenging
 are simply the things of which we are most conscious, and that we are
 most conscious of them because they are the things that we learned
 latest in evolution and consequently do least well. Expert systems
 stand a good chance of surpassing us in these consciously difficult
 tasks and should not be faulted prematurely for the finitude of
 technological progress. The intrinsic weakness of medical expert
 systems lies not in their present inability to encompass the enormous
 domain of medical knowledge?in time, they probably will do it?
 but in their inability to reproduce the art of medicine. Although even
 a present-day medical expert system can probably outdo a sleep
 deprived medical intern in calling up a full list of prescribed labora
 tory tests, the intern always has an edge on the computer in sensing
 unhappiness as the cause of a patient's loss of appetite.

 Leaps of intuition and instant insights at one extreme, ordinary
 perceptual skills such as speech recognition at the other: these are the
 powers of the mind that traditional AI is hard put to model. They are
 the mental activities of which we are least conscious and most

 capable. Evolution has spent millennia perfecting such unconscious
 talents, and it is more than logical to suggest that to reproduce those
 talents, tactics other than those used exclusively (and relatively
 poorly) by our most conscious mind must be deployed.

 Vision is possibly the most intelligent of the mental machinations
 hidden from consciousness. Yet the methods of studying intelligence
 that machine vision has developed are neither recondite nor magical,
 and shun neither logic nor intuition. In machine vision, the best of
 traditional AI meets the best of connectionism to build a science that

 stands apart from both.
 Machine vision has distilled its guiding philosophy from the same

 source as traditional AI. At the core of the physical symbol system
 hypothesis is the idea that symbols should be arbitrary things,
 independent of the underlying machines and meaningless until made
 otherwise. Machine vision turned that idea into what we call its
 central dogma: intelligence may be studied as an abstract
 information-processing system, independent of the machinery on

 which it runs. Machine vision has followed the dogma onto a unique
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 path, the computational approach. The computational approach
 describes exactly what information a system receives and what
 information it puts out, and seeks a computation that will transform
 the input into the output. For natural or artificial visual systems, any
 such computation is necessarily constrained by the properties of the
 environment, the eye, and the light that travels between them. The
 key to the right computation is in discovering and respecting those
 constraints. Machine vision has turned the search for constraints into
 a science of the natural world.

 THE PROBLEM OF VISION

 To understand the strength of the machine vision approach, one must
 first appreciate the difficulty of the problems it attacks. A cherished
 bit of apocrypha about Marvin Minsky, a founding father of AI,
 illustrates the difficulty of the appreciation itself. About twenty years
 ago, he assigned a graduate student a seemingly tractable problem for
 a summer project: connect a camera to a computer and make the
 computer describe what it sees. The summer project has expanded
 into a research industry, and despite machine vision's enormous
 progress, that problem has still not been solved.
 Much of the progress has resulted from painstaking research into

 how to formulate the problem: What does vision do? The plain
 answer is that vision transforms light signals into internal represen
 tations of the things that transmit them. Human vision starts with a
 two-dimensional pattern of light (an image) on each retina and ends
 with a description of three-dimensional objects in terms of their
 shape, color, texture, size, distance, and movement. The first obstacle
 in vision is the retinal image itself: it contains an enormous, almost
 unimaginable amount of information. More than 100 million pho
 toreceptors are arrayed on the retina. The eye's lens focuses light onto
 the retina in such a way that the three-dimensional world is flattened

 and mapped directly onto the photoreceptor mosaic, each photore
 ceptor corresponding to a particular spot in the field of view. The
 amount of light falling onto a single photoreceptor is determined by
 the amount of light reflected by whatever object occupies the
 corresponding location in the field of view. In turn, the amount of
 light an object reflects depends on the amount of light that falls on it
 (which depends, for instance, on how close it is to a lamp, or whether
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 it lies in the shadow of another object) and on the stuff of which it is
 made (shiny metal, matte black velvet, transparent gossamer, lus
 trous vegetable skin), among other things.

 If, for each photon it captured, each photoreceptor deposited a
 dark grain of silver onto photographic paper behind the eye, we
 could peel off snapshots of the world from our built-in Polaroid
 cameras. But the retina is not so obliging, and the picture it sends to
 the brain is abstruse. At any one instant, the image is an array of
 electrochemical signals, the size of each signal proportional to the
 amount of light striking the photoreceptor that conveys it. Over each
 second, the brain must process about a hundred such images as the
 eye roves over a constantly changing world. Thus, far from recording
 static photographs, the retina transmits a stream of dynamic visual
 information.

 In machine vision the retinal image is translated into a two
 dimensional array of pixels. Each pixel is a tiny subdivision of the
 picture and contains a number that represents the size of the signal
 transmitted by a single light sensor (or, equivalently, the intensity of
 the light striking the sensor). The machine's task is to perform
 mathematical manipulations on the array of numbers to convert it
 into more telling arrays: for example, arrays that explicitly encode
 the distances of objects from the camera, or arrays that assign one
 color to each distinct material.

 A typical image in machine vision might be composed of one
 million pixels. Each pixel holds an eight-bit number. The total
 amount of information, although far less than in a human retinal
 image, is still a staggering eight million bits. Multiply that number by
 the number of images per second that a camera must deliver in order
 to mimic the human eye, and the information transmission rate
 climbs to at least several hundred million bits per second. Thus even
 the simplest mathematical operation the machine performs on the
 flow of images requires billions of multiplications and additions per
 second. A million or more personal computers working together
 could just do the job.

 Ironically, the real problem in vision is that all the information in
 an image is never enough. Too much information is lost in the
 projection of the three-dimensional world onto a two-dimensional
 surface, making each pixel value in the huge array highly ambiguous.
 Consider a typical beginning photographer's mistake: she positions
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 her subject in front of a telephone pole to capture the greenery on
 either side, but in the photo the pole appears to pierce the subject's
 head. In the projection of the three-dimensional scene onto the
 two-dimensional film, crucial information about depth has been lost.
 The size of the telephone pole is a clue that can be interpreted in at
 least two ways: either it is a thick telephone pole far away or a thin

 wooden rod protruding straight from the subject's head. The ambi
 guity of depth is the most obvious one; another ambiguity lies in the
 interpretation of brightness and darkness. If the intensity values in
 one cluster of pixels are much higher than those in a neighboring
 cluster, the rift between them could be caused in several different
 ways. Perhaps a shadow falls across a single piece of paper, creating
 the illusion of a border between light and dark papers, or perhaps a
 sheet of white paper lies next to a sheet of black. The numbers
 themselves do not tell.

 Machine vision formulates its problem as follows: given a two
 dimensional array of intensity values, find the three-dimensional
 arrangement of objects and surfaces that produced it. As stated, the
 problem appears to be impenetrable. The features that must be
 recovered?the colors, textures, and spatial relationships of objects,
 the position and color of the light source?are hopelessly entangled in
 a matrix of numbers. Yet machine vision has come a long way since

 Minsky's graduate student grappled with the problem. What has
 emerged in the past fifteen years is a sense of the structure of vision
 that enables us to break down the problem into independent,

 manageable sections. First, vision can be cleanly divided into at least
 two stages: early vision (which determines where things are) and
 high-level vision (which determines what things are). Second, early
 vision itself may be studied as a set of separate visual modules, each
 extracting a distinct type of visual information from the image. In
 finding the right perspective, machine vision has gone beyond the
 bounds of traditional AI and constructed a solid science of its own:

 the science of inverse optics.

 A GLIMPSE OF MACHINE VISION

 A sense of the structure of vision did not emerge immediately. Vision
 scientists' first attempts were, in effect, to solve the problem by hook
 or by crook: any tactic that could resolve the ambiguity in the image
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 was exploited, no matter how narrowly restricted it was to the task
 at hand. This approach produced expert systems in vision: image
 interpretation programs that called upon a store of specific, custom

 made knowledge to fuel the application of custom-made rules. An
 exaggerated example of such a program undertakes the task of
 locating the telephone in a picture of a cluttered office desk. Among
 the assumptions the program makes to constrain its search are that
 the telephone is black and that it sits at a fixed height and a fixed
 distance from the camera taking the picture. The search the program
 executes is relatively easy: it scans the appropriate row of pixels for
 a cluster of low pixel values signifiying a dark object, then checks that
 the size of the cluster matches the size that a telephone should be

 when seen from the specified distance. If the assumptions hold true,
 the program performs well. But it fails miserably if the telephone is

 white or if it has moved from the desk to the floor.

 The ad hoc solutions (or "hacks") generated by this approach left
 little room for the development or application of general scientific
 principles. Instead of clearly outlining the steps a visual system must
 follow in going from image to object representations, the first vision
 programs mixed levels haphazardly, exploiting high-level decisions to
 deal with the low-level information registered by the array of pixel
 values. Like many infant expert systems in other domains, the first
 machine vision systems could function only in restricted, artificial
 environments. Their techniques for coping with circumscribed mini
 worlds could not be generalized to deal with the unpredictable
 surroundings in which humans and more primitive animals exploit
 vision so efficiently.

 Early Vision
 The weakness of the first stabs at the problem of vision provoked a
 movement toward early vision. What the pioneers of the move
 realized was that without a theory of image understanding general
 enough to instruct the interpretation of any image, machine vision
 would be doomed to the endless perpetration of hacks, each more
 cleverly conceived than the last, but no single one able to touch the
 all-purpose flexibility of the human visual system. The way to that
 general theory was through a science of the world, not a science of the
 mind: a thorough analysis of the physics of the interaction between
 light, eye, and object.
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 Concentrated efforts in the past fifteen years have produced a
 scheme for early vision whose first goal is to construct a map of the
 scene that records for each opaque surface in the image its distance
 and orientation relative to the viewer. That is, early vision seeks to
 transform the initial array of pixel values into another array of
 numbers that explicitly groups together parts of the image that are all
 part of one thing and tells where each thing is, relative to the viewer.
 The "things" of early vision are themselves only parts of objects, the
 visible faces and sides of larger, still unrecognized, wholes. This map,

 termed the "2|-D sketch" by David Marr, provides the springboard
 from which the next goals of early vision can be pursued: to assign
 shape, color, texture, speed, and direction of motion to each thing in
 the image. Separate maps could then be drawn up, each recording a
 distinct type of visual information, and each could be superimposed

 in register with the 2^-D sketch. By thus aligning the color map with
 the 2|-D sketch, for example, an imaginary overseer could read out
 the distance, orientation, and color of each distinct surface in the
 image.

 Early vision must accomplish two tasks on the way to computing
 distinct visual properties for each solid surface in the image:
 (1) compress the abundant information of the image into just its
 important features, and (2) reduce the ambiguity of that information.

 Edge Detection
 The first step in making the first map is to delineate the boundaries
 between distinct regions in the image. Edge detection, the most
 thoroughly studied process of early vision, takes on that task. It does
 so by marking the borders that separate clusters of significantly
 different pixel values. The fact that edge detectors exist at the lowest
 level of the human visual system is easy to accept, given the tendency
 of our senses to prefer changes over steady states. In fact, our visual
 system seems designed primarily to detect changes in, rather than
 absolute values of, light signals. Imagine what you would see in a
 uniform white expanse spanning your field of view: not much. The
 image is boring because there are no changes in the intensity signal
 across space. But spatial changes in intensity are not the only kind of
 changes for which our visual system is on the lookout. If the
 projection of the complex scene you see upon lifting your eyes from
 this page were to stay perfectly still on your retina, within an instant
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 it would become as featureless as the white expanse. It would
 disappear because there would be no temporal changes in the light
 signal registered by each photoreceptor.

 The retinal cells to which the photoreceptors send their signals are
 specially designed to detect changes in light intensity across time and
 space. The cells continually compare intensity values now to intensity
 values registered an instant ago and send out transient responses that
 encode changes in intensity values rather than the intensity values
 themselves. If the intensity values stay the same, the cells' response
 falls to zero and the image fades. The spatial and temporal intensity
 changes are intertwined; as the eye flickers restlessly in its socket,
 edges in space move across photoreceptors and are converted into
 edges in time.

 In machine vision, edge detection seeks out intensity changes as the
 most important, most primitive features, and so performs the first
 task in paring down the massive amount of information in the image.
 The difficulty in edge detection lies not in finding intensity changes
 but in discarding the unimportant ones. Small intensity changes
 between pixel clusters are rife in any image. Even an image of a single
 sheet of white paper would not carry the same value for every pixel
 unless the white of the paper were absolutely uniform, the light
 shining on the paper were exactly the same at every point, and the
 sensors recording the image faithfully registered the amount of light
 that struck them. These conditions are not met in reality: the white of
 the paper is flecked with impurities, the light strikes the paper at an
 angle, shading it, and the sensors, continually bombarded by random
 photons, transmit a noisy signal. A good edge detector should
 discount the miscellaneous ups and downs of the intensity signal
 arising from the surface of the paper and detect only the actual edges
 of the paper. Ideally, edge detection should deliver a line drawing of
 the scene, capturing the physical contours and boundaries of objects
 and leaving blank the surfaces in between. Yet designing an edge
 detector to do that is no simple task.

 Tremendous effort has gone into constructing efficient edge detec
 tors. The problem in devising them is the trade-off between smooth
 ing the noise in the intensity signal while catching all the significant
 edges. Successful edge detectors copy the way human retinal cells do
 both of these things by performing two steps. First, the detector blurs
 the entire image by adding to each pixel value the average of the pixel
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 values in a cluster surrounding it. Second, it takes the difference
 between that new pixel value and an average of the new pixel values
 in a larger surrounding cluster, and assigns the value of that
 difference to the central pixel.2 These two operations, blurring, or
 filtering, and differentiating, insure that small changes in the intensity
 signal are smoothed away (small changes become even smaller
 difference values after filtering) and large changes are enhanced.
 The effect of these actions on the following scan line across an image

 would be to transform it into the following clearer signal.

 The cutoff below which intensity changes are discarded and above
 which they are retained can be controlled in several ways: by
 changing the size of the pixel cluster from which the average is
 calculated, by changing the weights the pixel values carry in the
 average, and by keeping only those blurred, differentiated values that
 are above a set threshold. If the cutoff is too low, intensity edges
 might be detected that do not represent physical edges in the scene,
 but if it is too high, some real edges might get thrown out with the
 noise. The developers of edge detectors for machine vision have put
 great effort into contriving filters and differentiators that most
 effectively enhance edges and make surfaces smooth. No single edge
 detector can be perfect, though; the line drawings produced by this
 first stage of early vision contain many miscellaneous lines.

 Natural Constraints

 Early vision's goal of reducing the ambiguity of images inspired the
 idea of natural constraints. It was obvious from the start that
 constraints were necessary to reduce the number of possible interpre
 tations of a single image, but not obvious from what realm the

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:07 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Making Machines (and Artificial Intelligence) See 225

 constraints should arise. Hence, unnatural constraints like those in
 the telephone-recognition program were considered as good as any.
 Turning to the physics of images led vision scientists to turn to the
 physical world for constraints?to make assumptions about the
 properties of lights, surfaces, and geometries that would almost
 always be true: natural constraints. Natural constraints reduce the
 number of interpretations of an image by ruling out some of them as
 physically impossible.

 A stereo algorithm. The task of finding and precisely formulating
 the right natural constraints has proved to be the most difficult one in
 early vision. Natural constraints figure prominently in the solution to
 the problem of depth perception.

 You can appreciate the problem of depth perception, and how
 humans make it easier by using two eyes, with a simple experiment.
 Hold up one finger several inches from your face and look at it with
 your right eye closed. Now open the right eye and close the left. Your
 finger appears to jump to the left. Now hold your finger as far from
 your face as you can and alternate between the views in your two eyes
 in the same way. Your finger now makes a smaller jump to the left.
 The explanation: because your two eyes are in slightly different
 positions in your face, the image of the world falls on each eye in a
 slightly different way.

 The difference in the position of your finger in your eyes' two
 images is its binocular disparity and, as your experiment showed, is
 directly related to the distance between the finger and your face. The
 farther away your finger, the smaller its disparity. Stereoscopic vision
 capitalizes on this fact by using disparity to estimate the relative
 depths of surfaces in a scene and thus to recreate solid, three
 dimensional objects. To calculate the binocular disparity of a partic
 ular point in the scene, the visual system must first identify which
 pixels in the two images correspond to that same point. This
 correspondence problem has too many solutions: each pixel in the
 left image could correspond to any one of many pixels with similar
 pixel values in the right image. Enter natural constraints, which
 eliminate all but the physically correct match.

 In the search for constraints that are both powerful and general
 enough to solve the problem, two assumptions about the everyday
 world stand out. The uniqueness constraint embodies the fact that
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 most surfaces are not transparent; it rules that each pixel in, say, the
 left eye's image can be assigned one and only one depth (this
 constraint would not hold if most scenes were viewed through many
 layers of glass). The continuity constraint expresses the fact that most
 surfaces are smooth, so that if one point in an image is assigned a
 certain distance from the eye, nearby points will be assigned similar
 distances. Only if the world were composed of blizzards of discon
 nected points at random depths would we expect to see wildly
 different disparities for neighboring pixels.

 Having found the constraints, what does one do with them? Marr
 and Poggio3 incorporated them into a stereo algorithm that, in its
 latest version, starts with a left and a right image, each having been
 filtered and differentiated by an edge detector, and produces a final
 image in which each pixel value represents one depth. For each pixel
 in the left image, the algorithm computes the disparity for each of its
 possible matches with the right image. For each disparity for each
 pixel, the algorithm then counts the number of matches for nearby
 pixels that yield that same disparity. The disparity with the highest
 number of "votes" wins. The continuity constraint insures that the
 method of voting is fair?if one disparity is supported by many
 neighboring matches, it is likely to be the right one for a smooth
 surface?and the uniqueness constraint dictates that there be only
 one winner.

 This simple method of implementing natural constraints yields
 realistic results on most images. Unlike its predecessors in the days of
 hacks, it does not rely on high-level clues that point out, say, the tip
 of the nose in the left image, and then solve the correspondence
 problem by recognizing the tip of the nose in the right image. We can
 see depth in random dot stereograms,* proving the remarkable fact
 that we, like this stereo algorithm, do not need to recognize objects
 before we can see them in depth.

 * Random dot stereograms are three-dimensional pictures created by showing the right eye one
 display of random black dots on a white background and the left eye another display. The
 patterns of dots in the two displays are identical except that a central patch of dots is slightly
 displaced in the left image relative to its position in the right image. The eye interprets that slight
 displacement as a difference in depth between the central patch and its background, so the
 patch appears to float above or below the surrounding dots.
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 Inverse Optics

 For early vision, exploring the properties of the environment that
 interact with vision and pursuing natural constraints meant develop
 ing a new science of the world: inverse optics. Just as optics is the
 physics of the formation of two-dimensional images from three
 dimensional scenes, so inverse optics is the physics of the recovery of
 three-dimensional scenes from two-dimensional images. Just as Re
 naissance artists reproduced three-dimensional contours and bound
 aries on two-dimensional paper by following the rules of linear
 perspective, so modern-day vision scientists are learning to decode
 two-dimensional images by discovering the new rules of inverse
 optics.

 Inverse optics is a science of impossible problems. The information
 provided in the image data is insufficient, and the solution might be
 neither unique nor well-defined. Traditional AI might struggle to
 define a problem precisely, but once the problem is defined, its
 solution is unique and straightforward (although time-consuming) to
 find. In inverse optics the opposite is true: problems are easy to state
 but very hard to solve. One of the major advances in early vision has
 been the realization that these impossible problems fall into a class of
 problems?technically called ill-posed problems?that has been ex
 tensively studied in mathematics. Because mathematicians have al
 ready developed useful techniques to deal with the general form of
 ill-posed problems, vision scientists can call upon the same techniques
 to solve the particular problems of inverse optics. These techniques
 fall under the heading of regularization theory.4

 Regularization theory provides a framework into which natural
 constraints, once discovered, can be slotted. The framework is the

 same for all problems in early vision, and it points to a general
 solution that can be tailored to each problem. Thus the difficulty of
 the not-quite-so-impossible problems in vision lies almost solely in
 finding the right natural constraints, since one way to exercise them
 has now been formally prescribed.

 Early vision's tactics can be characterized as three general activi
 ties. The first is to segregate the problem from other problems in
 vision; that is, if the goal is to recover the color map of the surfaces

 in the image, there is no need to compute binocular disparity (our
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 own neurons divide duties similarly: a color-selective neuron gener
 ally cares little for disparity). The second is to identify the natural
 constraints that govern the problem. The last task is to fit the natural
 constraints into an algorithm that works, perhaps by using the
 framework of regularization theory.

 High-Level Vision

 A "mobot" trundles along a hallway of MIT's AI Lab, halting when
 it suspects that something solid is too close for comfort. It can follow
 a wall or reverse its path, making its way as if it can see. But its bank
 of infrared sensors transmits only the most basic of messages:
 something's there, or not. It cannot tell what that something is.
 Although far more advanced than the mobot's images of the

 world, the 2|-D sketch produced by early vision also stops short of
 telling what things are. Its goal is to tell where things are. Determin

 ing what things are is the goal of high-level vision. If the 2?-D sketch
 segregated each object from others in the image, the task of recog
 nizing the objects by such characteristics as color, shape, texture, and
 so forth would not be too difficult. But drawing boundaries between
 separate objects is exactly what early vision?at least as reproduced
 on machines?cannot yet do. The things in the image that early vision
 picks out are at best parts of objects?unbroken surfaces of one color,
 small dark blobs on an otherwise uniform surface?not the objects
 themselves. The difficulty lies not in finding edges between regions of
 the image that are different from each other, but in determining

 which regions are the significant ones for distinguishing and labeling
 objects.

