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“From So Simple a Beginning”:  
Species of Artificial Intelligence 

Nigel Shadbolt

Artificial intelligence has a decades-long history that exhibits alternating enthu-
siasm and disillusionment for the field’s scientific insights, technical accomplish-
ments, and socioeconomic impact. Recent achievements have seen renewed claims 
for the transformative and disruptive effects of AI. Reviewing the history and cur-
rent state of the art reveals a broad repertoire of methods and techniques devel-
oped by AI researchers. In particular, modern machine learning methods have en-
abled a series of AI systems to achieve superhuman performance. The exponential 
increases in computing power, open-source software, available data, and embed-
ded services have been crucial to this success. At the same time, there is growing 
unease around whether the behavior of these systems can be rendered transparent, 
explainable, unbiased, and accountable. One consequence of recent AI accom-
plishments is a renaissance of interest around the ethics of such systems. More gen-
erally, our AI systems remain singular task-achieving architectures, often termed 
narrow AI. I will argue that artificial general intelligence–able to range across 
widely differing tasks and contexts–is unlikely to be developed, or emerge, any 
time soon. 

A rtificial intelligence surrounds us, both as a topic of debate and a de-
ployed technology. AI technologists, engineers, and scientists add to an 
ever-growing list of accomplishments; the fruits of their research are ev-

erywhere. Voice recognition software now goes unremarked upon on our smart-
phones and laptops and is ever present in digital assistants like Alexa and Siri. Our 
faces, fingerprints, gait, voices, and the flight of our fingers across a keypad can all 
be used to identify each and every one of us following the application of AI ma-
chine learning methods. AI increasingly plays a role in every sector of our econ-
omy and every aspect of our daily lives. From driving our cars to controlling our 
critical infrastructure, from diagnosing our illnesses to recommending content 
for our entertainment, AI is ubiquitous.

While pundits, politicians, and public intellectuals all weigh in on the benefits 
and potential harms of AI, its popular image is informed as much by Hollywood 
as Silicon Valley. Our cinematic representations often portray a dystopian future 
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in which sentient machines have risen to oppress human beings. It is an old trope, 
one in which our technology threatens our humanity. 

But it is important to look at the history and current actuality to understand 
what our AI future is likely to be. There are reasons to be optimistic: AI under-
stood from a human-centered perspective augments our intelligence. It will even 
allow us to understand more about our own intelligence. Though, if we do not at-
tend to AI ethics and proper regulation, it certainly has the potential to diminish 
us. 

The title of this essay draws on the closing sentence of Charles Darwin’s mag-
isterial On the Origin of Species. Darwin gave us the means to understand how all 
of life, including self-aware, natural intelligence, has evolved. Evolution works 
over deep time, producing diverse species within rich and varied ecosystems. It 
produces complex systems whose operating and organizational principles we 
struggle to decipher and decode. AI has begun to populate specialist niches of the  
cyber-physical ecosystem, and species of narrow AI are able to master specific 
tasks. However, we face challenges on the same scale as cognitive neuroscientists 
in our quest to realize artificial general intelligence (AGI): systems able to reflectively 
range across widely differing tasks and contexts. Such systems remain the stuff of 
Hollywood films.

A lan Turing’s famous 1950 Mind essay imagined a task in which a human 
evaluator had to determine, via a series of questions and answers be-
tween interlocutors, whether one or the other was in fact a machine.1 

He argued that the point at which this discrimination could not be reliably made 
would represent a watershed. The Turing Test (Turing himself called it the “imi-
tation game”) has assumed mythic status. Arguments rage as to whether it is any-
thing like a sufficient test to determine intelligence. Years earlier, Turing had writ-
ten another seminal paper in which he introduced the idea of a universal Turing 
machine, a formulation that showed that “it is possible to invent a single machine 
which can be used to compute any computable sequence.”2 The promise of this 
proof is the foundation upon which all modern computing devices rest. 

The promise of computability also lay at the heart of the field baptized as  
artificial intelligence at the 1956 Dartmouth workshop. Computer scientist John Mc-
Carthy and his coauthors wrote in the original funding proposal: “The study is to 
proceed on the basis of the conjecture that every aspect of learning or any other 
feature of intelligence can in principle be so precisely described that a machine 
can be made to simulate it.”3

Much of the confidence embodied in the quote from this first era of AI lay in the 
formal and expressive power of logic and mathematics. Computers are grounded 
in Boolean logic, via transistors that implement simple logical functions: AND, 
NAND, OR, and NOR gates. These simple transistors give effect to functions that 
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allow us to build layer upon layer of more complex reasoning. Just two years af-
ter the Dartmouth conference, McCarthy produced LISP, a computer language for 
symbol processing that powered many early AI projects. These projects sought to 
decompose intelligent behavior into sets of functions that manipulated symbols. 
The physical symbol system hypothesis was the confident assertion that “a physical 
symbol system has the necessary and sufficient means for general intelligent ac-
tion.”4 The symbols manipulated were representations of the rules and objects in 
tasks ranging from vision to natural language understanding, planning to game 
playing, theorem-proving to diagnostic reasoning.