 The tasks of image segmentation (carving up the image into
 regions likely to correspond to separate objects) and object recogni
 tion (matching these significant regions with labeled objects in
 memory) have been the focus of intense study in high-level vision. Yet
 even the most sophisticated object recognition programs today make
 an unfair demand on the images they process. The programs require
 that the objects they recognize must first be pinpointed in the image.
 Thus told where to look, such a program can match each feature of
 a pinpointed object to a virtually identical image in its memory. But

 faced with just the 2^-D sketch of a scene, the program does not
 know where to start. The problem that vision scientists now avidly
 address is how to make the two approaches to vision?early and
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 high-level?meet in the middle. How does one get from edges to
 objects?

 Although that question is still unanswered, machine vision has
 made remarkable progress since its birth as a science. Five years ago,
 extracting edges from an image took thirty minutes of computer
 time; now it takes less than a tenth of a second and produces a clean
 image that aircraft makers, among others, use profitably. Algorithms
 that recover the color, depth, motion, and shape of surfaces from
 two-dimensional images of the world work faster than ever. They
 already aid the military's experimental autonomous vehicles in
 navigating over land and assist industry's robots in inspecting factory
 products. The next hurdle is to integrate distinct algorithms into one
 visual system that can see in real time. The Vision Machine at the

 MIT AI Lab is a first version of such a system. Machine vision has
 also built bridges to biology and psychology and shown that making
 machines see can mean seeing into the human mind.

 LEVELS OF UNDERSTANDING

 Machine vision's commitment to understanding vision on all levels
 arises from the nature and difficulty of the problems it faces. Vision
 is a hard problem, and trying to solve it just by constructing
 telephone-recognition programs won't work. The solid successes of

 machine vision research stem from its singular practice of the central
 dogma (that intelligence may be studied as an abstract information
 processing system, independent of the machinery on which it runs),
 which has grown into a philosophy and science of its own. The
 science is inverse optics, grounded in the physics of the real world and
 formalized in terms of rigorous mathematics. The philosophy at the
 heart of machine vision (especially as practiced at the MIT AI Lab) is
 underpinned by a belief in levels of understanding and analysis,
 which dictates that information-processing problems be probed on
 three levels: computation, algorithm, and hardware. Machine vi
 sion's creed is to find its first and firmest footing for every problem on
 the computational level.

 The computational approach maintains that the problems of vision
 can be studied as problems of mathematics and physics, constrained
 by the properties of the world being imaged and of the eye making
 the images. The solutions must be fully characterized independently
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 of the machinery that will implement them; the natural constraints
 that enable a unique solution to exist are the same, whether neurons
 or switches exploit them. As David Marr wrote, "Once a computa
 tional theory has been established for a particular problem, it never
 has to be done again."5 It becomes a pillar of AI, just as a theorem is
 a basic principle of mathematics. The computational theory under
 lying edge detection, which states that the most meaningful primitive
 features in an image are edges, is not tied to the way any piece of
 hardware might find edges. Instead, the theory supplies firm facts
 about visual information.

 The algorithm is the step-by-step procedure that executes the
 commands of the computation: in edge detection, it is the set of
 instructions to calculate the sum of a group of pixel values, to divide
 that sum by the number of pixels in the group, to add that number to
 the central pixel value, and so forth. The hardware is the gadgetry
 that implements the algorithm: in the human visual system, retinal
 cells are vastly interconnected with each other, enabling neighboring
 cells to feed the sum of their activity into a central cell. On the
 computational level, machine vision determines what it wants to
 compute; on the levels of algorithm and hardware, it prescribes how
 to do the computation.
 When Marr and Poggio first advocated the use of the computa

 tional level in the pursuit of solutions,6 they stressed its independence
 from the other levels in order to lift it from a throng of AI algorithms.
 Yet in practice the levels must interact. The algorithm is dictated by
 the computation it must perform and is often constrained by the
 properties and limitations of the hardware. Yet it has reciprocal
 influence on both the computation and the hardware. To alter the
 exact procedure that an algorithm follows?for instance, to increase
 its speed or improve its reliability?is often to modify the computa
 tion that it performs. Fiddling with an algorithm may therefore lead
 to the invention of a new computation or an insight into what the
 problem to be solved really is. Similarly, the algorithm may require
 certain manipulations?multiplying together huge arrays of numbers,
 for example?that existing hardware simply cannot perform effi
 ciently, so it may spur the evolution or discovery of new machinery.
 Efforts in machine vision over the past fifteen years demonstrate a
 firm commitment to tackling vision on all levels, and a belief that the
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 levels are so intrinsically intertwined that such a commitment is
 needed if vision is ever to be understood.

 POLAR OPPOSITES

 Before it became obvious that vision was one of the toughest
 problems AI could tackle, some AI researchers responded to Marr's
 exhortation to build solid computational theories rather than rickety

 algorithms with the retort that that was all very well for easy things
 like vision but not for hard things like higher intelligence. Today the
 impact that machine vision's philosophy could have on traditional AI
 research is strengthened by AI's conflict with connectionism. Yet

 we find that connectionism can learn something from machine vision
 as well.

 Traditional AI and connectionism are two branches of the same

 enterprise, and can be viewed as representing the two poles of
 intelligence. The connectionist philosophy is inspired by our associa
 tive powers (awed by the way we wade through the quicksand of

 multiple constraints, talking, humming, driving cars, reaching for
 coffee cups, recognizing faces in the crowd), whereas AI is inspired by
 our deductive powers (impressed by logic, mathematical proofs, legal
 debates, and the systematic elimination of all possible bugs in
 computer codes). Their different views on intelligence lead to dif
 ferent plans for recreating it.

 AI revels in algorithms; connectionism insists on hardware. Con
 nectionism maintains that algorithms alone cannot recreate intelli
 gence and that AI's emphasis on algorithms gives inappropriate
 primacy to symbolic processing, which can never capture the
 "fluidity and adaptability"7 of human intelligence.

 Hardware is the essence of intelligence, says connectionism, and not
 only does traditional AI miss out on this fact, but it uses the wrong
 hardware. AI has thrived on the rapid development of ever more
 powerful serial computers, "von Neumann machines," that carry
 out instructions one after another. Connectionists believe that

 hardware should perform operations not in series, but in parallel,
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 and that the quantities it works with should be numbers, not
 symbols, and analog, not digital.*

 Connectionists further believe that the right hardware is a highly
 interconnected network of simple units that simultaneously process

 mutually interacting parts of the same problem. The output of the
 system is determined by the sum total of the activity of all the units
 in the network, not just the "yes" or "no" value of a single predicate
 terminating a series of logical deductions.
 The ultimate dream of connectionists and AI researchers alike is to

 build a machine that can learn. Connectionists predict that the right
 hardware will spontaneously?perhaps magically?organize itself
 into a system that is intelligent, not simply by virtue of what it has
 been told to do, but because it can learn and generalize from
 examples. It will contain the very elements of the mind that in
 aggregate?just like water molecules coalescing into snowflakes?
 will display emergent properties such as intelligence. Feed the right
 kind of network a list of written words and their correct pronun
 ciations, and that network will figure out the state it ought to be in
 to pronounce words that are not on its training list. The computa
 tion that the network performs to get from text to speech does not
 need to be explored.

 Rather than questions of hardware versus software, symbols
 versus numbers, or serial versus parallel operations, the debate really
 boils down to a single question: What is the final goal of the
 enterprise? Or, phrased another way, What is the goal of studying
 intelligence: to build intelligent machines? to understand how the
 brain is put together? or to describe the structure and powers
 of intelligence as a free-floating entity, tied to neither brain nor
 machine?

 If we invent an ideal connectionist and an ideal AI hacker and ask

 each of them this question, we get sharply differing answers. The
 ideal connectionist replies that her aim is to make a model of the
 brain by simulating its neural networks. The model should capture
 enough of the brain's natural power to be commercially viable. Yet

 *In a digital computer the data are represented and operated on as strings of zeros and ones
 (binary digits). In an analog computer the data are represented as physical quantities, such as
 voltages, that can take on a continuous range of values.
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 she would shy away from a free-floating theory of intelligence in
 order to avoid the "middlemen" of symbols that intrude on the
 transaction between data and solution. In practice, the units in most
 connectionist networks have been simplified to the point where they
 look nothing like real neurons, which are biophysically and compu
 tationally very complex devices. A real connectionist would admit
 that the only true resemblance between artificial networks and the
 brain is on the abstract level of lots of connections and lots of

 simultaneous operations.
 The ideal AI hacker, on the other hand, could claim to be the first

 to want to build an intelligent machine, but would probably demur
 on whether it was essential to delve into a wet brain. That is not to

 say that the hacker would reject the insights offered by scientists who
 do delve into brains. Yet although the hacker says he takes to heart
 the lofty goal to understand intelligence purely as an abstract
 information-processing system, as proof he produces only task
 specific computer programs.

 In terms of levels of understanding, AI professes to be on the
 computational level, while in reality it is stuck on the algorithmic
 level.8 Connectionism professes to ignore the computational level and
 just tries to build hardware like the brain's. But the hardware of
 connectionists' networks is a far cry from the brain's, and many of

 the networks work only because the necessary computational anal
 ysis has been done first.* Machine vision's message to both connec
 tionism and AI is that no one of its goals can be attained without the
 simultaneous pursuit of the others.

 VISION: A SYNTHESIS

 In reality, the boundaries between traditional AI and connectionism
 are not so boldly drawn. Although their doctrines and techniques
 seem as diametric as the poles of intelligence that inspire them, they
 converge in machine vision. As the ideal connectionist and the ideal

 *For example, John Hopfield's network is simply a minimization machine. That is, before using
 it to solve a problem, one must express the problem, if possible, as a mathematical quantity that

 must be minimized. This preliminary analysis is at the computational level and has little to do
 with the network itself.
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 AI hacker face off, the machine vision scientist follows a steady
 course that coincides with parts of each approach.

 The ease, immediacy, and inscrutability of vision places it on the
 associative pole of intelligence. With the coarse resolution of our
 consciousness, that is how we see it. Yet on the fine scale viewed by
 computational theories, vision often operates in a very deductive
 fashion. In turn, machine vision embraces contrasting methodologies
 inspired by the two poles of intelligence: it develops highly parallel
 algorithms, deals heavily in raw numbers, relies on abstract
 information-processing theories, and assembles expert visual systems.
 Machine vision is the most numerical and parallel game in town.

 The goal of most procedures in machine vision is to transform an
 enormous array of numbers into yet another enormous array of
 numbers, not to evaluate the logical truth of a single statement.
 Because of the enormity of the initial array, and because all points in
 it often must be transformed in the same way (for example, an edge
 detector performs exactly the same operation regardless of which
 particular pixel cluster is involved), the most natural way to do the
 transformation is simultaneously, in parallel, on each pixel. Most
 early vision algorithms have been developed with the idea of parallel
 processing in mind, using the retina and the brain (prototypically
 "parallel" organs) as models.* Many of these algorithms, although
 first tested on digital computers, can readily and more efficiently be
 implemented in a highly parallel way on networks whose units'
 activities are expressed in analog quantities; regularization theory,
 which unifies many early vision algorithms, shows a natural way to
 do so.9 The Connection Machine, a powerful computer that consists

 *Marr and Poggio's first paper on stereo vision (1976)10 begins: "Perhaps one of the most
 striking differences between a brain and today's computers is the amount of 'wiring.' In a digital
 computer the ratio of connections to components is about 3, whereas for the mammalian
 cortex it lies between 10 and 10,000. Although this fact points to a clear structural difference
 between the two, this distinction is not fundamental to the nature of the information processing

 that each accomplishes, merely to the particulars of how each does it. In Chomsky's terms, this
 difference affects theories of performance but not theories of competence, because the nature of
 a computation that is carried out by a machine or a nervous system depends only on a problem
 to be solved, not on the available hardware. Nevertheless, one can expect a nervous system and
 a digital computer to use different types of algorithms, even when performing the same
 underlying computation. Algorithms with a parallel structure, requiring many simultaneous
 local operations on large data arrays, are expensive for today's computers but probably

 well-suited to the highly interactive organization of nervous systems_"
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 of many thousands of simple processors densely interconnected, was
 originally conceived, in part, for vision research.
 Machine vision has also stayed close to the brain. Vision research

 ers have realized that artificial machines can gain much by emulating
 the biological ones that perform so extraordinarily well in vision and
 other senses. Accordingly, they have modeled edge detectors on
 retinal cells and taken other cues from the brain. Meanwhile, brain
 biologists increasingly look to machine vision for insights into what
 operations neurons must perform to solve the perceptual problems
 they face.

 Yet machine vision does not just implore AI to turn to numbers
 and parallelism. After all, AI cannot simply and instantly transform
 the data bases and inference engines of expert systems into huge
 arrays of numbers.11 Nor does machine vision just instruct connec
 tionism to be more faithful to the brain. Most importantly, it tells
 both connectionism and traditional AI to seek out solutions on the

 computational level.
 A connectionist's solution to the problem of stereo vision might be

 to feed sets of three images into an artificial network of neurons, one
 input image for each eye (which gives the light intensity at each pixel)
 and one output image, the solution (which gives the distance from the
 viewer at each pixel). For each set, the network would produce its
 own output image from the two inputs, compare that with the correct
 solution, and adjust the strengths of connections between its units to

 make the two output images match. Given enough training sets, the
 network might eventually settle on a pattern of strengths that would
 produce an accurate depth image when fed an entirely new pair of
 input images. Looking into the network might reveal a mesh of
 excitatory and inhibitory connections very similar to the ones that the

 Marr-Poggio algorithm sets up to solve the same problem. Yet
 whereas the Marr-Poggio algorithm springs from a computational
 analysis of depth perception and therefore works within a domain
 that is fully described, one can only guess what and how much the
 connectionist's network might do.

 How might traditional AI benefit from the computational ap
 proach? Take the cruising habits of the ordinary housefly. The fly has
 simple tastes in targets owing to its coarse vision. Any small black
 and-white pattern (a crumb on a tablecloth) or moving black dot
 (another fly, possibly of the opposite sex) might alert the fly to follow.

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:07 UTC�������������� 

All use subject to https://about.jstor.org/terms



 236 Anya Huribert and Tomaso Poggio

 A traditional AI hacker would be tempted to construct explicit rules
 telling the fly how to track a potential mate: If dark spot veers right,
 turn right. If dark spot hovers, head for it. The scheme beneath the
 rules would be to compare continually the target's direction to the
 fly's direction, and make movements to match the two. The compu
 tational approach might develop a similar scheme, but not by
 packaging a set of rules that cover only a finite list of maneuvers.

 The Poggio-Reichardt theory12 of how flies fly is a classic compu
 tational theory. It takes apart the rules, exposing their underlying
 structures. It embodies the rules in a single mathematical statement
 that shows how visual input is transformed into motor output,
 constrained by the physics of flight and the biology of sight. The
 statement equates the torque exerted by the fly's wings (which in turn
 controls its position and velocity) with the difference between the
 actual and desired position of the target's image on the retina. How
 fast that difference changes determines how fast the torque changes.
 A single equation sums up the fly's flight pattern on a chase.

 Although a connectionist might find the fly's behavior grossly
 unsophisticated, a human's reflexive act of stepping on the brakes
 when a car skids to a halt in front of his own might prove to be
 governed by a similar equation. But the major hitch in the AI hacker's
 fly program is more telling than the connectionist's denigration of the
 fly: the traditional AI program assumes that the hard work of
 pinpointing the target has already been done. Its rules apply only
 when supplied with high-level information about the location and
 speed of black spots. If it were a truly intelligent program, it would
 start with the raw picture produced by the fly's primitive eye, find the
 prominent spots in it, and track those spots continuously over time.
 The labor is in deciphering the errors in target retinal position and in
 discovering that wing torque is the relevant output. Similarly, the
 connectionist's stereo vision network would have a hard time settling

 into a productive state if it were supplied only with raw images. The
 mass of information in the raw images would prove too much for an
 artificial network unless it were impractically vast and complex. The
 stereo vision network would do much better with the edge-detected
 images that the Marr-Poggio algorithm uses to pare down the
 number of possible matches between pixels in the two images. The
 fly's program and the stereo vision network both require the right
 representation of the input data to work.
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 Finding the right representation is what a computational theory
 does. It tells how to get from input to output by finding the right
 input and output. It specifies both the information and how to
 process it. In the search for the basic elements of cognition, AI has
 looked for the smallest steps of deduction in the most global rules of
 thought, while connectionism has looked for the most recondite links
 of association. Machine vision has turned its gaze outside. It looks for

 generalizations about the world that are almost always true (objects
 are rigid, surfaces are smooth, boundaries are continuous) and
 translates them into constraints on the basic elements of information.

 Machine vision shares the dream of building a machine that can
 learn. But there are questions to be answered first. Is it possible to
 learn any computation from a set of examples, starting with a tabula
 rasa? We think probably not. For most problems, the framework that
 guides data to a solution must first exist before learning can act upon
 it, streamlining and improving the solution. Certain transformations
 of data into solution probably cannot be learned at all except by
 exhaustive search through all possible solutions. But regardless of its
 answer, the question represents a lode in the research mine. What
 must be dug out are characterizations of the computations that can
 be learned, and how well and by what general classes of networks
 they can be learned.13 Currently too little digging is going on. Yet
 some machine vision scientists are exploring the implications of
 regularization theory, which shows that under certain conditions,
 some vision algorithms can be learned from examples.
 Will we be satisfied with simply building machines that can learn?

 From a practical standpoint, the answer will probably be yes; the
 machines will certainly be very useful. But if the goal is to understand
 intelligence, the reply is no. Simply reproducing an ability doesn't
 explicate its underlying strategies. Humans can learn, yet we don't
 know how. The theory of evolution provides a self-consistent and
 complete description of how life?and brains?developed. It tells us
 how to construct a nervous system, although the procedure is
 unfortunately too time-consuming to be practical. Yet this theory of
 life and intelligence, like the view that it is enough just to build an
 intelligent machine, is not sufficient for those who want to under
 stand what intelligence is. In the same way, even if the magic network
 is discovered that can learn to solve any problem, a true believer in
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 levels of understanding would still insist on asking: What has the
 network learned?

 Humans should not be insulted that they are used as existence
 proofs for information-processing machines just because they recoil
 from the symbolic manipulation in traditional AI programs. Al
 though that style of programming is still best suited to the questions
 it has traditionally tackled in reasoning, problem solving, and logic,
 it cannot stand alone. Just as thinking has two flavors and intelligence
 two poles, the study of intelligence must draw on two philosophies.
 Such deeply intelligent acts as perception, speech recognition, and
 motor control need a more numerical, parallel, analogical approach.
 We humans should not forget that those who aim to build intelligent
 machines have the whole future to disprove their starting hypothesis:
 that intelligence can be reproduced on a machine. Today human
 intelligence far exceeds the capabilities of expert systems or connec
 tionist networks, but in the future, more sophisticated machines

 might take offense at such a claim. Those machines might look fondly
 back to the days when machine vision, which combines all levels of
 understanding human intelligence, brought their parents together.

 ENDNOTES

 1For more extensive definitions of symbols, symbol structures, designation, and
 interpretation, see Allen Newell and Herbert A. Simon, "Computer Science as
 Empirical Inquiry," in Mind Design, ed. John Haugeland (Cambridge: Bradford
 Books, MIT Press, 1981).

 2Actually, the way the difference is determined is slightly more complicated, but the
 effect is similar. For a more lengthy description of edge detection, see Berthold K.
 P. Horn, Robot Vision (Cambridge: MIT Press; New York: McGraw-Hill Inc.,
 1986).

 3David Marr and Tomaso Poggio, "Cooperative Computation of Stereo Disparity,"
 Science 194 (1976):283-87.

 4Tomaso Poggio, Vincent Torre, and Christof Koch, "Computational Vision and
 Regularization Theory," Nature (1985): 314-19.

 5David Marr, "Artificial Intelligence: A Personal View," in Mind Design, ed.
 Haugeland.

 6David Marr and Tomaso Poggio, "From Understanding Computation to Under
 standing Neural Circuitry," in Neuronal Mechanisms in Visual Perception, ed. E.
 Poppel, R. Held, and J. E. Dowling, Neuroscience Research Progress Bulletin 15
 (1977):470-88.

 7David E. Rumelhart, James L. McClelland, and the PDP Research Group,
 Foundations, vol. 1 of Parallel Distributed Processing: Explorations in the
 Microstructure of Cognition (Cambridge: MIT Press, 1986), 3.
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 8Daniel Dennett makes a similar point in his paper "The Logical Geography of

 Computational Approaches: A View from the East Pole," presented at the
 Conference on Philosophy and Cognitive Science at MIT, 17-20 May 1984.

 9Berthold Horn was probably the first (in 1974) to use analog networks to solve a
 vision problem, the computation of lightness (see Horn, Robot Vision). For the
 connection between analog networks and early vision algorithms see Poggio et al.,
 "Computational Vision and Regularization Theory."

 10Marr and Poggio, "Computation of Stereo Disparity."
 11 Some connectionists are trying to do just that?witness James Anderson's creation

 of medical data bases encoded in networks.
 12Werner Reichardt and Tomaso Poggio, "Visual Control of Orientation Behaviour

 in the Fly," Quarterly Review of Biophysics 9 (1976):311-438.
 13There are several basic questions that arise from, but have not been answered by,

 the connectionist approach to learning. Do connectionist learning techniques
 (typified by the stereo vision example) work only for small-size problems? Do they
 scale appropriately for larger-size problems? More fundamentally, which types of
 learning are likely to work on which classes of problems? Finally, are the
 connectionist learning algorithms significantly different from classical regression
 and clustering techniques? We venture the answer that they might not be.
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 Sherry Turkle

 Artificial Intelligence and Psychoanalysis:
 A New Alliance

 Artificial intelligence and psychoanalysis appear to be
 worlds apart. Psychoanalysis looks for what is most human:
 the body, sexuality, what follows from being born of a

 woman and raised in a family. Artificial intelligence looks deliber
 ately for what is least specifically human: the foundation of its
 theoretical vision is the thesis that the essence of mental life is a set of

 principles that could be shared by people and machines.1
 There is another way in which they appear worlds apart. Artificial

 intelligence seems scientifically ascendant and has increasingly deter
 mined the agenda for academic psychology through its influence on
 cognitive science. In contrast, psychoanalysis is rejected by academic
 psychology and in conflict with dominant biological trends in psy
 chiatry. Although there have been recent flurries of interest in
 Freudian theory, they have come from the worlds of literary analysis
 and philosophy. To scientific circles, psychoanalysis appears a frozen
 discipline?frozen in the scientific language of another time, frozen in
 the psychological assumptions of another culture.

 In this essay I propose that if psychoanalysis is in trouble, artificial

 intelligence may be able to help. And I suggest the nature of this help
 by arguing that one of the ways computers influence psychological
 thinking is through a route that is not essentially technical. Rather,
 computers provide sciences of mind with a kind of theoretical

 Sherry Turkle is associate professor of sociology in the Program in Science, Technology, and
 Society at the Massachusetts Institute of Technology. She is the author of Psychoanalytic
 Politics: Freud's French Revolution and of The Second Self: Computers and the Human Spirit.

 241
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 legitimation that I call sustaining myths. Indeed, the early impact of
 the computer on psychology was clearly of this nature.

 SUSTAINING MYTHS

 As recently as the 1950s, behaviorism dominated American academic
 psychology, its spirit captured by saying that it was permissible to
 study remembering but considered a violation of scientific rigor to
 talk about "the memory." One could study behavior but not inner
 states. The study of mind had to be expressed in terms of stimulus
 and response. In today's jargon, what lay between was a black box
 that must not be opened even speculatively.

 By the end f the 1960s, the behaviorist hegemony was broken, as
 were inhibitions about the study of memory and the inner processes
 of mind. Indeed, within academic psychology scarcely a trace re
 mained of behaviorist methodology. Behaviorism had not been
 refuted by a critical experiment. There had been many factors
 influencing this scientific revolution, including the political and
 cultural climate of the 1960s. And one of the most central was the

 computer.
 The computer's role in the demise of behaviorism was not techni

 cal. It was the very existence of the computer that provided legitima
 tion for a radically different way of seeing mind. Computer scientists
 had of necessity developed a vocabulary for talking about what was
 happening inside their machines, the "internal states" of general
 systems. If the new machine "minds" had inner states, surely people
 had them too. The psychologist George Miller, who was at Harvard
 during the heyday of behaviorism, has described how psychologists
 began to feel embarrassed about not being allowed to discuss
 memory now that computers had one:

 The engineers showed us how to build a machine that has memory, a
 machine that has purpose, a machine that plays chess, a machine that can
 detect signals in the presence of noise, and so on. If they can do that, then
 the kind of things they say about the machines, a psychologist should be
 permitted to say about a human being.2

 The computer presence relegitimated the study of memory and
 inner states within scientific psychology. Many technical concepts
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 that psychologists picked up from computation?ideas from cyber
 netics and automata theory?had existed before real computers but
 became more compelling because of them. "Suddenly," says Miller,
 "engineers were using the mentalistic terms that soft-hearted psychol
 ogists had wanted to use but had been told were unscientific."3
 Computational ideas, computational language, and the physical
 presence of the machines all created an intellectual climate in which

 it was permissible to talk about mental processes banned by behav
 iorism. The computer presence served as a sustaining myth for a new
 psychology of inner states that came to be known as cognitive
 science.

 Computer programs provided a way to discuss beliefs and rules as
 causing behavior. Why did pawn take pawn? Earlier psychologies
 would have rejected "because the pawn blocked the bishop" as a
 causal explanation. It would merely be giving the chess player's
 "reasons." But if mind is program, reasons become explanations. A
 large part of the computer's appeal for psychologists is that it allows
 them to open the black box that is the mind. Once that box is open,
 the computer suggests ways to fill it with concepts that are close to
 commonsense understandings.

 Indeed, the crux of Miller's story about memory is that computers
 gave psychologists permission to investigate something that "ev
 eryone knows" but that had been banished from science?the idea
 that people have memories. In the past two decades, cognitive science
 has been dominated by the computer legitimating the study of
 something else that "everyone knows," this time the idea that people
 have information and use rules, and that much of this information
 can be formulated in words. In the late 1950s Allen Newell and
 Herbert Simon built a computer program called the General Problem
 Solver (GPS), which was guided by something very close to verbal
 reasons recoded as computational rules. Questions such as "Why did
 GPS do such and such?" could be answered by reference to whatever
 rules it had been given. Why should references to rules not be used to
 answer questions about what people do when faced with similar
 problems? The existence of GPS gave credibility to the question.

 There is a widespread view that the computer presence tends to
 move psychology toward more rigorous and quantifiable theories,
 arguing that the computer, by its nature, requires rules, rigor, and
 formalism. But the story of the computer's influence on psychology is
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 not so simple. For example, its "first act"?the attack on behavior
 ism?went in the direction of creating a less rather than a more
 constrained, a "softer" rather than a "harder" science of mind.

 Artificial intelligence is the most explicit channel for the computer's
 influence on psychology. It asserts a global materialism and also
 offers particular theories about how mind works. Its dual agenda is to
 build "machines that think" and to use machines to think about
 thinking. Its methodological premise is that if one builds a machine
 that can do something intelligent, the way one gets the machine to do
 it is relevant to thinking about how people do it as well.

 Artificial intelligence is usually seen as having its strongest affinities
 with rationalist philosophies, defining knowledge as information and
 devaluing ambiguity when it offers a view of mind as program. But
 this view, commonplace within the literary culture, is only partial.
 One might call it the literary stereotype of the field. But AI has other
 dimensions that give it a far wider range of intellectual connections
 and implications for psychology.

 This essay is interpretive, attempting to identify actual trends and
 influences of the computer on psychological thinking, and it is specula
 tive, predicting a new alliance between AI and psychoanalysis, the latter
 being an intellectual companion far removed from rationalism, quanti
 fication, and formal propositions. This does not mean that there is an
 identity of spirit between computational and psychoanalytic models or
 even that there are not fundamental incompatibilities between them. But
 in addition to a list of traditional affinities between psychoanalysis and

 AI, they have something new in common. In recent years, computer
 scientists and psychoanalysts have talked a strikingly similar language
 about inner agents that construct the thinking and feeling self. Behind
 the language are shared concerns that suggest new theoretical linkages
 and a new source of vitality for psychoanalytic ideas.

 Predictions are always dangerous. The point of making one here is
 what is gained from thinking it through: insight into how the
 computer's presence can act as a sustaining myth to support not one
 psychological culture but a range of them.

 TRADITIONAL AFFINITIES

 The very idea of AI?to create mind in machines?subverts tradi
 tional notions of the autonomous self in a way that parallels the
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 psychoanalytic enterprise. Most people see the autonomous self as an
 unproblematic idea because they have a day-to-day experience of
 having one. Our everyday language captures that experience and
 expresses the idea of free will; we say, "I act," "I do," "I desire." And
 even when people have learned through theology or philosophy to
 question the idea of free will, what they tend to do is make small
 modifications in their notion of the autonomous self; it becomes a self

 whose decisions are constrained. Inherent in psychoanalysis is a more
 radical doubt. The unconscious does not constrain; it constitutes a
 decentered self. Inherent in AI is an even more threatening challenge:
 If mind is program, where is the self? It puts into question not only

 whether the self is free, but whether there is one at all.
 Traditional humanism is committed to the notion of an acting,

 intentional subject. In its challenge to the humanistic subject, AI is
 subversive in a way that takes it out of the company of rationalism
 and puts it into the company of psychoanalysis and radical philo
 sophical schools such as deconstructionism. The psychoanalytic
 subject is decentered in the web of the unconscious; the deconstruc
 tionist subject is decentered in language; the computational subject is
 decentered?indeed, perhaps dissolved?in the idea of program.

 These affinities will not reassure the traditional humanist who has

 gotten used to seeing AI as an enemy. They do not make AI any less
 of an assault on the idea of the self. But the attack comes from the left,

 so to speak, rather than from the right. Artificial intelligence is to be
 feared as are Freud and Derrida, not as are Skinner and Carnap.
 The computational "explanation" of the chess move points to

 another way in which AI is more like Freud than Skinner. Within
 traditional science, and certainly for behaviorism, the line between
 subject and object is taken as sacred. But for Freud, his self-analysis,
 his technique of self-understanding, was indissociable from the
 development of his general theory. Like psychoanalysts, AI theorists
 have made a profession of dissolving the line between subjective and
 objective reflection. The intelligence embodied in the chess move is
 intelligence derived from personal knowledge of chess. "There's only
 one place to get ideas about intelligence, and that's from thinking
 about myself," says AI scientist Roger Schank. "In the end, I have just
 myself, and if it feels right, that's what I have to trust," says Donald
 Norman, an AI-influenced cognitive psychologist.4
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 Marvin Minsky, one of the founders and theoretical leaders of AI

 for the past quarter of a century, has always made it clear that as far
 as he is concerned, you can make a machine do only what you
 yourself know how to do. In order to build a program, you have to
 engage in self-analytic activity. In the early 1960s Minsky worked
 with a student, Thomas Evans, on an AI program that could pass the
 familiar visual-analogy tests: A is to B as C is to D, E, or F, where
 each letter stands for a geometrical drawing. His method was
 psychological: Think about yourself. And its reference point was
 psychoanalysis: "What you had to do was something like what Freud
 did. Tom Evans and I asked ourselves, in depth, what we did to solve
 problems like this, and that seemed to work out pretty well."5

 Behaviorism rigorously forbids any reference to personal experi
 ence, and most other psychological schools try to ignore the issue. But
 AI and psychoanalysis have each articulated the need to integrate
 personal reference into theoretical construction. Each, in its own
 way, is a science of self-reflection.

 But are such affinities superficial? After all, psychoanalysis explores
 the mind to discover the irrational; artificial intelligence invents
 machines through the exploitation of the rational. In fact, what
 stands between psychoanalysis and AI is not AI's "materialism." In
 the past quarter of a century, psychoanalysts have learned the
 necessity and the productivity of an intensified dialogue with psycho
 pharmacology and neuroscience. And Freud himself hoped that
 someday his science of mind would be tied to its physical substrate,
 even if his own first efforts to make the connection had led to an

 impasse.6 What stands between psychoanalysis and AI is the view
 that AI is synonymous with rationalism, or rather with the kind of
 rationalism embodied in the idea of information processing.

 If AI has seemed somewhat unitary in its implications for thinking
 about people, it is because what many observers know as AI is really
 information processing, a rule-driven, hierarchical approach to cre
 ating intelligence. But information processing is only one part of a
 larger picture.

 THE TWO Als

 In the mid-nineteenth century George Boole formalized rules of
 logical inference in an algebraic form systematic enough that he felt
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 entitled to call his work "The Laws of Thought."7 Of course, Boole's
 title reached beyond his achievement, which is far from an all
 inclusive model of mind. For one thing, Boole's laws need an external
 agent to operate them.

 Boole's laws are something a person could use, but a computa
 tional version of Boole breathes life into his equations. An operator in
 the form of a computer program is placed within the system. Once
 there, the operator and the laws can be seen as a functioning model,
 if not of the mind, at least of a part of the mind.
 One major branch of AI research can be described as doing just

 this?pursuing Boole's project in computational form. Information
 processing AI gives active shape to formal propositions to create an
 embodiment of intelligence as rules and reason. Boole formulated
 algebraic rules for the transformation of logical propositions. Mod
 ern computer science has enlarged the logical and propositional to a
 more general notion of what it calls information, and it has enlarged
 algebraic transformation to a more general notion of computational
 processing. Boole would recognize a kinship between his project and
 Newell and Simon's way of putting these two advances together in
 GPS and other programs that laid the foundation for information
 processing AI.

 But artificial intelligence is not a unitary enterprise. Computation is
 a stuff out of which many theories can be fashioned. It is true to say
 that there is not one AI but many. And it is helpful to say that there
 are essentially two. The first is information processing, its roots in
 logic, the manipulation of propositions to obtain new propositions,
 the combination of concepts to obtain new concepts. The second
 comes from a very different style of work, present from the earliest
 days of the field but now having increasing influence, to the point of
 being the focus of attention wherever AI is discussed, from research
 seminars to popular articles. This second is "emergent AI."

 Emergent AI has not been inspired by the orderly terrain of logic.
 The ideas about machine intelligence that it puts forward are not so
 much about teaching the computer as about allowing the machine to
 learn. This AI does not suggest that the computer be given rules to
 follow but tries to set up a system of independent elements within a
 computer from whose interactions intelligence is expected to emerge.
 From this perspective, a rule is not something you give to a computer
 but a pattern you infer when you observe the machine's behavior,
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 much as you would observe a person's. Its sustaining images are not
 drawn from the logical but from the biological.

 Information processing breathes life into Boole by putting an
 operator into his system, but what it operates on shares the static
 nature of Boole's propositions. In traditional computers, millions of
 units of information sit in memory doing nothing as they wait for the
 central processor to act on them, one at a time. Impatient with this
 limitation, the goal of emergent AI is "pure" computation. Here, the

 whole system is dynamic, with no distinction between processors and
 the information they process. Families of neuronlike entities, societies
 of anthropomorphic subminds, and sub-subminds are in simulta
 neous interaction. The goal, no less mythic than the creation of a
 strand of DNA, is the generation of a fragment of mind.

 The two Als, rule-driven and emergent, logical and biological in
 their aesthetic, fuel very different fantasies of how to build mind from

 machine. If information-processing AI is captured by the image of the
 knowledge engineer, hungry for rules, debriefing a human expert in
 order to embody that expert's methods in algorithms and hardware,
 emergent AI is captured in the image of the computer scientist, up all
 night watching the twinkling lights of a computer in the hope that the
 interaction of "agents" within the machine will create intelligence.
 Widely associated with the spirit and substance of the field as a

 whole (here I have called it the literary stereotype), information
 processing put AI in a distant relationship to psychoanalysis, whose
 ideas do not easily translate into rules or algorithms.8 Indeed, I now
 turn to how popular notions about AI drawn from information
 processing suggest that AI is all the things that pyschoanalysis is not.
 My thesis follows directly: when the stuff of AI is expanded to
 include not only information but also active and interactive inner
 agents, there is a starting place for a new dialogue between the
 psychoanalytic and the computer cultures.

 INFORMATION PROCESSING AND PSYCHOANALYSIS

 The Freudian slip is a tempting target for psychologists bent on
 finding computerlike mechanisms behind human behavior. After all,
 one understands only too well the kinds of errors computers make.

 What sort of computer would make the kind of error that Sigmund
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 Freud saw as revealing a very different kind of meaning? In other
 words, what kind of computers are we?

 In The Psychopathology of Everyday Life, Freud discusses slips of
 the tongue and takes as one of his examples a chairman who opens
 a parliamentary session by declaring it closed. The Freudian inter
 pretation of this slip focuses on the complex feelings that may lie
 behind. Is the chairman anxious about the session? Does he have

 reason to believe that nothing good will come of it? Would he rather
 be at home? The slip is presumed to tell us about real wishes. Its
 analysis lays bare the concept of ambivalence?in this case, the
 chairman's mixed emotions about attending the session at all.
 How can we see this human slip as an information-processing

 error? An MIT computer science student had no trouble finding an
 explanation: "A bit was dropped?the sign bit. There might have
 been a power surge. No problem." It's interesting that Freud saw a
 problem precisely because open and closed are so far apart?their
 opposite meanings give significance to their substitution. For com
 puter science students, open and closed are close together. In their
 conceptual world, it is natural to code opposite concepts as the same
 root with a different "sign bit" attached (hot = -cold, dry = -wet,
 open = -closed). So if you think of the human mind as storing
 information in a computer's memory, substituting closed for open is
 easily justified. It might have been a small technical failure due to
 something as trivial as a power surge. It needs no recourse to the idea
 of ambivalence, hidden wishes, or emotional conflicts. What was
 interpreted in terms of sexually charged feelings, as a window onto
 conflicts, history, and significant relationships, becomes a bit of
 information lost or a program "derailed." What psychoanalysis

 would interpret in terms of meaning, this computational psychology
 would see in terms of mechanism?

 There is another way to look at the difference between the
 psychoanalytic and the information-processing view of the slip, a
 perspective that looks at the "width of determinism" in a system of

 interpretation. As a way of knowing, psychoanalysis has a logic that
 calls the whole person into play to explain all of his or her actions.
 This is why an individual can use something as small as a verbal slip
 to get in touch with the deepest levels of personality. What places the
 student's saying "There might have been a power surge. No prob
 lem" in such radical conflict with psychoanalysis is not so much that
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 power surging is alien to psychoanalytic categories but the idea that
 any single factor could explain an act of language.

 In traditional logic, when you say, "All men are mortal; Socrates is
 a man; therefore Socrates is mortal," your conclusion is determined
 by two premises. Change one, and you get a new conclusion.
 Similarly, with an information-processing computer model, you drop
 one bit, one piece of information, and you get a new output. The
 determination is "narrow," like a highway with one lane. Psycho
 analysis uses "wide" determination. It is based on another kind of
 logic, more like the logic that leads you to say that Shakespeare is a
 great poet. Coming across a bad poem by Shakespeare does not call
 the statement into question. Nor would the discovery that several of
 Shakespeare's best poems were written by someone else. So even if
 the chairman announced that the meeting was closed in the context
 of his wife being ill, her illness and his desire to be at home would not
 determine his slip in any simple sense. Psychoanalytic phenomena are
 as "overdetermined" as judgments of literary merit. Although pop
 ular images of a psychoanalytic dream book abound?along with a
 history of popularizers attempting to write one?there is no such
 thing as a "look-it-up" dictionary of Freudian symbols. The meaning
 of a dream can only be deciphered from the complex fabric of a
 particular dreamer's associations to it.

 But computation is not synonymous with the narrow determina
 tion of information processing. Emergent AI builds models with
 broader determination. Whereas information processing gives con
 cepts like closed and open actual symbolic representation in a
 computer, the building blocks of emergent AI do not have that kind
 of one-to-one relationship with such ideas. In symbolic representa
 tion, knowledge is stored as a static copy of a pattern. In an emergent
 system, the pattern itself is not stored. What is stored is data about
 the relationships among agents that would be expected to recreate the
 pattern. In this kind of system it is not possible for "one bit dropped"
 or "one rule changed" to make a difference to an outcome. In
 emergent systems, probabilities take the place of algorithms; statistics
 take the place of rules.

 In a memoir she wrote in 1842, Lady Ada Lovelace, a friend and
 patroness of Charles Babbage, inventor of the "analytical engine,"
 was the first person to go on record with a variant of the oft-quoted
 statement "Computers only do what you tell them to do."10 The
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 Lovelace model for thinking about computers' strengths and limita
 tions is paradigmatic for information processing. But it does not hold
 for emergent AI. Here, the point is quite precisely to make computers
 do more than they were ever told how to. It has become common
 place for people to quote Lovelace to defend against the idea that we
 are like machines: "People are not computers. They don't follow
 rules. They learn. They grow." But emergent AI is characterized by
 "anti-Lovelace" representations of the computer. It breaks down
 resistance to seeing continuity between computers and people by
 describing computers that learn and grow, by describing computers
 whose resonance is biological rather than logical.

 EMERGENT AI AND BROAD DETERMINATION

 This biological resonance is illustrated by the perceptron, a pattern
 recognition machine designed in the late 1950s and a good first
 example of emergent AI. Information-processing AI is made out of
 data and rules. Emergent AI is made out of very different stuff, a stuff
 most easily captured in anthropomorphic language.

 Imagine that you have access to the opinions of a thousand
 simple-minded meteorologists, each of whom has a different unreli
 able method of weather forecasting. Each bases a judgment on a
 fragment of evidence that may or may not be related to predicting
 rain. How do you form a judgment? A narrowly determined method,
 in an information-processing system, for example, might be auto
 cratic?identifying the meteorologist with the best track record and
 going with that vote. Another strategy, both more democratic and
 more broadly determined, would be to let the majority decide. The
 perceptron refines the democratic strategy by weighing each vote
 with a number related to the individual meteorologist's past record.

 So, for example, to get a perceptron to recognize a triangle, you
 show it samples of triangles and nontriangles and make the system
 "guess." Its first guesses are random. But the perceptron is able to
 take advantage of signals saying whether its guess is right or wrong to
 create a voting system in which agents who have guessed right get
 more weight. Perceptrons are not programmed, but learn from the
 consequences of their actions.

 In the narrowly determined method, you would have complete
 breakdown if the chosen meteorologist went insane. But in the brain,
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 damage seldom leads to complete breakdown. More often it pro
 duces a degradation of performance proportional to its extent. In
 other words, when things go wrong, the system still works, but not as
 well as before. Information-processing systems lose credibility as
 models of mind because they lack this feature; the perceptron shows
 the graceful degradation of performance typical of the brain. Even
 with some disabled meteorologists on board, the perceptron still
 produces the best possible decision based on the subset of functioning
 actors.