By the 1970s, however, AI research ran into some strong headwinds. In the 
United States, Defense Advanced Research Projects Agency (DARPA) funding had 
been substantially reduced from its 1960s levels.5 And in 1973, the United King-
dom saw the publication of the Lighthill report, in which Sir James Lighthill,  
Lucasian Professor of Mathematics at Cambridge University, argued that AI’s 
“grandiose objectives” remained largely unmet, and called for a virtual halt to all 
AI research in Britain.6

It took a decade for funding levels to recover. However, by the 1980s and ear-
ly 1990s, a new domain-oriented strand of AI–that is, knowledge-based or expert 
systems–was commercially successful. These systems once again demonstrated 
the considerable power of rule-based reasoning: systems that build proofs that es-
tablish the facts about a domain, or else attempt to establish whether a statement 
is true given the facts that are known or can be derived. Computers running rule-
based or logic-based languages engage in cycles of forward or backward chaining 
to discover new facts or establish how new goals can be proved. Combined with 
methods of attaching certainty estimates to facts and rules, these systems found 
widespread deployment in sectors from medicine to aerospace, manufacturing to 
logistics.7 

A new economy founded on knowledge-based systems was promised; Japa-
nese, European, and U.S. funding agencies all invested heavily. Companies whose 
focus was on the software environments and hardware to support this knowledge- 
engineering approach flourished. Developments saw new programming ideas 
from AI percolate widely; the inclusion of structured representations–not just 
rules and logical formulas–to represent objects in a domain saw the widespread 
adoption of object-oriented programming methods that are pervasive today.

Unfortunately, inflated expectations and the challenges of maintaining large-
scale knowledge-based systems led to another cycle of disenchantment. Funders 
and the market as well as some researchers in AI felt that “good old-fashioned AI 
(GOFAI)” approaches focused too much on a logicist interpretation of AI; what 
was needed was “nouvelle AI.”8 Increasing numbers of researchers argued that 
we needed to adopt a very different approach if we were really to understand the 
foundations of adaptive intelligent systems. They claimed that the best place to 
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look for these foundations were complex biological systems, in which animals 
possessed nervous systems with sensorimotor capabilities.

This was not a new claim. From the outset, many AI researchers were inspired 
by biological systems. The work of Norbert Wiener in cybernetics, and later Grey 
Walters, Walter Pitts, Warren McCulloch, and Frank Rosenblatt, used the nervous 
system as the base model. In 1958, Rosenblatt developed the perceptron, which 
was intended to model a neuron’s behavior. Neurons receive multiple inputs from 
other connected neurons. The perceptron modeled this by receiving several input 
values. The connection for each input has a weight in the range of zero to one, and 
these values are randomly picked. The perceptron unit then sums the inputs, and 
if the sum exceeds a threshold value, a signal is sent to the output node; otherwise, 
no signal is sent. The perceptron can “learn” by adjusting the weights to approach 
the desired output. It implements an algorithm that classifies input into two pos-
sible categories. Inspired by the way neurons work together in the brain, the per-
ceptron is a single-layer neural network.

In 1969, computer scientists Marvin Minsky and Seymour Papert showed that 
the perceptron was fundamentally limited in the functions it could compute. 
However, it turned out that more complex networks with connected neurons 
over multiple layers overcame these limitations. The mid-1980s saw the emer-
gence of parallel distributed processing (PDP): an influential connectionist ap-
proach that was particularly good for pattern detection.9 The PDP approach re-
lied on the backpropagation algorithm, which determined how a machine should 
change its internal parameters and connection weights between each layer as the 
system was trained. 