 In an information-processing model, intelligent behavior follows from
 fixed rules. In the perceptron there are none. There is no flow-chart, no
 rule-driven path through the system. Nor are there one-to-one corre
 spondences between information and output. What is important is not

 what an agent knows but its place in a network, its interactions and
 connections. The perceptron presents a model of mind as a society in
 which intelligence grows from the cacophony of competing voices.

 In an information-processing model, the concept "rain" would be
 explicitly represented in the system. In the perceptron the decision "it
 will rain" is born from interactions among agents, none of whom has
 a formal concept of rain. Perceptrons show the emergence of what
 information processing takes as its raw material. Information pro
 cessing begins with formal symbols. Perceptrons, like Freud's uncon
 scious, operate on a subsymbolic and a subformal level. And most
 important for the current discussion, perceptrons rely on the inter
 actions of inner agents, objects within the system.

 Object theory is a central aspect of emergent AI and forms the link
 between AI and new directions of psychoanalytic thought. The inner
 agents in perceptrons make a bridge to the broad determinism of
 psychoanalysis. But it is only an opening. After perceptrons and the
 perceptronlike systems of the 1960s, it took another round in the
 development of computational ideas before inner objects came to
 occupy center stage. This is the story to which I now turn?the story
 of a second generation of emergent AI with an emphasis on inner
 objects and a new pathway for influence on psychoanalysis.

 EMERGENT AI AND COMPUTATIONAL OBJECTS

 The atmosphere in the AI laboratories of the early 1960s was heady.
 The work of Norbert Weiner, John von Neumann, and Alan Turing
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 had set off shock waves that were still fresh. The first information

 processing programs that emulated fragments of human thought had
 only recently produced their surprise. Perceptronlike models (and
 there were many of them, including Oliver Selfridge's "Pande

 monium" and Warren McCulloch's "neural nets") led researchers to

 biologically resonant descriptions of artificial mind. Thoughts were
 on the ultimate nature of intelligence.

 Artificial intelligence researchers saw little reason for a more
 humble style. On the contrary, AI defined itself as an enterprise of
 mythic proportions: mind creating mind. In doing so, the field drew
 a certain kind of person into its culture, not unlike the kind of person
 drawn into the early circle around Freud. There, too, the enterprise
 was mythic: the rational understanding the irrational. There, too, it
 was without precedent or academic security. The first generation of
 AI researchers, with backgrounds as diverse as mathematics, psychol
 ogy, economics, and physics, like the first generation of psychoana
 lysts, had not been trained in "the field" because it did not exist.
 There was no academic discipline. There were only new worlds to
 conquer.

 In the early 1960s emergent models were as much a part of what
 seemed exciting in AI as information-processing programs. But for
 almost a quarter of a century, emergent AI seemed swept aside. In its
 influence on psychology, AI became almost synonymous with infor

 mation processing. Newell and Simon developed rule-based systems
 in purest form?systems that simulated the behavior of people

 working on a variety of logical problems. Such simulations offered
 the promise of more?the promise of making artificial mind out of
 rules. And if you can build mind from rules, then mind can be
 presumed to have had rules all along. Following this logic, research
 ers made information-processing models the backbone of cognitive
 science.

 The language of information processing?descriptions of "search,"
 "subroutine," "scripts," and "grammars"?became common cur
 rency among psychologists who accepted the idea that "toy
 programs," little pieces of machine-embodied intelligence, were rep
 resentative of bigger things to come. Computer programs that could
 play chess, manipulate blocks, or "converse" with imaginary waiters
 in imaginary restaurants did more than model small pieces of mental
 functioning. They supported the idea that the means used to build
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 them, all drawn from the information-processing paradigm, might
 someday capture the essence of mind. This idea was bolstered by the

 wordly success of a particular kind of information-processing pro
 gram?the expert system. In it the AI scientist extracts decision rules
 from a virtuoso in a field (medical diagnosis, for example) and
 embeds them in a machine that will then do the diagnosis "for itself."

 By the mid-1970s AI was no longer marginal. It had its own
 academic programs, its own journals, its own conferences. It was well
 funded because of its value in the marketplace and to the military.
 Expert systems were used to analyze stock prices, data from oil well
 drillings, materials from chemical samples. Companies competed to
 hire AI graduates to start in-house departments. The future of the
 field became part of a heated discussion about Japanese-American
 industrial rivalry.
 Now AI could promise a more traditional kind of career, much as

 the medicalization of psychoanalysis paved the way for it to become
 a professionalized psychiatric specialty. In both psychoanalysis and
 AI, traditional careers meant new pressure to engage in the kind of
 work that promised visible results. In psychoanalysis the pressure was
 to "cure," to work on educational problems, to do "applied psycho
 analysis." In AI research the pendulum swung from what had been
 most mythic about the dreams of the 1950s and early 1960s to what
 people "knew how to do"?gather rules and code them in computer
 programs.

 But even as the information-processing model reached near-hege
 mony in the late 1970s, the conditions for something very different
 were developing. First, there was important technical progress.
 Computer scientists had long strained against the limitations of the
 von Neumann computer, in which one processor might manipulate
 the passive data in a million cells of memory. It had always been
 obvious that, in principle, the distinction between processor and
 memory could be abolished by making every cell in the computer an
 active processor. Doing so, however, had always been prohibitively
 expensive. But now, projects such as the Connection Machine were
 realistic enough to be funded. There, the plan is to have a million

 microprocessors put together to make one computer whose memory
 and computational power are fully distributed. No longer would
 there be an operator and the passive material it operated on.
 Computation was "waking up from the Boolean dream."11
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 Along with hardware that presented fresh possibilities were new
 ideas about how to program it. The development of programming

 methodologies with suggestive names like "message passing" and
 "actor models" created the context for thinking about computational
 agents in communication. Standard computer programs are lists of
 instructions in the form of imperatives: "add these numbers," "put
 the result in memory," "get the content of that memory location."
 Artificial intelligence programs in LISP or Prolog operate on more
 abstract data but still consist of instructions for manipulating infor
 mation. The first quarter of a century of the development of
 programming was based on a process language for describing how to
 pass information from one place to another. But researchers now felt
 the need to deal with a different kind of event: not the passing of
 something but the making of something. By a coincidence that turns
 out to be highly suggestive for the present discussion, computer
 scientists called their so-far most prominent response "object-ori
 ented programming."

 If you want to simulate a line of customers at a post office counter
 (in order to know, for example, how much longer the average wait

 would be if the number of clerks were to be reduced by one), you
 write a program that creates an internal object that "behaves like" a
 person in a line at the post office. It advances when the person ahead
 in the line advances; it knows when it has reached the counter and
 then proceeds to carry out its transaction. The contrast between this
 object-oriented approach and traditional programming strategies is
 dramatic. A traditional FORTRAN programmer would assign x's
 and y's to properties of the customers and write computer code to
 manipulate the variables. Object-oriented programming refers di
 rectly to the inner objects that represent the customers in line: x's and
 y's do not appear.

 In object-oriented programming, the programmer makes new
 objects that, once created, can be "set free" to interact according to
 the natures with which they have been endowed. The programmer
 does not specify what the objects will actually do, but rather "who
 they are."

 If something of the "feel" of an information-processing program is
 captured by the image of the flow chart, something of the "feel" of
 object-oriented programming is captured by the pictures of file
 folders, scissors, and wastebasket that appear on the screens of
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 computers with an iconic interface. The icons are a surface reflection

 of a programming philosophy in which computers are thought of as
 "electronic puppet shows" and "there are no important limitations to
 the kind of plays that can be enacted on their screens, nor to the range
 of costumes or roles that the actors can assume."12 For mathemati

 cians, the algebraic manipulations in traditional programming have a
 compelling reality. But for most nonmathematicians, the object
 oriented approach has a more direct appeal, the appeal of actors on
 a stage.

 By the early 1980s the coexistence of new parallel hardware and
 new ideas about objects in programming set the stage for the pendu
 lum to swing away from information processing. The beginning of the
 decade saw the first of a growing series of papers from very different
 origins?engineers eager to build new parallel machines, computer
 scientists eager to try mathematical ideas that could guide new efforts
 at parallel programming, psychologists looking for new models that
 had a biological (indeed, a neurological) resonance. Emergent AI had
 not so much died as gone underground. It reemerged with a vengeance
 and with a new label: "connectionism." Once again, there would be no
 distinction between the processor and what it processed. There would
 be no specified set of operations. There would only be communities of
 agents in direct interaction with each other.

 But proponents of the new theory of connectionism go beyond
 earlier stages of emergent AI in the steps they want to take away from
 Boole. For example, the perceptron could not itself generate new
 objects or elucidate how new objects could emerge. Its agents were
 programmed by a human acting from the outside. Today's connec
 tionists hope to go further by bringing together parallel machines, the
 maturation of ideas about how to program them, and most important,
 a new sense of the central problem facing the field, something that had
 scarcely been formulated during the 1960s: How are objects created?

 PSYCHOANALYTIC OBJECTS AND SOCIETY MODELS

 In the focus on inner objects and their emergence and interaction, AI
 shares preoccupations that are central to contemporary psychoana
 lytic theory. As was the case in AI, the development of a psychoan
 alytic object theory is a later development of the field. It was not
 where the theory began.
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 Early psychoanalytic theory was built around the concept of drive,
 demand that is generated by the body and that provides the energy
 and goals for all mental activity. But later, when Freud turned his
 attention to the ego's relations to the external world, the significance
 and structure of these relations could not easily be framed in drive
 theory.

 By 1917 Freud began to formulate a language to handle these
 matters. He described a process by which people form inner
 "objects." In Mourning and Melancholia, Freud argued that the
 sufferings of a melancholic arise from mutual reproaches between the
 self and an internalized father with whom the self identifies. In this

 paper Freud described the "taking in" of people (in psychoanalytic
 parlance, objects, and in this case the father) as part of a pathology,
 but he later came to the conclusion that this process is part of normal
 development. Indeed, this is the mechanism for the development of
 the superego ?the taking in, or introjection, of the ideal parent.

 According to Freud, we internalize objects because our instincts
 impel us to. In his work the concept of inner objects needed to coexist

 with the scaffolding of drive theory. But many psychoanalytic theo
 rists who followed him were less wedded to the drive model. They
 widened the scope of what Freud meant by "object relations" to the
 point where we now think of them as a distinctive school. Classical
 Freudian theory has many overlapping concepts to describe internal
 objects: memory traces, mental representations, introjects, identifica
 tions, and the idea of inner structures such as the superego. The
 object relations approach is more specific about what we contain. It
 describes a society of inner agents, or "microminds"?"unconscious
 suborganizations of the ego capable of generating meaning and
 experience, i.e. capable of thought, feeling and perception."13 Rela
 tionships with people, "brought inside" as inner entities, are the
 fundamental building blocks of mental life.
 Whereas Freud focused his attention on a single internalized

 object, the superego, object relations theorists described a richly
 populated inner world. Psychoanalyst Melanie Klein went so far as to
 characterize the people that the child brings inside (as well as the
 representations of parts of the body) as having psychological features,
 personalities. They can be seen as loving, hating, greedy, envious.
 Psychoanalyst W. R. D. Fairbairn even reframed the basic Freudian
 motor for personality development in object relations terms. For
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 Fairbairn, the human organism is not moved forward by Freud's
 pleasure principle, the desire to reduce drive tension, but rather by its
 need to form relationships. This constitutes a profound recasting of
 the psychoanalytic view of the self: people are not fundamentally
 pleasure-seeking, but object-seeking.

 The language that psychoanalysts need to talk about objects?how
 they are formed, how they interact?is very different from the
 language they need to talk about drives. In his "Project for a Scientific
 Psychology," Freud tried to use informationlike terms derived from
 the description of the reflex arc?the pain fiber carries information to
 the brain, the motor fiber carries information to the muscle?to talk
 about memory, instincts, and the flow of psychic energy. But infor
 mation metaphors break down completely when you use them to talk
 about inner objects. As in object-oriented programming in computer
 science, so it is in psychoanalysis. When one talks about objects, the
 natural metaphors have to do with making something, not carrying
 something.

 In classical psychoanalytic theory a few powerful inner struc
 tures?the superego, for example?act on memories, thoughts, and

 wishes. Object relations theory posits a dynamic system in which the
 distinction between processor and processed breaks down. The
 parallel with computation is clear: in both cases there is movement
 away from a situation in which a few inner structures act on a more
 passive stuff. Fairbairn replaced the Freudian dichotomies of ego and
 id, structure and energy with independent agencies within the mind
 that think, wish, and generate meaning in interaction with each other,

 much as emergent AI sets free autonomous agents within a computer
 system.

 The development of object relations theory has led psychoanalysts
 to ask if allegiance to Freud depends on accepting his drive model.
 Some have tried to preserve Freud's original drive language but to use
 it in a way that accommodates a new emphasis on object relations?
 for example, by assigning objects a role in relation to the discharge of
 drive: they may inhibit, discharge, facilitate, or serve as drive's target.
 But this reworking of language is less a solution than an attempt to
 gloss over the problem. It only works if inner objects do not have
 elaborate properties or if their creation is seen as an occasional event.

 But when objects become central to one's understanding of the
 psyche there is greater pressure to move away from drive theory.
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 Although drive theory has become increasingly sophisticated and
 open to the discussion of inner objects, the split between a drive
 approach and an object relations approach is a central division in
 psychoanalysis today.14 The division is parallel to the split between
 information processing and emergent AI. To use Thomas Kuhn's
 language, object relations theorists are saying that psychoanalysis can
 no longer proceed as "normal science,"15 growing by the assimilation
 of new data into the old theory. For them, object relations is a
 paradigm shift within psychoanalysis, much as the hypothesis of
 emergence?that intelligence grows out of the interaction of multiple
 agents (it is not what you know but who and where you are)?
 represents a paradigm shift in AI.

 Artificial intelligence theorists Marvin Minsky and Seymour Papert
 have built a computational model that evokes Fairbairn's object
 relations theory. Their model takes the mind as a society of interact
 ing agents. These agents are anthropomorphized, discussed in the
 terms one usually reserves for a whole person, but they do not have
 the complexity of people. Indeed, their model is based (as was the
 perceptron concept) on these agents being "dumb." Each knows one
 thing and one thing only. And, like the "voting agents" in the
 perceptron, their narrowness of vision leads them to very different
 opinions. The complex structure of behavior or emotion or thought
 emerges from the conflict of their opposing views.

 The most elaborate presentation of this theory, Minsky's book The
 Society of Mind, describes a vast array of agents: censor agents,
 recognition agents, and anger agents, to name only a few.16 Not
 surprisingly, Minsky recognizes Freud, who also wrote extensively
 about censor agents, as a colleague in "society" modeling. More
 surprisingly, Minsky sees censors as key actors, not only for modeling
 human thought but also for making intelligent machines.
 Minsky's idea of the censor is a dramatic example of the develop

 ing resonance between psychoanalysis and emergent AI. Freud's
 censor protects people from painful thoughts. The extension of this
 idea to cognitive functioning and to the "thoughts" in a machine does
 not depend on the assumption that the agents or the system as a
 whole feels pain. To function coherently, according to Minsky, an
 intelligent system must develop a certain inattention to its contradic
 tory agent voices. Minsky's formulation is that there cannot be
 intelligence, artificial or otherwise, without repression. Allen Newell
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 has talked about the necessity for censors in large and complex
 information-processing systems. But with clear, unambiguous rules
 stated in advance, an information-processing computer can also do

 without them. Censors may turn out to be practical, but they are not
 theoretical necessities in the information-processing paradigm. In the
 case of society theory, however, censors are intrinsic. Since there
 cannot be intelligence without contradiction and conflict, only the
 presence of censors allows intelligence to emerge.

 In this, society and Freudian theory join on an important point.
 Freud did not "discover" the unconscious. His contribution was the

 elaboration of a dynamic unconscious. What is unconscious is not
 simply forgotten, old, or irrelevant to current functioning. It is
 repressed. Powerful forces keep it down, and for good reason.
 Similarly, for Minsky, what is repressed in the computational ma
 chine and in what he has called the human "meat machine" needs to

 be repressed.
 Freud wrote about the effects of the repression of frightening,

 emotion-laden experience. Minsky extends Freud's ideas to the
 cognitive domain. "A thinking child's mind ... [needs no one] to tell
 it when some paradox engulfs and whirls it into a cyclone." Paradox,
 argues Minsky, is as dangerous as the primal scene. The child knows
 it is in the presence of a threat when it is asked to sketch the
 nonexistent boundaries between the oceans and the seas or to
 consider questions about the chicken and the egg, about what came
 before the start of time, and about where the edge of space is. Minsky
 adds: "And what of sentences like 'This statement is false,' which can
 throw the mind into a spin? I don't know anyone who recalls such
 incidents as frightening. But then, as Freud might say, this very fact
 could be a hint that the area is subject to censorship."17
 Minsky feels that the notions of "cognitive repression" and the

 "cognitive unconscious" will allow us to go beyond Freud. He uses
 Freud's discussion of jokes as an example. Freud's 1905 work on
 jokes explained that inner censors serve as barriers against forbidden
 thoughts. Most jokes are stories designed to fool the censors. It is a

 way to enjoy a prohibited wish. This is why so many jokes involve
 taboos concerning cruelty and sexuality. But it troubled Freud that
 this theory did not easily account for "nonsense jokes." One of
 Freud's hypotheses about the power of the nonsense joke was that
 senselessness reflects "a wish to return to carefree childhood, when
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 one was permitted to think without any compulsion to be logical."
 The idea of the cognitive unconscious supports this view: paradox
 and senselessness need to be repressed in the process of developing
 emergent intelligence, whether in machines or in people. Absurd
 results of reasoning are taboo, as threatening as sex. The censors
 work as hard to suppress them; they have no innocence.

 SUBVERSION AND NORMALIZATION

 Despite their differences, psychoanalysis and AI have always shared
 theoretical affinities?among these, as we have seen, the challenge to
 the idea of the autonomous, intentional actor, the need for self
 reference in theory building, and the need for objects such as censors
 to deal with internal conflict. But the affinity became something
 stronger when the cluster of issues about objects came to occupy
 center stage for both. This new orientation has made the old common

 elements more common: agent theories in AI highlight theoretical
 concerns that echo psychoanalytic ones. These include conflict,
 internal inconsistency, and perhaps most dramatically, the subver
 sion of the subject, the "decentered" self.

 Although both psychoanalysis and AI have always challenged the
 actor "I," both have theoretical variants that underscore this chal
 lenge more than others. The Freudian unconscious undermines the
 idea of a unified subject, but many of Freud's followers moved
 toward restoring a sense of there being a mental executive by
 concentrating their attention on the ego, that part of Freud's divided

 self that was turned outward toward reality. These "ego psycholo
 gists" began to talk about it as an agent capable of integrating the
 psyche. Anna Freud wrote of its powerful artillery, the mechanisms
 of defense. Heinz Hartmann argued that the ego had an aspect that
 was not tied up in the individual's neurosis, a "conflict-free" zone.

 Hartmann wrote about this unhampered aspect of the ego as though
 it were free to act and choose, independent of constraints. It almost
 seemed the seat for a reborn notion of the will, a locus of moral
 responsibility. Intellectual historian Russell Jacoby, writing of ego
 psychology's reborn, autonomous "I," went so far as to describe it as

 the "forgetting of psychoanalysis."18
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 In its subversive form, which splits the ego and undermines the

 subject, psychoanalysis is hard to take. It flies in the face of common
 sense understanding. It is a subversive science. Ego psychology
 normalizes it. It takes what is most subversive?the decentered self?

 and softens it. Ego psychology presents the version of the uncon
 scious most acceptable to the conscious.

 This pattern of a normalizing response is common to all subversive
 sciences of mind, including, of course, computational ones. We saw
 how the very idea of AI calls the self into question through the notion
 of program. But AI, too, has variants that soften its message about
 decentering. For example, if you reduce AI to the idea of expert
 systems, it is a small step to think of the expert system as a resource
 on which some not clearly specified central executive can call. When
 you begin with the idea that a computer might have such an executive
 and such resources, the idea that a human has them too follows
 directly. It makes an AI model of mind seem less threatening because
 what needs to be thought of as computational and rule-driven,
 alienated from intention, is not my "I," but my "expert" in a limited
 domain?for example, that part of me that can play chess. The self
 becomes the executive who oversees the expert. So there are versions
 of both AI and psychoanalysis that defuse the subversive decentering
 principle by restricting its role to explaining parts of the mind and
 thus avoid the risk of dissolving the whole.

 This strategy for neutralizing subversive theory is less viable in the
 case of agent and object theories, which are more aggressive in their
 denial of a unified self. Indeed, these theories define themselves
 through that denial. They put psychoanalysis and AI in a new and
 closer relationship with each other and with other intellectual move
 ments that "deconstruct" the humanistic subject.

 The strength and the weakness of object theories are the same in
 both psychoanalysis and AI: the strength is a conceptual framework
 that offers rich possibilities for models of interactive process; the

 weakness is that the framework may be too rich. The postulated
 objects may be too powerful: they explain the mind by postulating
 many minds within it. Object theory confronts both fields with the
 problem of infinite regress. There is something deeply unsatisfying in
 a theory that cannot go beyond assuming a homunculus within the
 human, for how then do we explain the homunculus within without
 postulating yet another one within it, and so on?
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 Psychoanalytic theorists struggle with this issue. Within the field
 much of the criticism of overpowerful inner objects has taken
 Melanie Klein's work as its target. For example, psychoanalyst Roy
 Sch?fer has argued that Klein and the English School of object
 relations have carried the reification implicit in Freudian metapsy
 chology to a "grotesque extreme": "A multitude of minds is intro
 duced into a single psychic apparatus_The person is being
 envisaged as a container of innumerable, independent microorgani
 zations that are also microdynamisms."19 Essentially, Klein's critics
 feel that her idea of "inner idealized figures protecting the ego against
 terrifying ones is tantamount to proposing that there are internal
 friendly and hostile 'demons' operating within the mind."20

 Kleinians reply that these internal figures are not demons but
 unconscious fantasies and thoughts. They are the ideas we have
 about what we contain.21 But this response hardly settles the
 question. Psychoanalyst Thomas Ogden puts the problem starkly:
 How can thoughts behave as agents?

 If internal objects are thoughts ... then they cannot themselves think,
 perceive, or feel, nor can they protect or attack the ego. Even to the present,

 Kleinian theorists have not been able to disentangle themselves from the
 Scylla of demonology and the Charybdis of mixing incompatible levels of
 abstraction (i.e. active agencies and thoughts).22

 In computer science, connectionism has not solved the problem of
 accounting for objects (what they are and how they come into being).
 Connectionism simply postulates the inner agents it requires, which is
 why AI scientist Terry Winograd has gone as far as to say that part
 of its appeal is that "it has a higher percentage of wishful thinking."23
 But the problem of infinite regress (accounting for the entities that are
 then to account for thought) has a very different cast in AI than in

 psychoanalysis because computer scientists are used to relying on a
 controlled form of circular reasoning?"recursion"?as a powerful
 technical tool.

 Most of us learned at school to define x to the power n as x
 multiplied by itself n times. Power is defined in terms of multiplica
 tion. Computer scientists prefer to define x to the power n as x to the
 power n-\ multiplied by x. Power is defined in terms of power.
 From such simple examples, which are shared with precomputational
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 mathematics, computer science has built a mathematical culture that
 relies heavily on defining things in terms of themselves.24

 For the psychoanalyst Ogden, the idea that a thought might think
 was unthinkable. Information-processing AI also divides thought
 from thinking. What is closest to a thought is information. What is
 closest to thinking is its processing. But emergent AI breaks down this
 distinction. It takes the idea of recursion and turns it into an
 overarching aesthetic. To put it more sharply, emergent AI provides
 a way out of the problem of infinite regress by redefining the problem
 as a source of power. Taking recursion as a scientific aesthetic gives
 AI a way out of a theoretical hole. It may offer a similar possiblity to
 psychoanalysis.

 What computational memory was to the birth of cognitive science
 in the 1950s, recursion could be to psychoanalytic studies of the
 1990s. One could imagine computer scientists trying to support
 Kleinian psychoanalysts by building a detailed computer model of
 Kleinian objects. But one could also imagine computationally sophis
 ticated psychoanalytic theorists finding, in the recursive idea that
 thoughts might think, a pleasing virtue rather than a devastating vice.
 One could imagine a psychoanalytic theorist seeing recursive ideas in
 his or her own work as a source of legitimation rather than a sign of
 weakness.

 There can be no simple prediction about how recursion will help
 psychoanalysts deal with the infinite regress of object theories, but it
 seems probable that the kind of influence to look for is psychoanal
 ysis becoming increasingly permeable to recursion as a sustaining
 myth. This would make the very thing that has been leveled as
 criticism become a way to support the theory. In the spirit of George

 Miller's account of computer memory and behaviorism, psychoana
 lysts might find it embarrassing to deny human thoughts the ability to
 think, when "computer thoughts" are presumed to do so.

 If the central issue in psychoanalytic theory today turned on the
 nature of the "death instinct," there would be little that is helpful in
 theories about a machine that was never born. But to the degree that
 theoretical concerns in psychoanalysis have to do with the structure
 and functioning of internal objects, it is moving toward AI?to the
 point where the path to a productive dialogue seems open.
 When the dialogue begins, the influence of AI on psychoanalysis

 will not necessarily be dependent on whether AI offers technical

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:05 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Artificial Intelligence and Psychoanalysis 265

 advice but on whether it can offer moral support to beleaguered
 psychoanalytic object theorists in their debates. Can it serve as
 sustaining myth? The influence of AI on psychology, psychoanalytic
 and other, is related not only to the solution of technical problems
 but also to the growth of psychological cultures.

 PSYCHOANALYTIC CULTURE AND COMPUTER CULTURE

 Psychological cultures do not exist only in the world of professionals.
 Artificial intelligence and psychoanalysis set the context in which
 professional psychologists and the amateur psychologists we all are
 think about thinking. From a sociological perspective on this wider
 psychological culture, object theories make ideas in AI and psycho
 analysis more "appropriable," easier for people to take up as ways of
 thinking about themselves, than theories about information or drive.
 In other words, object theories give psychoanalysis and AI a greater
 presence as philosophies in everyday life. Fairbairn's dense texts and
 the mathematical theory of connectionism might not be any more
 accessible to lay thinking than technical papers on information
 processing or on psychoanalytic drives. But when object-oriented
 theories are popularized and move out into the general culture, they
 have a special appeal. Ideas about objects and agents are more
 concrete than ideas about drives and flow-charts. They are seductive
 because it is easy to "play" with them. And they speak to a common
 problem. We all have the experience of not feeling completely "at
 one" with ourselves: inner voices offer conflicting advice, reassur
 ance, and chastisement. These experiences are easily and satisfyingly
 translated into a drama of inner objects.

 Freudian ideas about slips of the tongue became well known and
 gained wide acceptance for reasons that had little to do with positive
 assessments of their scientific validity. Freudian slips became part of
 the wider psychological culture because they made it easy to play
 with what might be hidden behind them. The slips are almost
 tangible ideas. They are manipulable. Slips are appealing as objects to
 think with. You can analyze your own slips and those of your friends.
 The theory of slips provided a way for psychoanalytic ideas to
 become part of everyday life. They helped to make psychoanalytic
 theory appropriable.
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 A Freudian perspective on the appropriability of psychoanalytic
 ideas might go further to suggest that the theory of significant slips is
 appealing because it puts us in immediate contact with the taboo. We
 are afraid of the sexual and aggressive sides of our natures, but we
 want to be in touch with them as well. Psychoanalytic ideas give us
 a way to play with what is forbidden. Similarly, we are afraid to think

 of ourselves as machines, yet we want to find a way to acknowledge
 this very real, if disturbing, part of our experience. Playing with AI,

 with the idea of the mind as computer, makes this possible. Now,
 playing with computational and psychoanalytic theories of objects
 and agents allows us to go even further. The idea of agents gives us
 a way to acknowledge the experience of fragmentation. The rational
 bias in our culture presents consistency and coherency as natural, but
 feelings of fragmentation abound. Indeed, it has been argued that
 they are a contemporary cultural malaise.25 Theories within psycho
 analysis and AI that speak simply and dramatically to the experience
 of a divided self have particular power.

 In the past the computer culture and the psychoanalytic culture
 have been separate. In the main, psychoanalytic ideas for thinking
 about the self were congenial to people who had little contact with
 computational ones. If and when members of the psychoanalytic
 culture met computational models of mind, they were most likely to
 be information-processing models that seemed out of step with a
 psychoanalytic outlook. These models described sequences, not as
 sociations, and their model of determination was narrow rather than

 wide. But increasingly, the computational ideas put forward and
 reported in the popular, as well as the academic, press are not about
 rules and information but about agents, connections, and societies of
 mind. These new metaphors have a biological aesthetic?they are the
 kind of things that could be going on in a brain. They suggest broad
 determination and dynamic repression. They describe a system in
 conflict. And, most important, they resonate with the psychoanalytic
 ideas that are currently abroad, ideas not about drives and their
 vicissitudes but about objects and their interactions.

 When the computer presence relegitimated the idea of memory, it
 was reinforcing an idea about psychology that predated computa
 tion. But ideas about recursion and agents are not precomputational.
 Dare one speculate what will pass between computation and our
 psychological culture if AI finds a voice finally divorced from what
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 was static in logic and if psychoanalysis finds a voice finally divorced
 from the issues of nineteenth-century drive theory?

 ENDNOTES

 aMany of the ideas in this paper emerged in a series of conversations with Seymour
 Papert, a collaborator in the development of my notion of the role of sustaining
 myths in the sociology of the sciences of mind.

 2Cited in Jonathan Miller, States of Mind (New York: Pantheon, 1983), 23.
 3Ibid.
 4Cited in Sherry Turkle, The Second Self: Computers and the Human Spirit (New

 York: Simon and Schuster, 1984), 256.
 5Cited in Jeremy Bernstein, Science Observed (New York: Basic Books, 1982),

 110-11.
 6Sigmund Freud, "Project for a Scientific Psychology," The Standard Edition of the

 Complete Psychological Works of Sigmund Freud, vol. 1, trans, and ed. James
 Strachey (London: Hogarth Press, 1960).

 7George Boole, The Laws of Thought, vol. 2 of His Collected Works (La Salle, 111.:
 Open Court Publishing Company, 1952).

 8A suggestive effort to construct psychoanalytic algorithms was made by French
 psychoanalyst Jacques Lacan in his theory of the math?mes. The power of this
 idea derives from its effort to legitimate systematicity and a closer relationship

 with science in psychoanalytic studies. See Sherry Turkle, Psychoanalytic Politics:
 Freud's French Revolution (New York: Basic Books, 1978.)

 9For an example of an information-processing perspective on the Freudian, see
 Donald Norman, "Post-Freudian Slips," Psychology Today, April 1980:41-44ff;
 Norman, Slips of the Mind and an Outline of a Theory of Action (San Diego:
 Center for riuman Information Processing, University of California, November
 1979); and Norman, "Categorization of Action Slips," Psychological Review 88
 (January 1981):1-15.

 10Lovelace put it like this: "The analytical Engine has no pretensions whatever to
 originate anything. It can do whatever we know how to order it to perform."

 11This phrase is borrowed from Douglas R. Hofstadter, who discusses computation
 and the Boolean aesthetic in "Waking Up From the Boolean Dream, or Subcogni
 tion as Computation," in Metamagical Themas: Questing for the Essence of

 Mind and Pattern (New York: Basic Books, 1985).
 12Alan Kay, "Software's Second Act," Science 85 (November 1985):122.
 13Thomas H. Ogden, "The Concept of Internal Object Relations," The International

 Journal of Psycho-Analysis 64 (1983):227.
 14See Jay R. Greenberg and Stephen A. Mitchell, Object Relations in Psychoanalytic

 Theory (Cambridge: Harvard University Press, 1983).
 15Thomas Kuhn, The Structure of Scientific Revolutions, 2d ed. (Chicago: University

 of Chicago Press, 1970).
 16Marvin Minsky, The Society of Mind (New York: Simon and Schuster, 1987).
 17Ibid., 183. Fieldwork with children and computers is rich in examples of the kind

 of fright that Minsky expects. For example, an incident where it was evoked by
 a first contact with recursion is reported in Sherry Turkle, The Second Self.
 Interviews with adults on early experiences also reveal many such memories?fear
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 of prisms, of mirrors reflecting mirrors, fear of questions such as "How far away
 are the stars?"

 18Russell Jacoby, Social Amnesia: A Critique of Contemporary Psychology from
 Adler to Laing (Boston: Beacon Press, 1975).

 19Roy Sch?fer, A New Language for Psychoanalysis (New Haven: Yale University
 Press, 1976), 3; and Sch?fer, Aspects of Internalization (New York: International
 University Press, 1968), 62.

 20Ogden, "Internal Object Relations," 229.
 21Hannah Segal, Introduction to the Work of Melanie Klein (London: Hogarth

 Press, 1978).
 22Ogden, "Internal Object Relations," 230.
 "Science 86 (May 1986):27.
 24The computational aesthetic of recursive thought has been expressed in a poetic

 and accessible form by Douglas R. Hofstadter, who presents recursive phenom
 ena as a source of power in Bach's music and Escher's art as well as in G?dePs
 mathematics. See G?del, Escher, Bach: An Eternal Golden Braid (New York:
 Basic Books, 1978).

 25See, for example, Christopher Lasch, The Culture of Narcissism (New York:
 Norton, 1979).
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 Hilary Putnam

 Much Ado About Not Very Much

 THE QUESTION I WANT TO CONTEMPLATE is this: Has
 artificial intelligence taught us anything of importance about
 the mind? I am inclined to think that the answer is no. I am

 also inclined to wonder, What is all the fuss about? Of course, AI
 may someday teach us something important about how we think, but
 why are we so exercised now? Perhaps it is this prospect that
 exercises us, but why do we think now is the time to decide what
 might in principle be possible? Or am I wrong: Is the "in principle"
 question really the important one to discuss now? And if it is, have
 the defenders of AI had anything important to tell us about it?

 The computer model of the mind is now associated with AI, but it
 is not unique to AI (Noam Chomsky is not, as far as I know,
 optimistic about AI, but he shares the computer model with AI1), and
 the computer model was not invented by AI. If it was invented by
 anyone, it was invented by Alan Turing. Computer science is not the
 same thing as AI.

 In fact, the idea of the mind as a sort of reckoning machine goes
 back to the seventeenth century.2 In the early twentieth century two
 giants in logic?Kurt G?del and Jacques Herbrand?first proposed
 the modern conception of computability (under the name "general
 recursiveness"3). Turing reformulated the G?del-Herbrand notion of
 computability in terms that connect directly with digital computers
 (which were not yet invented, however!) and also suggested his

 Hilary Putnam is Walter Beverly Pearson Professor of Modern Mathematics and Mathematical
 Logic in the department of philosophy at Harvard University.
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 abstract computers as a model for a mind.4 Even if Turing's
 suggestion should prove wrong?even if it should prove in some way

 more empty than it seems?it would still have been a great contri
 bution to thinking in the way past models of the mind have proved
 great contributions to thinking?great, even if not finally successful,
 attempts to understand understanding itself. But AI is not recursion

 theory, is not the theory of Turing machines, is not the philosophy of
 Alan Turing, but is something much more specific.

 To get to AI, we first have to get to computers. The modern digital
 computer is a realization of the idea of a universal Turing machine in
 a particularly effective form?effective in terms of size, cost, speed,
 and so on. The construction and improvement of computers in terms
 of both software and hardware is a fact of life. But not everyone
 concerned with the design of either software or hardware is an AI
 researcher. However, some of what AI gets credit for?for example,
 the enormous improvement in the capacities of chess-playing com
 puters?is as much or more due to discoveries of the inventors of
 hardware as it is to anything that might be called a discovery in AI.

 Computer design is a branch of engineering (even when what is
 designed is software and not hardware), and AI is a subbranch of this
 branch of engineering. If this is worth saying, it is because AI has
 become notorious for making exaggerated claims?claims of being a
 fundamental discipline and even of being "epistemology." The aim of
 this branch of engineering is to develop software that will enable
 computers to simulate or duplicate the achievements of what we
 intuitively recognize as "intelligence."

 I take it that this is a noncontroversial characterization of AI. The

 next statement I expect to be more controversial: AI has so far spun
 off a good deal that is of real interest to computer science in general,
 but nothing that sheds any real light on the mind (beyond whatever
 light may already have been shed by Turing's discussions). I don't
 propose to spend my pages defending this last claim (Joseph Weizen
 baum has already done a good job along these lines5). But I will give
 a couple of illustrations of what I mean.
 Many years ago I was at a symposium with one of the most

 "famous names" in AI. The famous name was being duly "modest"
 about the achievements of AI. He said offhandedly, "We haven't
 really achieved so much, but I will say that we now have machines
 that understand children's stories." I remarked, "I know the program
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 you refer to" (it was one of the earliest language-recognition pro
 grams). "What you didn't mention is that the program has to be
 revised for each new children's story." (That is, in case the point
 hasn't been grasped, the "program" was a program for answering
 questions about a specific children's story, not a program for
 understanding children's stories in general.) The famous name
 dropped the whole issue in a hurry.

 Currently the most touted achievement of AI is "expert systems."
 But these systems (which are, at bottom, just high-speed data-base
 searchers) are not models for any interesting mental capacities.

 Of course, the possibility remains that some idea dreamed up in an
 AI lab may in the future revolutionize our thinking about some aspect
 of mentation. (Parallel distributed processing is currently exciting
 interest as a possible model for at least some mental processes, for
 example. This is not surprising, however, since the model was
 suggested in the first place by the work of the neurologist D.O.

 Hebb.6) My point is not to predict the future but just to explain why
 I am inclined to ask, What's all the fuss about now? Why a whole
 issue of Dcedalus? Why don't we wait until AI achieves something
 and then have an issue?

 "IN PRINCIPLE"/"IN PRACTICE"

 Perhaps the issue that interests people is whether we can model the
 mind or brain as a digital computer?in principle as opposed to right
 now?and perhaps AI gets involved because people do not sharply
 distinguish the in-principle question from the empirical question, Will
 AI succeed in so modeling the mind or brain? It may be useful to
 begin by seeing just how different the two questions are.

 In one way the difference seems obvious: we are tempted to say
 that it might be possible in principle to model the mind or brain as a
 digital computer with appropriate software, but it might be too
 difficult in practice to write down the correa software. Or it just
 looks as if this difference is obvious. I want to say, Tread lightly;
 things are not so simple: in one sense, any physical system can be
 modeled as a computer.7 The claim that the brain can be modeled as
 a computer is thus, in one way, trivial. Perhaps there is another more
 meaningful sense in which we can ask, Can the brain be modeled as
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 a computer? At this point, however, all we can say is that the sense of
 the question has not been made clear.

 But the feeling seems to be that not only is it possible in principle
 to model the mind or brain computationally, but there is a very good
 chance that we will be able to do it in practice, and philosophers (and
 defectors from AI like Weizenbaum) are seen as reactionaries who
 might talk us out of even trying something that promises to be a great
 intellectual and practical success. If this is how one thinks, then the
 gap between the two questions (and the vagueness of the in-principle
 question) may not seem very important in practice. Indeed, it may be
 of strategic benefit to confuse them.

 The reasons for expecting us to succeed in practice are not clear to
 me, however.8 If we are digital computers programmed by evolution,
 then it is important to know how to think about evolution. The great
 evolutionary biologist Fran?ois Jacob once compared evolution to a
 tinker.9 Evolution should not, Jacob wrote, be thought of as a
 designer who sits down and produces a lovely blueprint and then
 constructs organisms according to the blueprint. Evolution should
 rather be thought of as a tinker with a shop full of spare parts,
 interesting "junk," etc. Every so often the tinker gets an idea: "I

 wonder if it would work if I tried using this bicycle wheel in that
 doohickey?" Many of the tinker's bright ideas fail, but every so often
 one works. The result is organisms with many arbitrary features as
 well as serendipitous ones.

 Now, imagine that the tinker becomes a programmer. Still think
 ing like a tinker, he develops "natural intelligence," not by writing a

 Grand Program and then building a device to realize it but by
 introducing one device or programming idea after another. (Religious
 people often reject such a view, for they feel that if it is right, then our
 nature and history is all "blind chance," but I have never been able to
 sympathize with this objection. Providence may work through what
 Kant called "the cunning of Nature.") The net result could be that
 natural intelligence is not the expression of some one program but the
 expression of billions of bits of "tinkering."

 Something like this was, indeed, at one time discussed within the
 AI community itself. This community has wobbled back and forth
 between looking for a Master Program (ten or fifteen years ago there
 was a search for something called inductive logic) and accepting the
 notion that "artificial intelligence is one damned thing after another."
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 My point is that if AI is "one damned thing after another," the
 number of "damned things" the tinker may have thought of could be
 astronomical.10 The upshot is pessimistic indeed: if there is no

 Master Program, then we may never get very far in terms of
 simulating human intelligence. (Of course, some areas that are
 relatively closed?for example, theorem proving in pure mathemat
 ics?might be amenable. Oddly enough, theorem proving has always
 been a rather underfunded part of AI research.)

 A MASTER PROGRAM?

 But why shouldn't there be a Master Program? In the case of
 deductive logic, we have discovered a set of rules that satisfactorily
 formalize valid inference. In the case of inductive logic, we have
 found no such rules, and it is worthwhile pausing to ask why.

 In the first place, it is not clear just how large the scope of inductive
 logic is supposed to be. Some writers consider the "hypothetico
 deductive method"?that is, the inference from the success of a
 theory's predictions to the acceptability of the theory?the most
 important part of inductive logic, while others regard it as already
 belonging to a different subject. Of course, if by "induction" we mean
 any method of valid inference that is not deductive, then the scope of
 the topic "inductive logic" will be enormous.

 If the success of a large number (say, a thousand or ten thousand)
 of predictions that were not themselves consequences of auxiliary
 hypotheses alone (and that were unlikely in relation to what back
 ground knowledge gives us, Karl Popper would add11) always
 confirmed a theory, then at least the hypothetico-deductive inference
 would be easy to formalize. But problems arise at once. Some theories
 are accepted when the number of confirmed predictions is still very
 small. This was the case with the general theory of relativity, for
 example. To take care of such cases, we postulate that it is not only
 the number of confirmed predictions that matters but also the
 elegance or simplicity of the theory in question. Can such quasi
 aesthetic notions as "elegance" and "simplicity" really be formalized?
 Formal measures have indeed been proposed, but it cannot be said
 that they shed any light on real-life scientific inference. Moreover, a
 confirmed theory sometimes fits badly with background knowledge;
 in some cases we conclude that the theory cannot be true, while in
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 others we conclude that the background knowledge should be
 modified. Again, apart from imprecise talk about simplicity, it is hard
 to say what determines whether it is better in a particular case to
 preserve background knowledge or to modify it. And even a theory
 that leads to a vast number of successful predictions may not be
 accepted if someone points out that a much simpler theory would
 lead to those predictions as well.