At the same time, biologically inspired robotics was taking nature as a tem-
plate for design.10 The goal was to construct complete systems with discrete be-
haviors and with the sensors and effectors that offloaded computational work to 
morphology. Simple animals, insects in particular, were favorite subjects of study. 
These highly successful biological systems would illustrate the methods and tech-
niques that had worked well in real complex environments. Animats were all the 
rage: whether it was artificial crickets, modeled on their biological counterparts 
and who orient based on resonators, tubes through their hind legs that evolved to 
be a particular fraction of a wavelength of the call of a mate, or replicas of Sahara  
Desert ants that have an adaptation to part of their compound eyes, which are sen-
sitive to polarized sky light, giving them directional orientation. The wisdom of 
bodies evolved over deep time continues to inform robotics design.

As AI approached the millennium, it comprised a broad set of methods to rep-
resent and reason about the world, from symbolic rules to knowledge represented 
subsymbolically in network connections. Some of these methods called for build-
ing adaptivity directly into the hardware of systems. The history of AI has con-
stantly intertwined the discovery of new ways to reason and represent the world 
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with new programming languages and engineering paradigms. Computer sci-
ence, in turn, has been enriched by these cycles of development.

Throughout, a fundamental contributor to AI’s progress has been the increas-
ing power of our computing substrate. Moore’s law (processor capacity), Kry-
ders’s law (memory density), and Cooper’s law (communication speed) all tell a 
story of exponential change. The accomplishments of AI and the digital revolution 
owe much to electrical and material engineers. The doubling of computing power, 
storage, and communication speeds every fifteen months has changed everything. 
Methods, techniques, and approaches previously intractable become possible.

As the millennium approached, increasing computing power that drove a 
range of AI methods and techniques allowed for impressive AI methods capable 
of searching huge problem spaces. 

In a game in 1996, and then again in a tournament of six games in 1997, IBM’s 
Deep Blue computer program beat Gary Kasparov, one of the very best chess play-
ers in history. How had this happened? And were the machines going to take over 
from us at the dawn of the new millennium? Twenty-five years ago, the ascen-
dency of AI was announced along with the destruction of jobs and the imminent 
emergence of AGI.

Deep Blue was capable of evaluating one hundred million to two hundred mil-
lion positions per second. Brute computing force, combined with heuristics, or 
rules of thumb, that suggest which part of the search tree is more interesting than 
another, led to uncannily capable behavior. Writing for Time magazine in 1996, 
Kasparov observed: “I had played a lot of computers but had never experienced 
anything like this. I could feel–I could smell–a new kind of intelligence across 
the table.”11 Our attribution of intelligence to the machine is a recurrent feature 
in our relationship with AI technology. The technology can literally unnerve us 
when superhuman performance is achieved. But the fundamental challenge in AI 
was, and remains, transferring ability in one task to another. Could all the insight 
generated and effort expended on Deep Blue be transferred to another task? This 
proved much harder.

The turn of the millennium saw another digital disruption that worked in AI’s 
favor. The largest information asset in the history of humanity, the World Wide 
Web, provided a repository for vast amounts of machine-readable, open data and 
information. A limiting factor throughout the first half of AI’s history had been a 
relative paucity of data. Whether for visual recognition, natural language under-
standing, or medical diagnosis, the data to drive learning in these domains were 
limited and expensive to acquire. The Web and Internet of Things (IoT) complete-
ly changed the situation. Billions of pages of text, billions of images, many of them 
labeled and annotated, and a flood of scientific and social data about every aspect 
of our lives became available as digital resources. Without these data resources, at 
scale, the last two decades of AI progress would have been inconceivable. 



151 (2) Spring 2022 33

Nigel Shadbolt

These data combined with increasingly powerful computers, search, rule-
based systems, methods to learn from structured inputs, natural language under-
standing, and methods to compute confidence values from uncertain inputs to en-
able a new kind of composite AI system. In 2011, IBM announced a new age of cog-
nitive computing with Watson: a system capable of beating the world’s best human 
players not at a circumscribed board game, but at a general knowledge task. 

YouTube videos of a computer competing against the best human players of 
the popular U.S. quiz game Jeopardy make for compelling viewing. In Jeopardy, con- 
testants are presented with general knowledge clues in the form of answers, and 
they must phrase their responses in the form of questions. So, for the clue, “Wanted  
for general evil-ness; last seen at the tower of Barad-dur; it’s a giant eye, folks. 
Kinda hard to miss,” the correct response is “Who is Sauron?” The IBM Watson 
system appeared extraordinarily capable, reeling off question after question rang-
ing over broad areas of knowledge across numerous categories.

This general intelligence could surely be transposed to other domains. Why 
not turn Watson into a physician? Once again, task transfer and generalization 
have turned out to be very difficult. While perhaps more adept at screening and 
triage, a physician’s general problem-solving is full of task and context chang-
es. Rather than replicating accomplished physicians, IBM’s Watson Health has 
turned out AI assistants that can perform in routine tasks.12 

Around the same time that Watson caught the world’s attention, another AI 
capability was emerging, one that has delivered remarkable results. It is a con-
tinuation of the neural networks and connectionist tradition, using systems with 
many more hidden layers: deep neural networks (DNNs) implement highly op-
timized backpropagation algorithms and the principles of supervised, unsuper-
vised, and reinforcement machine learning.

F ounded in the United Kingdom in 2010 and acquired by Google in 2014, 
DeepMind has been a major contributor to the success of DNNs. Build-
ing on the work of researchers such as computer scientist Yann LeCun and 

colleagues, the company has realized a succession of brilliant task-achieving sys-
tems.13 The promise of the DeepMind approach began to emerge with an essay 
showing mastery of a range of arcade games using reinforcement learning.14

In 2014, the AlphaGo project team was formed to test how well DNNs could 
compete at Go. By October 2015, a distributed version of AlphaGo beat European 
Go champion Fan Hui five to zero. The announcement was delayed until January 
27, 2016, to coincide with the publication of the approach in Nature.15 A feature of 
DeepMind’s impact has been the follow-up of each significant achievement with 
peer-reviewed publications in the world’s leading science journals. 

A trio of DeepMind successes was released in rapid succession: AlphaGo, in-
cluding AlphaGo Zero and AlphaZero; AlphaStar, DeepMind’s AI program that 
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became ferociously good at the multiplayer strategy game StarCraft; and Alpha-
Fold, a program that made dramatic inroads into a significant challenge for sci-
ence–protein folding–helping scientists design the drugs of tomorrow.16

As ever, the exponents of hardware were in play. The Deep Blue machine that 
defeated Kasparov was one of the most powerful computers in the world, process-
ing at 11 GigaFLOPS (eleven billion floating-point operations per second). The  
forty-eight tensor processing units that beat Lee Sedol, one of the world’s stron-
gest Go players, in 2016 ran at 11.5 PetaFLOPS, that is, eleven and a half thousand 
million million floating-point operations per second, one million times more 
powerful than Deep Blue.

With these types of DNN architecture, we are beginning to see AI systems aug-
ment, match, and, in some cases, outperform human experts in a whole host of 
tasks. Whether it is picking up underlying health conditions from retinal scans 
or classifying skin lesions as benign or malignant, having been trained on hun-
dreds of thousands of images, DNNs are performing as well as the best human 
experts.17 The methods behind these systems have rapidly become commercial-
ized and commoditized. The major platforms offer cloud-based, machine learn-
ing services. They provide access to arrays of processors for training and running 
machine learning models. Companies invest huge amounts of capital in the de-
velopment and acquisition of special hardware optimized for training and run-
ning machine learning models. Using very large data sets, they use prodigious 
amounts of compute power and energy to train very large neural network mod-
els. Generative Pre-trained Transformer 3 (GPT-3), a current state-of-the-art lan-
guage model, trained on forty-five terabytes of data with 175 billion parameters, 
can be adapted to work on a wide range of tasks.18 The model took huge amounts 
of cloud compute time and millions of dollars to produce. The result is a so-called 
foundations model, trained on broad data at scale and adaptable to a wide range 
of downstream tasks.19 Such models like GPT-3 and BERT will increasingly power 
AI on-demand services.
AI-powered, on-demand services, such as voice, vision, and language recog-

nition, are part of the service landscape from health to retail, finance to farming. 
The unreasonable effectiveness of narrow or task-specific AI has elicited familiar 
concerns, anxious questions about jobs and ethics, sovereign capabilities, market 
concentration, and our own potential redundancy as a species. 
AI systems powered by machine learning methods have been used for pre-

dictive policing, suspect facial recognition, bail setting, and sentencing. But are 
we sure these are fair, nondiscriminatory, and proportionate? In China, AI sys-
tems are being used at scale to assign social credit. Is this supporting good citizens 
in a safe space or is it state surveillance? We can see the ethical issues piling up 
with the application of specific AI capabilities within important societal contexts 
(some of which are explored further in this issue of Dædalus).
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Governments and large-tech companies, NGOs, multilateral organizations, 
think tanks, and universities have been busy writing their various AI ethical codes 
of conduct and practice. An article published in Nature Machine Intelligence in Sep-
tember 2019 presented a meta-analysis of eighty-four codes and ethical guidelines, 
revealing their top concerns.20 The most prevalent of which was transparency,  
understood as efforts to increase explainability, interpretability, or other acts of 
communication and disclosure around AI algorithms. This undoubtedly has a 
great deal to do with the preponderance of DNNs. Layer upon layer of connected 
nodes, huge matrices of weights that somehow encode the decision-making of the 
trained system appear as complex black boxes.