 In view of these difficulties, some students of inductive logic would
 confine the scope of the subject to simpler inferences, such as the
 inference from the statistics for a sample drawn from a population to
 the statistics for the entire population. When the population consists
 of objects that exist at different times, including future times, the
 present sample is never going to be a random selection from the
 whole population, however, so the key case is this: I have a sample
 that is a random selection from the members of a population who
 exist now (or worse, from the ones who exist here, on Earth, in the
 United States, in the particular place where I have been able to gather
 samples, or wherever). What can I conclude about the properties of
 future members of that population (and about the properties of
 members in other places)?

 If the sample is a sample of uranium atoms, and the future
 members are in the near as opposed to the cosmological future, then
 we are prepared to believe that the future members will resemble
 present members, on the average. If the sample is a sample of people,
 and the future members of the population are not in the very near
 future, then we are less likely to make this assumption, at least if
 culturally variable traits are in question. Here we are guided by
 background knowledge, of course. This sort of example has sug
 gested to some inquirers perhaps all there is to induction is the skillful
 use of background knowledge?we just "bootstrap" our way from
 what we know to additional knowledge. But then the cases in which
 we don't have much background knowledge, as well as the excep
 tional cases in which what we have to do is precisely question
 background knowledge, assume great importance; and here, as just
 remarked, no one has much to say beyond vague talk about
 simplicity.

 The problem of induction is not by any means the only problem
 confronting anyone who seriously intends to simulate human intel
 ligence. Induction?indeed, all cognition?presupposes the ability to
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 recognize similarities among things; but similarities are by no means
 just constancies of the physical stimulus or patterns in the input to the
 sense organs. What makes knives similar, for example, is not that
 they all look alike (they don't), but that they are all manufactured to
 cut or stab (I neglect such cases as ceremonial knives here, of course).
 Thus, any system that can recognize knives as relevantly similar must
 be able to attribute purposes to agents. Humans have no difficulty in
 doing this. But it is not clear that we do this by unaided induction; we
 may well have a "hard-wired-in" ability to put ourselves in the shoes
 of other people that enables us to attribute to them any purposes we
 are capable of attributing to ourselves?an ability that Evolution the
 Tinker found it convenient to endow us with and one that helps us to
 know which of the infinitely many possible inductions we might
 consider is likely to be successful. Again, to recognize that a Chihua
 hua and a Great Dane are similar in the sense of belonging to the
 same species requires the ability to realize that, appearances not

 withstanding,12 Chihuahuas can impregnate Great Danes and pro
 duce fertile offspring. Thinking in terms of potential for mating and
 for reproduction is natural for us, but it need not be natural for an
 artificial intelligence?unless we deliberately simulate this human
 propensity when we construct the artificial intelligence. Such exam
 ples can be multiplied indefinitely.

 Similarities expressed by adjectives and verbs rather than by nouns
 can be even more complex. A nonhuman intelligence might know
 what "white" is on a color chart, for example, without being able to
 see why pinkish gray humans are called white, and it might know

 what it is to open a door without being able to understand why we
 speak of opening a border or opening trade. There are many words
 (as Ludwig Wittgenstein pointed out13) that apply to things that have
 only a "family resemblance" to one another; there need not be one
 thing all x's have in common. For example, we speak of the
 Canaanite tribal chiefs of the Old Testament as kings although their
 kingdoms were probably little more than villages, and we speak of
 George VI as a king, though he did not literally rule England; we even
 say that in some cases in history, kingship has not been hereditary.
 Similarly (in Wittgenstein's example), there is no property all games
 have in common that distinguishes them from all the activities that
 are not games.
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 The notional task of artificial intelligence is to simulate intelligence,

 not to duplicate it. So perhaps one might finesse the problems just
 mentioned by constructing a system that reasoned in an ideal
 language14?one in which words did not change their extensions in a
 context-dependent way (a sheet of typing paper might be "white!"
 and a human being might be "white2" in such a language, where
 "white!" is color-chart white and "white2" is pinkish gray). Perhaps
 all family-resemblance words would have to be barred from such a
 language. (How much of a vocabulary would be left?) But my list of
 difficulties is not yet finished.

 Because the project of symbolic inductive logic appeared to run out
 of steam after Rudolf Carnap, the thinking among philosophers of
 science has, as I reported, run in the direction of talking about
 bootstrapping methods?methods that attribute a great deal to
 background knowledge. It is instructive to see why philosophers have
 taken this approach and also to realize how unsatisfactory it is if our
 aim is to simulate intelligence rather than to describe it.

 One huge problem might be described as the existence of con
 flicting inductions. Here's an example from Nelson Goodman: as far
 as we know, no one who has ever entered Emerson Hall at Harvard
 University has been able to speak Inuit (Eskimo). This statement
 suggests the induction that if any person enters Emerson Hall, then he
 or she does not speak Inuit.15 Let Ukuk be an Eskimo in Alaska who
 speaks Inuit. Shall I predict that if Ukuk enters Emerson Hall, Ukuk
 will no longer be able to speak Inuit? Obviously not, but what is
 wrong with this induction?

 Goodman answers that what is wrong with the inference is that it
 conflicts with the "better entrenched," inductively supported law that

 people do not lose their ability to speak a language upon entering a
 new place. But how am I supposed to know that this law does have
 more confirming instances than the regularity that no one who enters
 Emerson Hall speaks Inuit? Through background knowledge again?

 As a matter of fact, I don't believe that as a child I had any idea
 how often either of the conflicting regularities in the example
 (conflicting in that one of them must fail if Ukuk enters Emerson

 Hall) had been confirmed, but I would still have known enough not
 to make the silly induction that Ukuk would stop being able to speak
 Inuit if he entered a building (or a country) where no one had spoken
 Inuit. Again, it is not clear that the knowledge that one doesn't lose
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 a language just like that is really the product of induction; perhaps
 this is something we have an innate propensity to believe. The
 question that won't go away is how much what we call intelligence
 presupposes the rest of human nature.

 Moreover, if what matters really is "entrenchment" (that is, the
 number and variety of confirming instances), and if the information
 that the universal statement "One doesn't lose one's ability to speak
 a language upon entering a new place" is better entrenched than the
 universal statement "No one who enters Emerson Hall speaks Inuit"
 is part of my background knowledge, it isn't clear how that infor

 mation got there. Perhaps the information is implicit in the way
 people speak about linguistic abilities; but then one is faced with the
 question of how one decodes the implicit information conveyed by
 the utterances one hears.

 The problem of conflicting inductions is ubiquitous even if one
 restricts attention to the simplest inductive inferences. If the solution
 is really just to give the system more background knowledge, then

 what are the implications for artificial intelligence?
 It is not easy to say, because artificial intelligence as we know it

 doesn't really try to simulate intelligence at all. Simulating intelligence
 is only its notional activity; its real activity is writing clever programs
 for a variety of tasks. But if artificial intelligence existed as a real,
 rather than notional, research activity, there would be two alternative
 strategies its practitioners could follow when faced with the problem
 of background knowledge:

 1. They could accept the view of the philosophers of science I have
 described and simply try to program into a machine all the informa
 tion a sophisticated human inductive judge has (including implicit
 information). At the least, this would require generations of research
 ers to formalize the information (probably it could not be done at all,
 because of the sheer quantity of information involved), and it is not
 clear that the result would be more than a gigantic expert system. No
 one would find this very exciting, and such an "intelligence" would in
 all likelihood be dreadfully unimaginative, unable to realize that in
 many cases it is precisely background knowledge that needs to be
 given up.

 2. AI's practitioners could undertake the more exciting and ambi
 tious task of constructing a device that could learn the background
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 278 Hilary Putnam
 knowledge by interacting with human beings, as a child learns a
 language and all the cultural information, explicit and implicit, that
 comes with learning a language by growing up in a human community.

 THE NATURAL-LANGUAGE PROBLEM

 The second alternative is certainly the project that deserves the name
 "artificial intelligence." But consider the problems: to figure out what
 is the information implicit in the things people say, the machine must
 simulate understanding a human language. Thus, the idea of sticking
 to an artificial ideal language and ignoring the complexities of natural
 language has to be abandoned if this strategy is adopted?abandoned
 because the cost is too high. Too much of the information the machine
 would need is retrievable only via natural-language processing.

 But the natural-language problem presents many of the same
 difficulties all over again. Chomsky and his school believe that a
 "template" for natural language, including the "semantic," or con
 ceptual, aspects, is innate?hard-wired-in by Evolution the Tinker.16
 Although this view is taken to extremes by Jerry Fodor, who holds
 that there is an innate language of thought with primitives adequate
 for the expression of all concepts that humans are able to learn to
 express in a natural language,17 Chomsky himself has hesitated to go
 this far. What Chomsky seems committed to is the existence of a
 large number of innate conceptual abilities that give us a propensity
 to form certain concepts and not others. (In conversation, he has
 suggested that the difference between postulating innate concepts and
 postulating innate abilities is not important if the postulated abilities
 are sufficiently structured.) At the opposite extreme there is the view
 of classical behaviorism, which explains language learning as a
 special case of the application of general rules for acquiring
 "habits"?that is, as just one more bundle of inductions. (An
 in-between position is, of course, possible: Why should language
 learning not depend partly on special-purpose heuristics and partly
 on general learning strategies, both developed by evolution?)

 Consider the view that language learning is not really learning but
 rather the maturation of an innate ability in a particular environment
 (somewhat like the acquisition of a birdcall by the young of a species
 of bird that has to hear the call from adult birds of the species to
 acquire it but that also has an innate propensity to acquire that sort
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 of call). In its extreme form, this view leads to pessimism about the
 likelihood that the human use of natural language can be successfully
 simulated on a computer. This is why Chomsky is pessimistic about
 projects for natural-language computer processing, although he
 shares the computer model of the mind, or at least of the "language
 organ," with AI researchers. Notice that this pessimistic view about
 language learning parallels the pessimistic view that induction is not
 a single ability but rather a manifestation of a complex human nature
 whose computer simulation would require a vast system of subrou
 tines?so vast that generations of researchers would be required to
 formalize even a small part of the system.

 Similarly, the optimistic view that there is an algorithm of man
 ageable size for inductive logic is paralleled by the optimistic view of
 language learning. This is the idea that there is a more or less
 topic-neutral heuristic for learning and that this heuristic suffices
 (without the aid of an unmanageably large stock of hard-wired-in
 background knowledge or topic-specific conceptual abilities) for
 learning one's natural language as well as for making inductive
 inferences. Perhaps the optimistic view is right, but I do not see
 anyone on the scene, in either artificial intelligence or inductive logic,
 who has any interesting ideas about how the topic-neutral learning
 strategy works. When someone does appear with such an idea, that

 will be the time for Dcedalus to publish an issue on AI.

 Endnotes

 aNoam Chomsky, Modular Approaches to the Study of the Mind (San Diego, Calif.:
 San Diego State University Press, 1983).

 2This is well described in Justin Webb's Mechanism, Mentalism, and Metamathe
 matics (Dordrecht: Reidel, 1980).

 3The G?del-Herbrand conception of recursiveness was further developed by Ste
 phen Kleene, Alonzo Church, Emil Post, and Alan Turing. The identification of
 recursiveness with effective computability was suggested (albeit obliquely) by
 Kurt G?del in "On Formally Undecidable Propositions of Principia Mathematica
 and Related Systems I." The German original of this was published in the

 Monatshefte f?r Mathematik und Physik 38 (1931):173-98; the English trans
 lation is in The Undecidable: Basic Papers on Undecidable Propositions, Unde
 cidable Problems, and Computable Functions, ed. Martin Davis (Hewlett, N.Y.:
 Raven Press, 1965), 5-38. The idea was then explicitly put forward by Church in
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 his classic paper on the undecidability of arithmetic, "A Note on the Entschei
 dungsproblem," Journal of Symbolic Logic 1 (1) (March 1936):40-41; correc
 tion, ibid. (3) (September 1936): 101-102; reprinted in Davis, The Undecidable,
 110-15.

 4Alan Turing and Michael Woodger, The Automatic Computing Machine: Papers
 by Alan Turing and Michael Woodger (Cambridge: MIT Press, 1985).

 5Joseph Weizenbaum, Computer Power and Human Reason: Prom Judgment to
 Calculation (San Francisco: Freeman, 1976).

 6See David E. Rummelhart and James L. McClelland and the PDP Research Group,
 eds., Parallel Distributed Processing: Explorations in the Microstructure of
 Cognition, vols. 1 and 2 (Cambridge: MIT Press, 1986); and D. O. Hebb, Essay
 on Mind (Hillsdale, N.J.: Lawrence Erlbaum Associates, 1980).

 7More precisely, if we are interested in the behavior of a physical system that is finite
 in space and time and we wish to predict that behavior only up to some specified
 level of accuracy, then (assuming that the laws of motion are themselves
 continuous functions) it is trivial to show that a step function will give the
 prediction to the specified level of accuracy. If the possible values of the boundary
 parameters are restricted to a finite range, then a finite set of such step functions
 will give the behavior of the system under all possible conditions in the specified
 range to within the desired accuracy. But if that is the case, the behavior of the
 system is described by a recursive function and hence the system can be simulated
 by an automaton.

 8In his reply to this paper (in this very issue), Daniel Dennett accuses me of offering
 an "a priori" argument that success is impossible. I have not changed the text of
 the paper at all in the light of his reply, and I invite the reader to observe that no
 such "a priori proof of impossibility" claim is advanced by me here or elsewhere!
 Although Dennett says that he is going to explain what AI has taught us about the
 mind, what he in fact does is to repeat the insults that AI researchers hurl at
 philosophers ("We are experimenters, and you are armchair thinkers!"). On other
 occasions, when Dennett is not talking like a spokesman for AI but doing what he
 does best, which is philosophy, he is, of course, well aware that I and, for that
 matter, other philosophers he respects are by no means engaged in a priori
 reasoning, and that the fact that we do not perform "experiments" does not mean
 that we are not engaged?as he is?in thinking about the real world in the light
 of the best knowledge available.

 9Fran?ois Jacob, "Evolution and Tinkering," Science 196 (1977):1161-66.
 10That the number of times our design has been modified by evolution may be

 astronomical does not mean that the successful modifications are not (partially)
 hierarchically organized, nor does it mean that there are not a great many
 principles that explain the functioning together of the various components. To
 describe the alternative to the success of AI as "the mind as chaos," as Dennett
 does, is nonsense. If it turns out that the mind is chaos when modeled as a
 computer, that will only show that the computer formalism is not a perspicuous
 formalism for describing the brain, not that the brain is chaos.

 iaKarl Popper, The Logic of Scientific Discovery (London: Hutchinson, 1959).
 12Note that if we had only appearances to go by, it would be quite natural to regard

 Great Danes and Chihuahuas as animals of different species!
 13See Ludwig Wittgenstein, Philosophical Investigations (Oxford: Basil Blackwell,

 1958), sec. 66-71.
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 14Note that this idea was one of the foundation stones of logical positivism.

 Although the positivista goal was to reconstruct scientific reasoning rather than
 to mechanize it, they ran into every one of the problems mentioned here; in many
 ways the history of artificial intelligence is a repeat of the history of logical
 positivism (the second time perhaps as farce).

 15Nelson Goodman, Fact, Fiction, and Forecast, 4th ed. (Cambridge: Harvard
 University Press, 1983).

 16Chomsky speaks of "a subsystem [for language] which has a specific integrated
 character and which is in effect the genetic program for a specific organ" in the
 discussion with Seymour Papert, Jean Piaget, et al. reprinted in Language and
 Learning, ed. Massimo PiateUi (Cambridge: Harvard University Press, 1980). See
 also Noam Chomsky, Language and Problems of Knowledge, The Managua
 Lectures (Cambridge: MIT Press, 1987).

 17Jerry A. Fodor, The Language of Thought (New York: Thomas Y. Crowell, 1975).
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 Daniel C. Dennett

 When Philosophers Encounter Artificial
 Intelligence

 How is it possible for a physical thing?a person, an
 animal, a robot?to extract knowledge of the world from
 perception and then exploit that knowledge in the guidance

 of successful action? That is a question with which philosophers have
 grappled for generations, but it could also be taken to be one of the
 defining questions of artificial intelligence. AI is, in large measure,
 philosophy. It is often directly concerned with instantly recognizable
 philosophical questions: What is mind? What is meaning? What is
 reasoning and rationality? What are the necessary conditions for the
 recognition of objects in perception? How are decisions made and
 justified?

 Some philosophers have appreciated this aspect of AI, and a few
 have even cheerfully switched fields to pursue their philosophical
 quarries through thickets of LISP.* In general, however, philosophers
 have not welcomed this new style of philosophy with much enthusi
 asm. One might suppose that this is because they have seen through
 it. Some philosophers have indeed concluded, after cursory inspec
 tion of the field, that in spite of the breathtaking pretension of some
 of its publicists, artificial intelligence has nothing new to offer
 philosophers beyond the spectacle of ancient, well-drubbed errors
 replayed in a glitzy new medium. And other philosophers are so sure

 Daniel C. Dennett is distinguished arts and sciences professor and professor of philosophy at
 Tufts University. He is director of the Center for Cognitive Studies and codirector of the
 Curricular Software Studio, both at Tufts.

 *The programming language LISP, created by John McCarthy, is the lingua franca of AI.
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 this must be so that they haven't bothered conducting the cursory
 inspection. They are sure the field is dismissable on "general
 principles."

 Philosophers have been dreaming about AI for centuries. Hobbes
 and Leibniz, in very different ways, tried to explore the implications
 of the idea of breaking down the mind into small, ultimately
 mechanical, operations. Descartes even anticipated the Turing test
 (Alan Turing's much-discussed proposal of an audition of sorts for
 computers, in which the computer's task is to convince the judges
 that they are conversing with a human being1) and did not hesitate to
 issue a confident prediction of its inevitable result:

 It is indeed conceivable that a machine could be made so that it would utter

 words, and even words appropriate to the presence of physical acts or
 objects which cause some change in its organs; as, for example, if it was
 touched in some spot that it would ask what you wanted to say to it; if in

 another, that it would cry that it was hurt, and so on for similar things. But
 it could never modify its phrases to reply to the sense of whatever was said
 in its presence, as even the most stupid men can do.2

 The appreciation Descartes had for the powers of mechanism was
 colored by his acquaintance with the marvelous clockwork automata
 of his day. He could see very clearly and distinctly, no doubt, the
 limitations of that technology. Not even a thousand tiny gears?not
 even ten thousand?would permit an automaton to respond grace
 fully and rationally! Perhaps Hobbes or Leibniz would have been less
 confident of this point, but surely none of them would have bothered
 wondering about the a priori limits on a million tiny gears spinning
 millions of times a second. That was simply not a thinkable thought
 for them. It was unthinkable then, not in the familiar philosophical
 sense of appearing self-contradictory ("repugnant to reason") or
 entirely outside their conceptual scheme (like the concept of a
 neutrino), but in the more workaday, yet equally limiting, sense of
 being an idea they would have had no way to take seriously. When
 philosophers set out to scout large conceptual domains, they are as
 inhibited in the paths they take by their sense of silliness as by their
 insight into logical necessity. And there is something about AI that

 many philosophers find off-putting?if not repugnant to reason, then
 repugnant to their aesthetic sense.

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:39:01 UTC�������������� 

All use subject to https://about.jstor.org/terms



 When Philosophers Encounter Artificial Intelligence 285

 This clash of vision was memorably displayed in a historic debate
 at Tufts University in March of 1978, staged, appropriately, by the
 Society for Philosophy and Psychology. Nominally a panel discussion
 on the foundations and prospects of artificial intelligence, it turned
 into a tag-team rhetorical wrestling match between four heavyweight
 ideologues: Noam Chomsky and Jerry Fodor attacking AI, and

 Roger Schank and Terry Winograd defending it. Schank was work
 ing at the time on programs for natural-language comprehension,
 and the critics focused on his scheme for representing (in a computer)

 the higgledy-piggledy collection of trivia we all know and somehow
 rely on when deciphering ordinary speech acts, allusive and truncated
 as they are. Chomsky and Fodor heaped scorn on this enterprise, but
 the grounds of their attack gradually shifted in the course of the

 match. It began as a straightforward, "first principles" condemnation
 of conceptual error?Schank was on one fool's errand or another?
 but it ended with a striking concession from Chomsky: it just might
 turn out, as Schank thought, that the human capacity to comprehend
 conversation (and more generally, to think) was to be explained in
 terms of the interaction of hundreds or thousands of jerry-built
 gizmos?pseudorepresentations, one might call them?but that
 would be a shame, for then psychology would prove in the end not
 to be "interesting." There were only two interesting possibilities, in
 Chomsky's mind: psychology could turn out to be "like physics"?its
 regularities explainable as the consequences of a few deep, elegant,
 inexorable laws?or psychology could turn out to be utterly lacking
 in laws?in which case the only way to study or expound psychology

 would be the novelist's way (and he much preferred Jane Austen to
 Roger Schank, if that were the enterprise).

 A vigorous debate ensued among the panelists and audience,
 capped by an observation from Chomsky's colleague at the Massa
 chusetts Institute of Technology, Marvin Minsky, one of the found
 ing fathers of AI and founder of MIT's Artificial Intelligence
 Laboratory: "I think only a humanities professor at MIT could be so
 oblivious to the third interesting possibility: psychology could turn
 out to be like engineering."

 Minsky had put his finger on it. There is something about the
 prospect of an engineering approach to the mind that is deeply
 repugnant to a certain sort of humanist, and it has little or nothing to
 do with a distaste for materialism or science. Witness Chomsky's
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 physics worship, an attitude he shares with many philosophers. The
 days of Berkeleyan idealism and Cartesian dualism are over (if one
 can judge from the current materialistic consensus among philoso
 phers and scientists), but in their place there is a widespread
 acceptance of what we might call Chomsky's fork: there are only two
 appealing ("interesting") alternatives.