When we are dealing with GOFAI expert systems or theorem-provers, we can 
see the explicit lines of reasoning; rules that can be recapitulated in natural lan-
guage. If the patient has a white blood cell count of less than 2,500, then they have 
a low white blood cell count–such rules are applied in chains of reasoning–and if 
we want to know the reason for the determination of leukopenia (low white blood 
cell count) there it is, explicit and contestable.

The internals of a DNN present a challenge. There has been considerable tech-
nical work to explicate the black box. A whole subfield of AI comprises methods 
and techniques to understand what is going on, including efforts at feature visual-
ization. There are striking examples in which the intermediate layers from input 
to output do appear to extract features that resemble the stages of processing in-
volved, for example, in visual processing. But explainable AI remains a significant 
challenge.

Another top theme in the various ethical codes was that of nonmaleficence–a 
kind of do-no-ill–related to safety and security. Consider generalized adversari-
al networks (GANs). They comprise multiple neural networks: one, for example, 
classifying images and the second, its adversary, doing its best to find patterns that 
will have a high probability of being misclassified by the first. How can you be 
sure that the models you have trained are robust and cannot be subverted or in-
deed that the data you have trained them on have themselves not been subverted? 
There are methods in development to counter these attacks. But this is a race be-
tween competing methods. A product of the largely beneficial adoption of open-
source principles within much of AI allows algorithms to be shared and improved 
as well as critiqued and compromised.

Current AI is not all about deep neural networks. AI progress has continued 
apace across a broad swath of approaches. Agent-based computing, which builds 
explicit models of competing and collaborating agents, has developed new game 
theoretic approaches to enable efficient and effective behavior in auctions, re-
source allocation, and many other applications. Agent-based computing has been 
used to model the pandemic and predict the impact of nonpharmacological inter-
ventions. Natural language processing methods have summarized large swaths of 



36 Dædalus, the Journal of the American Academy of Arts & Sciences

“From So Simple a Beginning”: Species of Artificial Intelligence

scientific work that might be relevant to dealing with the pandemic. Knowledge 
graphs–explicit representations of biochemical and drug pathways–have been 
interrogated to find which drugs might be repurposed in dealing with the virus. 
Our current AI ecosystem has never been more varied and vibrant.

W hat of the future? We can be assured of continued progress in the un-
derpinning computational fabric. The road maps available now al-
ready anticipate exponential increases in computer power, storage, 

and connectivity. In the United States, companies like Facebook, Amazon, and 
Google are increasing their investments in AI-enabled chips, as are their equiva-
lents in China.

Data availability has been growing exponentially and, with ever more ubiq-
uitous IoT devices, is expected to continue to do so. We may see more storage of 
data at the edge: that is, data that are stored locally on a plethora of distributed 
devices and not consolidated into the cloud. This trend will act as a forcing func-
tion on new kinds of distributed machine learning and federated problem-solving 
techniques. The pandemic has spawned increased amounts of data creation and 
replication, though estimates suggest that only 2 percent of what is created is per-
sistently stored. The global installed storage capacity (estimated at 6.7 zettabytes 
in 2020) is many times smaller than the data ephemerally generated. Is this a lost 
opportunity? Could AI engines be uncovering more patterns and structures? And 
how are we to determine what data to keep?

We can be sure that the success of task-achieving architectures will continue. 
There are any number of image-based classification tasks to which AI methods 
can be applied, any number of text summarization and generation tasks to which 
natural language processing techniques are suited. As data become more densely 
connected across sectors and between individuals and organizations, there will be 
any number of roles for planning, recommendation, and optimization systems–
lots of niches–to fill. In this sense, the future of AI will be about the continued 
digitization of services, products, and processes.