 On the one hand, there is the dignity and purity of the Crystalline
 Mind. Recall Aristotle's prejudice against extending earthly physics
 to the heavens, which ought, he thought, to be bound by a higher and
 purer order. This was his one pernicious legacy, but now that the
 heavens have been stormed, we appreciate the beauty of universal
 physics and can hope that the mind will be among its chosen "natural
 kinds," not a mere gerrymandering of bits and pieces.

 On the other hand, there is the dignity of ultimate mystery, the
 Inexplicable Mind. If our minds can't be fundamental, then let them
 be anomalous. A very influential view among philosophers in recent
 years has been Donald Davidson's "anomalous monism," the view
 that while the mind is the brain, there are no lawlike regularities
 aligning mental facts with physical facts.3 John Searle, Davidson's
 colleague at Berkeley, has made a different sort of mystery of the
 mind: the brain, thanks to some unspecified feature of its biochem
 istry, has some terribly important?but unspecified?"bottom-up
 causal powers" that are entirely distinct from the mere "control
 powers" studied in AI.

 One feature shared by these otherwise drastically different forms of
 mind-body materialism is a resistance to Minsky's tertium quid: in
 between the mind as crystal and the mind as chaos lies the mind as
 gadget, an object that one should not expect to be governed by
 "deep" mathematical laws, but nevertheless a designed object,
 analyzable in functional terms: ends and means, costs and benefits,
 elegant solutions on the one hand, and on the other, shortcuts, jury
 rigs, and cheap ad hoc fixes.

 This vision of the mind is resisted by many philosophers despite its
 being a straightforward implication of the current view among
 scientists and science-minded humanists of our place in nature: we
 are biological entities designed by natural selection, which is a tinker,
 not an ideal engineer. Computer programmers call an ad hoc fix a
 "kludge" (it rhymes with Scrooge), and the mixture of disdain and
 begrudged admiration reserved for kludges parallels the biologists'
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 bemusement with "the panda's thumb" and other fascinating exam
 ples of bricolage, to use Fran?ois Jacob's term.4 The finest inadvertent
 spoonerism I ever heard was uttered by the linguist Barbara Partee in
 heated criticism of an acknowledged kludge in an AI natural
 language parser: "That's so odd hack!" Nature is full of odd hacks,

 many of them perversely brilliant. Although this fact is widely
 appreciated, its implications for the study of the mind are often
 repugnant to philosophers, since their traditional aprioristic methods
 of investigating the mind give them little power to explore phenom
 ena that might be contrived of odd hacks. There is really only one
 way to study such possibilities: with the more empirical mind-set of
 "reverse engineering."

 The resistance is clearly manifested in Hilary Putnam's essay in this
 issue of Dcedalus, which can serve as a convenient (if not particularly
 florid) case of the syndrome I wish to discuss. Chomsky's fork, the
 mind as crystal or as chaos, is transformed by Putnam into a
 pendulum swing he thinks he observes within AI itself. He claims that
 AI has "wobbled" over the years between looking for the Master
 Program and accepting the notion that "artificial intelligence is one
 damned thing after another." I have not myself observed any such
 wobble in the field over the years, but I think I know what he is
 getting at. Here, then, is a different perspective on the same issue.

 Among the many divisions of opinion within AI there is a faction
 (sometimes called the logicists) whose aspirations suggest to me that
 they are Putnam's searchers for the Master Progam. They were more
 aptly caricatured recently by a researcher in AI as searchers for
 "Maxwell's equations of thought." Several somewhat incompatible
 enterprises within the field can be lumped together under this rubric.
 Roughly, what they have in common is the idea not that there must
 be a Master Program but that there must be something more like a
 master programming language, a single, logically sound system of
 explicit representation for all the knowledge residing in an agent
 (natural or artificial). Attached to this library of represented facts
 (which can be treated as axioms, in effect) and operating upon it
 computationally will be one sort or another of "inference engine,"
 capable of deducing the relevant implications of the relevant axioms
 and eventually spewing up by this inference process the imperatives
 or decisions that will forthwith be implemented.
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 For instance, suppose perception yields the urgent new premise
 (couched in the master programming language) that the edge of a
 precipice is fast approaching; this should provoke the inference
 engine to call up from memory the appropriate stored facts about
 cliffs, gravity, acceleration, impact, damage, the paramount undesir
 ability of such damage, and the likely effects of putting on the brakes
 or continuing apace. Forthwith, one hopes, the engine will deduce
 a theorem to the effect that halting is called for, and straightaway it
 will halt.

 The hard part is designing a system of this sort that will actually
 work well in real time, even allowing for millions of operations per
 second in the inference engine. Everyone recognizes this problem of
 real-time adroitness; what sets the logicists apart is their conviction
 that the way to solve it is to find a truly perspicuous vocabulary and
 logical form for the master language. Modern logic has proven to be
 a powerful means of exploring and representing the stately universe
 of mathematics; the not unreasonable hope of the logicists is that the
 same systems of logic can be harnessed to capture the hectic universe
 of agents making their way in the protean macroscopic world. If you
 get the axioms and the inference system just right, they believe, the
 rest should be easy. The problems they encounter have to do with
 keeping the number of axioms down for the sake of generality (which
 is a must), while not requiring the system to waste time rededucing
 crucial intermediate-level facts every time it sees a cliff.

 This idea of axiomatizing everyday reality is surely a philosophical
 one. Spinoza would have loved it, and many contemporary philoso
 phers working in philosophical logic and the semantics of natural
 language share at least the goal of devising a rigorous logical system
 in which every statement, every thought, every hunch and wonder
 can be unequivocally expressed. The idea wasn't reinvented by AI; it
 was a gift from the philosophers who created modern mathematical
 logic: George Boole, Gottlob Frege, Alfred North Whitehead, Ber
 trand Russell, Alfred Tarski, and Alonzo Church. Douglas Hof
 stadter calls this theme in AI the Boolean dream.5 It has always had
 its adherents and critics, with many variations.

 Putnam's rendering of this theme as the search for the Master
 Program is clear enough, but when he describes the opposite pole, he
 elides our two remaining prospects: the mind as gadget and the mind
 as chaos. As he puts it, "If AI is 'one damned thing after another,' the
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 number of 'damned things' the tinker may have thought of could be
 astronomical. The upshot is pessimistic indeed: if there is no Master
 Program, then we may never get very far in terms of simulating
 human intelligence." Here Putnam elevates a worst-case possibility
 (the gadget will be totally, "astronomically" ad hoc) as the only likely
 alternative to the Master Program. Why does he do this? What does
 he have against exploring the vast space of engineering possibilities
 between Crystal and Chaos? Biological wisdom, far from favoring his
 pessimism, holds out hope that the mix of elegance and Rube
 Goldberg found elsewhere in nature (in the biochemistry of repro
 duction, for instance) will be discernible in the mind as well.

 There is, in fact, a variety of very different approaches being
 pursued in AI by those who hope the mind will turn out to be some
 sort of gadget or collection of partially integrated gadgets. All of these
 favor austerity, logic, and order in some aspects of their systems and
 yet exploit the peculiar utility of profligacy, inconsistency, and
 disorder in other aspects. It is not that Putnam's two themes don't
 exist in AI, but that by describing them as exclusive alternatives, he
 imposes a procrustean taxonomy on the field that makes it hard to
 discern the interesting issues that actually drive the field.
 Most AI projects are explorations of ways things might be done

 and as such are more like thought experiments than empirical
 experiments. They differ from philosophical thought experiments not
 primarily in their content but in their methodology: they replace
 some?not all?of the "intuitive," "plausible," hand-waving back
 ground assumptions of philosophical thought experiments by con
 straints dictated by the demand that the model be made to run on the
 computer. These constraints of time and space and the exigencies of
 specification can be traded off against each other in practically
 limitless ways, so that new "virtual machines" or "virtual architec
 tures" are imposed on the underlying serial architecture of the digital
 computer. Some choices of trade-off are better motivated, more
 realistic, or more plausible than others, of course, but in every case
 the constraints imposed serve to discipline the imagination?and
 hence the claims?of the thought experimenter. There is very little
 chance that a philosopher will be surprised (or more exactly, disap
 pointed) by the results of his own thought experiment, but this
 happens all the time in AI.
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 A philosopher looking closely at these projects will find abundant
 grounds for skepticism. Many seem to be based on forlorn hopes
 or misbegotten enthusiasm for one architectural or information
 handling feature or another, and if we extrapolate from the brief
 history of the field, we can be sure that most of the skepticism will be
 vindicated sooner or later. What makes AI an improvement on earlier
 philosophers' efforts at model sketching, however, is the manner in
 which skepticism is vindicated: by the actual failure of the system in
 question. Like philosophers, researchers in AI greet each new pro
 posal with intuitive judgments about its prospects, backed up by
 more or less a priori arguments about why a certain feature has to be
 there or can't be made to work. But unlike philosophers, these
 researchers are not content with their arguments and intuitions; they
 leave themselves some room to be surprised by the results, a surprise
 that could only be provoked by the demonstrated, unexpected power
 of the actually contrived system in action.

 Putnam surveys a panoply of problems facing AI: the problems of
 induction, of discerning relevant similarity, of learning, of modeling
 background knowledge. These are all widely recognized problems in
 AI, and the points he makes about them have all been made before by
 people in AI, who have then gone on to try to address the problems
 with various relatively concrete proposals. The devilish difficulties he
 sees facing traditional accounts of the process of induction, for
 example, are even more trenchantly catalogued by John Holland,
 Keith Holyoak, Richard Nisbett, and Paul Thagard in their recent
 book Induction,6 but their diagnosis of these ills is the preamble for
 sketches of AI models designed to overcome them. Models addressed
 to the problems of discerning similarity and mechanisms for learning
 can be found in abundance. The SOAR project of John Laird, Allen
 Newell, and Paul Rosenbloom7 is an estimable example. And the
 theme of the importance?and difficulty?of modeling background
 knowledge has been ubiquitous in recent years, with many sugges
 tions for solutions under investigation. Now perhaps they are all
 hopeless, as Putnam is inclined to believe, but one simply cannot tell
 without actually building the models and testing them.

 This last statement is not strictly true, of course. When an a priori
 refutation of an idea is sound, the doubting empirical model builder
 who persists despite the refutation will sooner or later have to face a
 chorus shouting "We told you so!" That is one of the occupational
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 hazards of AI. The rub is how to tell the genuine a priori proofs of

 impossibility from mere failures of imagination. The philosophers'
 traditional answer is, More a priori analysis and argument. The AI
 researchers' answer is, Build it and see.

 Putnam offers us a striking instance of this difference in his survey

 of possibilities for tackling the problem of background knowledge.
 Like Descartes, he manages to imagine a thought-experiment fiction
 that is now becoming real, and like Descartes, he is prepared to
 dismiss it in advance. One could, Putnam says,

 simply try to program into a machine all the information a sophisticated
 human inductive judge has (including implicit information). At the least, this
 would require generations of researchers to formalize the information
 (probably it could not be done at all, because of the sheer quantity of
 information involved); and it is not clear that the result would be more than

 a gigantic expert system. No one would find this very exciting; and such an
 "intelligence" would in all likelihood be dreadfully unimaginative_

 This almost perfectly describes Douglas Lenat's enormous CYC
 project.8 One might say that Lenat is attempting to create the
 proverbial walking encyclopedia: a mind-ful of commonsense knowl
 edge in the form of a single data base containing all the facts
 expressed?or tacitly presupposed?in an encyclopedia! This in
 volves handcrafting millions of representations in a single language
 (which must eventually be unified?no small task), from which the
 inference engine is expected to be able to deduce whatever it needs as
 it encounters novelty in its world: for instance, the fact that people in
 general prefer not to have their feet cut off or the fact that sunbathers
 are rare on Cape Cod in February.
 Most of the opinion setters in AI share Putnam's jaundiced view of

 this project: it is not clear, as Putnam says, that the project will do
 anything that teaches us anything about the mind; in all likelihood, as
 he says, it will be dreadfully unimaginative. And many would go
 further and insist that its prospects are so forlorn and its cost so great
 that it should be abandoned in favor of more promising avenues.
 (The current estimate is measured in person-centuries of work, a
 figure that Putnam may not have bothered to imagine in detail.) But
 the project is funded, and we shall see.
 What we have here is a clash of quite fundamental methodological

 assumptions. Philosophers are inclined to view AI projects with the
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 patronizing disdain one reserves for those persistent fools who keep
 trying to square the circle or trisect the angle with compass and
 straightedge: we have proved that it cannot be done, so drop it! But
 the proofs are not geometric; they are ringed with assumptions about
 "plausible" boundary conditions and replete with idealizations that
 may prove as irrelevant here as in the notorious aerodynamicists'
 proofs that bumblebees cannot fly.

 But still one may well inquire, echoing Putnam's challenge, wheth
 er AI has taught philosophers anything of importance about the mind
 yet Putnam thinks it has not and supports his view with a rhetori
 cally curious indictment: AI has utterly failed, over a quarter century,
 to solve problems that philosophy has utterly failed to solve over two

 millennia. He is right, I guess, but I am not impressed.9 It is as if a
 philosopher were to conclude a dismissal of contemporary biology by
 saying that the biologists have not so much as asked the question,

 What is Life? Indeed, they have not; they have asked better questions
 that ought to dissolve or redirect the philosopher's curiosity.
 Moreover, philosophers (of all people) should appreciate that

 solutions to problems are not the only good gift; tough new problems
 are just as good! Matching Putnam's rhetorical curiosity, I offer as
 AFs best contribution to philosophy a deep, new, unsolved episte
 mological problem ignored by generations of philosophers: the frame
 problem. Plato almost saw it. In the Theaetetus, he briefly explored
 the implications of a wonderful analogy:

 Socrates: Now consider whether knowledge is a thing you can possess in
 that way without having it about you, like a man who has caught some wild
 birds?pigeons or what not?and keeps them in an aviary he has made for
 them at home. In a sense, of course, we might say he "has" them all the time
 inasmuch as he possesses them, mightn't we?

 Theaetetus: Yes.

 Socrates: But in another sense he "has" none of them, though he has got
 control of them, now that he has made them captive in an enclosure of his
 own; he can take and have hold of them whenever he likes by catching any
 bird he chooses, and let them go again; and it is open to him to do that as
 often as he pleases.10

 Plato saw that merely possessing knowledge (like birds in an aviary)
 is not enough; one must be able to command what one possesses. To
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 perform well, one must be able to get the right bit of knowledge to fly
 to the edge at the right time (in real time, as the engineers say). But he
 underestimated the difficulty of this trick and hence underestimated
 the sort of theory one would have to give of the organization of
 knowledge in order to explain our bird-charming talents. Neither
 Plato nor any subsequent philosopher, so far as I can see, saw this as
 in itself a deep problem of epistemology, since the demands of
 efficiency and robustness paled into invisibility when compared with
 the philosophical demand for certainty, but so it has emerged in the
 hands of AI.11

 Just as important to philosophy as new problems and new
 solutions, however, is new raw material, and this AI has provided in
 abundance. It has provided a bounty of objects to think about?
 individual systems in all their particularity that are much more vivid
 and quirky than the systems I (for one) could dream up in a thought
 experiment. This is not a trivial harvest. Compare philosophy of
 mind (the analytic study of the limits, opportunities, and implications
 of possible theories of the mind) with the literary theory of the novel
 (the analytic study of the limits, opportunities, and implications of
 possible novels). One could in principle write excellent literary theory
 in the absence of novels as exemplars. Aristotle, for instance, could in
 principle have written a treatise on the anticipated strengths and
 weaknesses, powers and problems, of the various possible types of
 novels. Today's literary theorist is not required to examine the
 existing exemplars, but they are, to say the least, a useful crutch. They
 extend the imaginative range and the surefootedness of even the most
 brilliant theoretician and provide bracing checks on enthusiastic
 generalizations and conclusions. The minitheories, sketches, and
 models of AI may not be great novels, but they are the best we have
 to date, and just as mediocre novels are often a boon to literary
 theorists?they wear their deficiencies on their sleeves?so bad
 theories, failed models, and hopelessly confused hunches in AI are a
 boon to philosophers of mind. But you have to read them to get the
 benefit.

 Perhaps the best current example of this benefit is the wave of
 enthusiasm for connectionist models. For years philosophers of mind
 have been vaguely and hopefully waving their hands in the direction
 of these models?utterly unable to conceive them in detail but sure in
 their bones that some such thing had to be possible. (My own first
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 book, Content and Consciousness, is a good example of such vague
 theorizing.12) Other philosophers have been just as sure that all such
 approaches were doomed (Jerry Fodor is a good example). Now, at
 last, we will be able to examine a host of objects in this anticipated
 class and find out whose hunches were correct. In principle, no
 doubt, it could be worked out without the crutches, but in practice,
 such disagreements between philosophers tend to degenerate into
 hardened positions defended by increasingly strained arguments,
 redefinitions of terms, and tendentious morals drawn from other
 quarters.

 Putnam suggests that since AI is first and foremost a subbranch of

 engineering, it cannot be philosophy. He is especially insistent that we
 should dismiss its claim of being epistemology. I find this suggestion
 curious. Surely Hobbes and Leibniz and Descartes were doing
 philosophy, even epistemology, when they waved their hands and
 spoke very abstractly about the limits of mechanism. So was Kant,

 when he claimed to be investigating the conditions under which
 experience was possible. Philosophers have traditionally tried to
 figure out the combinatorial powers and inherent limitations of
 "impressions and ideas," of "petites perceptions," "intuitions," and
 "schemata." Researchers in AI have asked similar questions about
 various sorts of "data structures" and "procedural representations"
 and "frames" and "links" and yes, "schemata," now rather more
 rigorously defined. So far as I can see, these are fundamentally the
 same investigations, but in AI they are conducted under additional
 (and generally well-motivated) constraints and with the aid of a host
 of more specific concepts.

 Putnam sees engineering and epistemology as incompatible. I see at
 most a trade-off: to the extent that a speculative exploration in AI is
 more abstract, more idealized, less mechanistically constrained, it is
 "more philosophical"?but that does not mean it is thereby neces
 sarily of more interest or value to a philosopher! On the contrary, it
 is probably because philosophers have been too philosophical?too
 abstract, idealized, and unconstrained by empirically plausible mech
 anistic assumptions?that they have failed for so long to make much
 sense of the mind. AI has not yet solved any of our ancient riddles
 about the mind, but it has provided us with new ways of disciplining
 and extending philosophical imagination that we have only begun to
 exploit.
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 Mathematical Logic in Artificial
 Intelligence

 This article concerns computer programs that represent
 information about their problem domains in mathematical
 logical languages and use logical inference to decide what

 actions are appropriate to achieve their goals.
 Mathematical logic is not a single language. There are many kinds

 of mathematical logic, and even choosing a kind does not specify the
 language. The language is determined by declaring what nonlogical
 symbols will be used and what sentences will be taken as axioms. The
 nonlogical symbols are those that concern the concrete subject matter
 to be stored in a computer's data base?for example, information
 about objects and their locations and motions.
 Whatever the choice of symbols, all kinds of mathematical logic

 share two ideas. First, it must be mathematically definite what strings
 of symbols are considered formulas of the logic. Second, it must be
 mathematically definite what inferences of new formulas from old
 ones are allowed. These ideas permit the writing of computer
 programs that decide what combinations of symbols are sentences
 and what inferences are allowed in a particular logical language.
 Mathematical logic has become an important branch of mathe

 matics, and most logicians work on problems arising from the
 internal development of the subject. Mathematical logic has also been
 applied to studying the foundations of mathematics, and there it has
 had its greatest success. Its founders, Aristotle, Leibniz, Boole, and

 John McCarthy is professor of computer science and Charles M. Pigott Professor of
 Engineering at Stanford University.
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 Frege, also wished to apply it to making reasoning about human
 affairs more rigorous. Indeed, Leibniz was explicit about his goal of
 replacing argument with calculation. However, expressing knowl
 edge and reasoning about the commonsense world in mathematical
 logic has entailed difficulties that seem to require extensions of the
 basic concepts of logic, and these extensions are only beginning to
 develop.

 If a computer is to store facts about the world and reason with
 them, it needs a precise language. The program must be based on a
 precise idea of what reasoning is allowed?that is, how new formulas
 may be derived from old. It was natural in the beginning to try to use
 mathematical logical language to express what an intelligent com
 puter program "knows" that is relevant to the problems we want it
 to solve and to make the program use logical inference in order to
 decide what to do. The first proposal to use logic in artificial
 intelligence for expressing what a program knows and how it should
 reason was in a paper I wrote in 1960. The problem of proving
 logical formulas as a domain for AI had already been studied. In this
 paper I said:

 The advice taker is a proposed program for solving problems by manipu
 lating sentences in formal languages. The main difference between it and
 other programs or proposed programs for manipulating formal languages
 (the Logic Theory Machine of Newell, Simon and Shaw and the Geometry

 Program of Herbert Gelernter) is that in the previous programs the formal
 system was the subject matter but the heuristics were all embodied in the
 program. In this program the procedures will be described as much as
 possible in the language itself and, in particular, the heuristics are all so
 described.

 The main advantage we expect the advice taker to have is that its behavior
 will be improvable merely by making statements to it, telling it about its
 symbolic environment and what is wanted from it. To make these state

 ments will require little if any knowledge of the program or the previous
 knowledge of the advice taker. One will be able to assume that the advice
 taker will have available to it a fairly wide class of immediate logical
 consequences of anything it is told and its previous knowledge. This
 property is expected to have much in common with what makes us describe
 certain humans as having common sense. We shall therefore say that a
 program has common sense if it automatically deduces for itself a suffi
 ciently wide class of immediate consequences of anything it is told and what
 it already knows}
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 The advice taker prospectus, ambitious in 1960, would be considered
 ambitious even today and is still far from being immediately realizable.

 Mathematical logic is especially far from the goal of expressing the
 heuristics in the same language in which are expressed the facts the
 heuristics must act on. Yet the main reasons for using logical sentences
 extensively in AI are better understood by researchers today than in
 1960. Expressing information in declarative sentences is far more
 flexible than expressing it in segments of computer program or in tables.
 Sentences can be true in much wider contexts than specific programs can
 be useful. The supplier of a fact does not have to understand much about
 how the receiver functions or about how or whether the receiver will use

 it. The same fact can be used for many purposes; the logical conse
 quences of collections of facts can be made available.

 Existing computer programs come more or less close to this goal,
 depending on the extent to which they use the formalisms of logic. I
 shall begin by describing four levels of their use.

 1. A machine on the lowest level uses no logical sentences. It merely
 executes the commands of its program. All its "beliefs" are implicit in
 its state. Nevertheless, it is often appropriate to ascribe beliefs and
 goals to the program. A missile may believe its target is friendly and
 abandon the goal of hitting it. One can often usefully say that a
 certain machine does what it thinks will achieve its goals. Daniel
 Dennett, Allen Newell, and I have all discussed ascription of mental
 qualities to machines.2 The intent of the machine's designers and the
 way it can be expected to behave may be more readily described in
 terms of intention than with a purely physical description.

 The relation between the physical and the intentional descriptions
 of a machine is most easy to understand in simple systems that admit
 readily understandable descriptions of both kinds. Take a thermostat
 as an example. We might say that when it believes the temperature is
 too hot, it turns on the cooling system in order to achieve its goal of
 getting the right temperature. Some finicky philosophers object to
 such ascription. Unless a system has a full human mind, they contend,
 it should not be regarded as having any mental qualities at all. This
 restriction is like omitting zero and one from the number system on
 the grounds that numbers are not required to count sets with no
 elements or with one element. Of course, ascribing beliefs to ma
 chines (and people) is more important when our physical knowledge
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 is inadequate to explain or predict behavior. Much more can be said
 about ascribing mental qualities to machines, but that is not what AI
 is mainly concerned with today.

 2. The next level of logic use involves computer programs that put
 sentences in machine memory to represent their beliefs but use rules
 other than ordinary logical inference to reach conclusions. New
 sentences are often obtained from the old ones by ad hoc programs.

 Moreover, the sentences that appear in memory are from a program
 dependent subset of the logical language being used. Adding certain
 true sentences in the language may even spoil the functioning of the
 program. Logic is used at this second level in "expert systems,"
 programs that consist of knowledge bases (e.g., lists of disease
 symptoms in medical expert systems) and inference engines (which
 contain rules, in the form of explicit instructions to the machine, on
 how to manipulate the information in the knowledge base). In
 comparison with the languages of first-order logic, languages used at
 this level are often rather unexpressive. For example, they may not
 admit quantified sentences (i.e., sentences including "for all" or
 "there exists"), and they may represent general rules in a separate
 notation. Often, rules cannot be consequences of a program's action;
 they must all be put in by a "knowledge engineer." Sometimes the
 reason programs have this form is just ignorance, but the usual
 reason for the restriction is the practical one of making the program
 run fast and deduce just the kinds of conclusions its designer
 anticipates. Most often, the rules are implications used in just one
 direction (in other words, the contrapositive of an implication is not
 used). I believe the need for such specialized inference will turn out to
 be temporary and will be reduced or eliminated by improved ways of
 controlling general inference?for example, by allowing the heuristic
 rules to be expressed also as sentences, as advocated in the preceding
 extract from my 1960 paper.

 3. The third level uses first-order logic as well as logical deduction.
 Usually the sentences are represented as clauses, and the deduction
 methods are based on J. Allen Robinson's method of resolution.3 A
 fact in one such program's data base might be:

 (for all (x) (if (and (inst x vegetable) (color x purple))
 (inst x eggplant)))
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 Translated into more common language, the fact reads: "All purple
 vegetables are eggplants." Its structure is typical of if-then clauses in
 logical data bases: given any x, if x satisfies the stated conditions, then
 x ensures a certain result?(for all (x) (if (conditions) then (result))).

 In the example, x must satisfy two conditions: (inst x vegetable)
 and (color x purple). The first condition means that x must be a
 specific instance of the class of vegetables, and the second means that
 the color of x must be purple. The result, (inst x eggplant), means that
 x is an instance of an eggplant. Armed with this fact, the program
 might seem ready to take on this task:

 (inst Gertrude vegetable)
 (color Gertrude purple)

 (SHOW: (inst Gertrude eggplant))

 Translated, the task is: Given the fact that Gertrude is a purple
 vegetable, show that Gertrude is an eggplant. But with just the logical
 fact, the program can do nothing with the task. It needs a method for
 reasoning from general statements about nondescript x's to specific
 statements about Gertrude. The reasoning of Robinson's resolution
 method prescribes a way to substitute Gertrude for x and thereby
 unify the clauses in the data base with those in the task.

 Examples of such programs used commercially are "expert system
 shells" (ART, KEE, OPS-5)?computer programs that create generic
 expert systems. You tell the program what facts you want in the data
 base; the program converts the facts into logical statements and then
 follows the heuristics in its own inference engine to create an
 inference engine tailored to the facts you put into the program.

 The third level of logic is less used for practical purposes than is
 level two because techniques for controlling the reasoning are still
 insufficiently developed and it is common for a program to generate

 many useless conclusions before it reaches a desired solution. Indeed,
 unsuccessful experience with this method4 has led to more restricted
 uses of logic (for example, the STRIPS system of Richard Fikes and
 Nils Nilsson5).

 In this connection it is important to mention logic programming,
 first introduced in Microplanner6 and approached from different
 points of view by Robert Kowalski and Alain Colmerauer in the
 1970s.7 Microplanner was a rather unsystematic collection of tools,
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 unlike Prolog, a computer language that relies almost entirely on one
 mathematically tractable kind of logic programming,8 but the main
 idea is the same. If one uses a restricted class of sentences, the
 so-called Horn clauses, then it is possible to use a restricted form of
 logical deduction. This eases the control problem and makes it
 possible for the programmer to anticipate the course the deduction
 will take. The problem is that only certain kinds of facts are
 conveniently expressed as Horn clauses. Nevertheless, expressibility
 in Horn clauses is an important property of a set of facts, and logic
 programming has been successfully used for many applications
 (although it seems unlikely to dominate AI programming, as certain
 of its advocates hope).

 Although they express both facts and rules as logical sentences,
 third-level systems are still rather specialized. The axioms with which
 the programs begin are not general truths about the world but
 sentences whose meaning and truth are limited to the narrow domain
 in which the program has to act. For this reason, the facts of one
 program usually cannot be used in a data base for other programs.

 4. The fourth level is still a goal. It involves representing general
 facts about the world as logical sentences. Once put in a data base,
 the facts can be used by any program. The facts would have the
 neutrality of purpose characteristic of much human information. The
 supplier of information would not have to understand the goals of the
 potential user or how his mind works. The present ways of "teaching"
 computer programs amount to education by brain surgery.

 A major difficulty is that fourth-level systems require extensions to
 mathematical logic. One kind of extension is nonmonotonic reason
 ing, first proposed in the late 1970s.9 Traditional logic is monotonie
 in the following sense. If a sentence p is inferred from a collection A
 of sentences, and if B is a more inclusive set of sentences, then p can

 be inferred from B. For example, let collection A be these sentences:
 All bachelors are unmarried; John is a bachelor. Let collection B be
 these sentences: All bachelors are unmarried; John has no girlfriends;

 John is a bachelor. From both sets of questions, you can infer
 sentence p: John is unmarried. The set of sentences A is a model of the
 set: AU x are y; w is x. If "w is y" is true in all models of this general
 set, then it will be true in all models of the general form of set B. So
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 we see that the monotonie character of traditional logic does not
 depend on the details of the logical system, but is quite fundamental.

 While much human reasoning corresponds to that of traditional
 logic, some important human commonsense reasoning is not mono
 tonic. We reach conclusions from certain premises that we would not
 reach if certain other sentences were included in our premises. For
 example, learning that I own a car, you conclude that it is appropriate
 on a certain occasion to ask me for a ride; but when you learn the
 further fact that the car is in the garage being fixed, you no longer
 draw that conclusion. Some people think it is possible to try to save
 monotonicity by saying that what was in your mind was not a
 general rule about asking for a ride from car owners but a probabi
 listic rule?something like "On 70 percent of occasions it is appro
 priate for you to ask for a ride if I own a car." So far it has not proved
 possible to work out the detailed epistemology of this approach
 that is, to determine exactly what probabilistic sentences should be
 used. Instead, AI has moved to directly formalizing nonmonotonic
 logical reasoning.

 Formalized nonmonotonic reasoning is under rapid development,
 and many kinds of systems have been proposed. I shall concentrate
 on an approach called "circumscription" because I know it, and
 because it has met with wide acceptance and is perhaps the most
 actively pursued approach at present. The idea is to single out, from
 among the models of the collection of sentences being assumed, some
 "preferred," or "standard," models. The preferred models are those
 that satisfy a certain minimum principle. What is to be minimized is
 not yet decided in complete generality, but many domains that have
 been studied yield quite general theories using minimizations of
 abnormality or of the set of some kind of entity. The idea is not
 entirely unfamiliar. For example, Occam's razor, "Do not multiply
 entities beyond necessity," is such a minimum principle.
 Minimization in logic is another example of an area of mathemat

 ics being discovered in connection with applications rather than
 through the normal internal development of mathematics. Of course,

 the reverse is happening on an even larger scale; many logical
 concepts developed for purely mathematical reasons turn out to have
 importance for AI.
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 As a more concrete example of nonmonotonic reasoning, consider
 the conditions under which a boat may be used to cross a river. Now
 consider things that might be wrong with a boat. It might have a leak.
 It might have no oars, no motor, or no sails, depending on what kind
 of a boat it is. It would be reasonably convenient to list some of these
 things in a set of axioms. However, besides those obstacles that we
 can expect to list in advance, human reasoning will admit still others
 should they arise, but it cannot be expected to think of them all in
 advance (e.g., a fence down the middle of the river). One can handle
 this difficulty by using circumscription to minimize the set of things
 that prevent the boat from crossing the river?that is, the set of
 obstacles to be overcome. If the reasoner knows of none in a
 particular case, he will conjecture that the boat can be used, but if he
 learns of one, he will get a different result when he minimizes.

 This illustration shows that nonmonotonic reasoning is conjectural
 rather than rigorous. Indeed, it has been shown that certain mathe

 matical logical systems cannot be rigorously extended, that they have
 a certain kind of completeness.

 It is as misleading to conduct a discussion of this kind entirely
 without formulas as it would be to discuss the foundations of physics
 without formulas. Unfortunately, many people are unable to follow
 the mathematics. So I discuss instead a formalization by Vladimir
 Lifschitz of a simple example called "the Yale shooting problem."10
 Drew McDermott, who has become discouraged about the use of
 logic in AI and especially about nonmonotonic formalisms, devised
 the problem as a challenge.11 Lifschitz's method works well here, but
 I think it will require further modification.

 In this problem there is initially an unloaded gun and a person,
 Fred. The gun is then loaded. There is a wait, and then the gun is
 pointed at Fred and fired. The desired conclusion is that Fred dies.
 Informally, the rules are (1) that a living person remains alive until
 something happens to him, (2) that loading causes a gun to become
 loaded, (3) that a loaded gun remains loaded until something unloads
 it, (4) that shooting unloads a gun, and (5) that shooting a loaded gun
 at a person kills him. We are intended to reason as follows: Fred will
 remain alive until the gun is fired because nothing can be inferred to
 happen to him; the gun will remain loaded until it is fired because
 nothing can be inferred to happen to it; Fred will then die when the
 gun is fired. The nonmonotonic part of the reasoning is minimizing

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:38:58 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Mathematical Logic In Artificial Intelligence 305

 the things that happen or assuming that nothing happens without a
 reason.

 The logical sentences are intended to express these five premises,
 but they do not explicitly say that no other phenomenon occurs. For
 example, there is no assertion that Fred is not wearing a bulletproof
 vest, nor are any properties of bulletproof vests mentioned. Never
 theless, a person will conclude that unless some unmentioned aspect
 of the situation is present to prevent Fred's death, he will die. The
 difficulty is that the sentences admit an "unintended minimal model,"
 to use the terminology of mathematical logic. Namely, it may happen
 that for some unspecified reason the gun becomes unloaded during
 the wait, so that Fred remains alive. The way nonmonotonic formal
 isms (e.g., circumscription and R. A. Reiter's logic of defaults) were
 used to formulate the problem, minimizing "abnormality" results in
 two possibilities, not one. The unintended possibility is that the gun
 mysteriously becomes unloaded.

 It seems likely that introducing nonmonotonic reasoning will not
 be the only modification of logic that will be required in order to give
 machines human capability for commonsense reasoning. To make
 programs that reason about their own knowledge and belief (i.e.,
 programs that have even rudimentary consciousness), it is necessary
 to formalize many intensional notions (e.g., knowledge and belief).
 One can formalize some of them in first-order logic by introducing
 propositions and concepts as individuals.12 Complicating such efforts
 are the paradoxes discovered by Richard Montague.13 To avoid
 them, it will be necessary to weaken the axioms suitably, but a good
 way of doing so has yet to be found. It also seems necessary to
 formalize the notion of context, but this is in a very preliminary state
 of investigation.14

 AI AND PHILOSOPHY

 Artificial intelligence cannot avoid philosophy. If a computer pro
 gram is to behave intelligently in the real world, it must be provided
 with some kind of framework into which to fit particular facts it is
 told or discovers. This amounts to at least a fragment of some kind
 of philosophy, however naive. Here I agree with philosophers who
 advocate the study of philosophy and claim that one who purports to
 ignore it is merely condemning himself to a naive philosophy.
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 306 John McCarthy

 Because it is still far behind the intellectual performance of people
 who are philosophically naive, AI could probably make do with a
 naive philosophy for a long time. Unfortunately, it has not been
 possible to say what a naive philosophy is, and philosophers offer
 little guidance.
 The next plausible alternative might be to build our programs to

 seek and represent knowledge in accordance with the tenets of one of
 the philosophies that have been proposed by philosophers. This also
 has not been possible. Either no one in AI (including retreaded
 philosophers) understands philosophical theories well enough to
 program a computer in accordance with their tenets, or the philoso
 phers have not even come close to the required precision. Actually,
 some of the empiricist philosophies appear to be precise enough, but
 they turn out to be inadequate when one attempts to use them in the
 most modest of computer programs. Therefore, we AI researchers
 have found ourselves on our own when it comes to providing a
 program with a basic intellectual structure. Here is some of what we
 think this would require:

 Ontology. I adopt Willard Quine's idea that our ontology is
 defined by the range of bound variables.15 With this idea, we need to
 specify what kinds of entities are to be assumed, that is, what the
 robot's beliefs are to be about. His nominalism would further
 suggest, it seems to me, that variables take only material objects as
 values. This theory promptly proves inadequate because, for exam
 ple, it doesn't permit the robot's designer to inform it about what
 properties of objects are preserved when certain kinds of events take
 place.

 Quine tells us that "there is no place in science for ideas," and
 argues for this view with examples of the difficulty of defining what
 it means for two people to have the same idea.16 However, if a
 program is to search for a good idea by generating lots of ideas and
 then testing them, it needs some criteria for deciding when it has
 already tested a certain idea. Thus, ideas as objects seem to be
 required, but how to avoid the difficulty Quine cites has not yet been
 discovered. Present AI systems cannot enumerate ideas.

 Free will. The robots we plan to build are entirely deterministic
 systems. However, a sophisticated robot must decide what to do by
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 considering the various things it can do and choosing which has the
 best consequences in view of the goals it has been given. To do so, it
 must be able to represent "I can do A and I can do B, but B seems
 better, so while I can do A, I won't." What does it mean for a robot
 to believe "I can, but I won't"? It is a deterministic system, so either
 it will do A or it won't. Patrick J. Hayes and I have offered some
 proposals for resolving the problem of free will for robots.17

 Nonmonotonic reasoning. AI programs require ways of jumping
 to conclusions on the basis of insufficient evidence.

 AI researchers' attempts to determine an intellectual framework
 precise enough for programming AI systems have already led to
 certain philosophical views?both to taking sides in some ancient
 philosophical controversies and to proposals that we regard as new.
 I will discuss two points:

 1. Incrementalism, or modesty. The facts about the effects of
 actions and other events that have been put into the data bases of AI
 programs are not very general. They are not even as general as what
 questioning would elicit from naive people, let alone general enough
 to satisfy people familiar with the philosophical literature. However,
 they suffice in certain cases to determine the appropriate action to
 achieve a goal. Observing the limitations of these cases leads to
 further advance. This is a useful methodology even when the objec
 tives are philosophical. One can design formalisms that can be used
 in working systems and improve them when their defects become
 apparent.

 The philosopher might claim that the working systems are too
 trivial to be of interest to him. He would be wrong, because it turns
 out that the philosophical investigations of action have missed
 important phenomena that arise as soon as one tries to design
 systems that plan actions. Here are two examples. First, the ideas on
 association, dating at least from Mill and going through the behav
 iorists, are too vague to be programmed at all. Second, philosophers
 have missed most of the nonmonotonic character of the reasoning
 involved in everyday decision making. For AI it is important not only
 that the researcher be able to revise his ideas, but also that the
 program be able to improve its behavior incrementally, either by
 accepting advice from the user or by learning from experience, and
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 such improvement requires new languages for expressing knowledge.
 For example, a baby first considers the word mother a proper name,
 then a general name for adult women, and still later a designation of
 a relation. I think that before we can have computer programs with
 the general intelligence and linguistic flexibility of a human child, AI
 researchers must develop languages with "elaboration tolerance."
 For example, such a language would allow the usage of the word
 mother to develop as described above without losing older informa
 tion. Elaboration tolerance is a current AI research topic.

 2. Objectivity. Regardless of one's ultimate view of reality, in
 designing robots we need to make the robot view the world as an
 external reality about which it has and can obtain only partial
 knowledge. We will not be successful if we design the robot to regard
 the world as merely a structure built on the robot's sensory informa
 tion. There needs to be a theory (it could be called metaepistemology)
 relating the structure of a world, a knowledge-seeker in that world,
 the interaction channel between the knowledge-seeker and the rest of
 the world, the knowledge-seeker's rules for deciding what assertions
 about the world are meaningful, and the knowledge-seeker's rules for
 accepting evidence about the world and what the knowledge-seeker
 can discover. If the rules are too restrictive (as perhaps they are in
 some operationalist philosophies of science), the knowledge-seeker,
 regarding the assertions as insufficiently operational to be meaning
 ful, will be unable to discover basic facts about the world.

 REMARKS

 Much of what I want to say involves stating a position on issues that
 are controversial even within AI.

 I believe, for example, that artificial intelligence is best regarded as
 a branch of computer science rather than as a branch of psychology.
 AI is concerned with methods of achieving goals in situations in
 which the information available has a certain complex character. The
 methods that have to be used are related to the problem presented by
 the situation and are similar whether the problem solver is human, a

 Martian, or a computer program.
 Initially, some people were overoptimistic about how long it would

 take to achieve human-level intelligence. Optimism was natural
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 because only a few of the difficulties had been identified. Enough
 difficulties have been identified by now to establish AI as one of the
 more difficult sciences. Maybe it will take five years to achieve
 human-level intelligence, and maybe it will take five hundred.

 It is still not clear how to characterize situations in which intelli

 gence is required. Evidently, they are open-ended. Even in a game like
 chess, where the rules are fixed, the methods for deciding on a move
 are open-ended in character?new ways of thinking about chess
 positions are invented all the time.

 AI has so far identified certain methods of pattern matching,
 heuristic searching of trees of possibilities, and representation of
 information by rules and learning. Other methods are still to be
 characterized, especially methods of representing problems as collec
 tions of subproblems that can be examined separately to get results
 that can then be used in studying their interactions.

 Approaching AI through logic is not the only strategy that may
 lead to success. For example, approaches more closely tied to biology

 may succeed eventually, even though most of the biology-motivated
 approaches that have been tried since the 1950s have dried up.
 Much controversy surrounds AI's implications for philosophy, a

 subject about which there are strong views. AI tends to support
 rationalist and realist views of philosophical problems rather than
 empiricist, phenomenological, or idealist views. It encourages a
 piecemeal approach to the philosophy of mind, in which mental
 qualities are considered separately rather than as part of a grand
 package. This is because some systems have important, but rather
 limited, mental qualities.

 There are many problems in formalizing common sense, and many
 approaches to solving them await exploration. Two thousand years
 of philosophy have only limited relevance in this regard. In my
 opinion, the proper discussion of these problems is unavoidably
 mostly technical, involving the actual logical formalisms being used.
 The situation calculus used has important known limitations. The
 result (e, s) formalism, used in AI to express the consequences of
 actions and other events, has to be modified to handle continuous
 time. A quite different formalism is needed to express facts about
 concurrent events. Robert Kowalski and Mark Sergot's "event cal
 culus" is a candidate for meeting both of these requirements.18
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 310 John McCarthy
 The study of AI may lead to a mathematical metaepistemology

 analogous to metamathematics?to a study of the relation between a
 knower's rules for accepting evidence and a world in which he is
 embedded. This study could result in mathematical theorems about
 whether certain intellectual strategies can lead to the discovery of
 certain facts about the world. I think this possibility will eventually
 revolutionize philosophy.
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