The current paradigm of DNNs faces significant challenges in addition to 
those of explainability, safety, and security already mentioned. One is the on-
going challenge of distribution shift. Problems arise because the data on which a 
network is trained come from a different distribution than the data used when 
tested or deployed: for example, facial recognition systems trained on a par-
ticular population and deployed in contexts with very different distributions. 
Distribution shift can arise because labels shift, or else the concepts involved 
in classification and prediction can change; whether it is the diagnostic criteria 
for mental illness or job titles, all are subject to considerable amounts of con-
cept shift. Although much studied, distribution shift remains a real and ongoing 
challenge.
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Another recurrent and recognized challenge is transfer learning. How can suc-
cess in one task be generalized: that is, reusing or transferring information from 
previously learned tasks for the learning of new tasks. We already have various ex-
amples of transfer learning within AI: image-recognition systems trained on one 
domain transferred to another, language understanding models trained on huge 
data sets repurposed for other language processing tasks. But the challenge comes 
when the source task is not sufficiently related to the target task, or the transfer 
method is unable to leverage the relationship between the source and target tasks.

Notwithstanding these challenges, we will see spectacular convergences where 
data at scale, at new levels of precision and resolution, allow diagnosis, forecast-
ing, and modeling across a swath of sectors. Where engineering continues its own 
exponential path of smaller, cheaper, more powerful, and more energy-efficient 
devices, we will see AI embedded into the fabric of our built environment, offer-
ing up the vision of intelligent infrastructure (II). Swarm-scale collaborations be-
tween many devices adapt to and directly modify their environments. 

An approach dubbed physical AI (PAI), carrying on a tradition of biologi-
cally inspired AI, urges us to look at the underlying principles that have evolved 
through deep time to be intrinsic parts of biological adaption.21 Processes resem-
bling homeostasis, the regulation of body states aimed at maintaining conditions 
compatible with life, could be integrated with intelligent machines. Advocates of 
this approach suggest that such internal regulatory mechanisms and control will 
lead to a new class of machines that have intrinsic goals.22 Mechanical engineer-
ing, computer science, biology, chemistry, and materials science will be founda-
tional elements in this type of approach.

This gap in embodiment–in AI systems that are in themselves purposeless–
remains a grand challenge for AI. Those who claim the imminent emergence of 
AGI should note that we remain far from understanding what constitutes our own 
general intelligence and associated self-awareness or consciousness. Intelligence 
is a polythetic concept that we use all the time and yet resists easy definitions. It 
is a graduated concept, we say that X is more intelligent than Y, and yet ordering 
ourselves on a linear scale misses the fact that we might excel in one sphere and 
have little or no capacity elsewhere. For most, general intelligence would seem to 
require language, learning, memory, and problem-solving. The importance of in-
tuition, creativity, and reflective consciousness are seen as important attributes by 
many. The ability to survive in a complex world, to be embodied and possessed of 
perceptual and motor skills, is highlighted by others.

Patrick Winston, an AI pioneer and sometime director of MIT’s Computer 
Science and AI Lab (CSAIL), once remarked that “there are lots of ways of being 
smart that aren’t smart like us.” On this view, the space of intelligent systems is 
likely large and multidimensional. Recent work on other minds invites us to con-
sider biological entities that have a claim to many attributes of general adaptive 
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and intelligent behavior.23 They are not writing literature or building cyclotrons, 
but the octopus displays a range of behaviors we could consider intelligent. This 
chimes with the nouvelle AI and Cambrian intelligence approach advocated by 
roboticist Rodney Brooks, an approach that builds situated robots in complex en-
vironments often exhibiting emergent behaviors.24

For others, consciousness is an essential feature of general intelligence. Con-
sciousness, the hard problem in neuroscience, is itself a term that elicits very dif-
ferent responses. For some, it is an illusion, a kind of hallucination, a fiction we 
have built for ourselves. For others, it is a supervenient reality whose emergence 
we are far from understanding.

Whatever its basis, a key property of human consciousness is that we have 
conceptual self-awareness: we have abstract concepts for our physical and mental 
selves; my body, my mind, and my thought processes as well as an integrated sense 
of myself–me. A construct replete with emotions, experience, history, goals, and 
relationships. We are possessed of theories of mind to understand other entities 
and motivations in context, to be able to make sense of their actions and to inter-
act with them appropriately. None of this is in our AI systems at present. This is 
not to say such awareness will never be present in future species of AI. Our own 
cognitive and neural architectures, the rich layering of systems, present an exis-
tence proof. But our AI systems are not yet in the world in any interesting sense.25

When discussing the prospect of artificial general intelligence, we tend to re-
serve a special place for our own variety–possessed of experiential self-awareness– 
and we seem particularly drawn to the symbolic expression of that experience in 
our language, teleological understanding of the world, and imagined future pos-
sibilities. We need to continue to interrogate our understanding of the concept 
of intelligence. For the foreseeable future, no variety of AI will have a reasonable 
claim to a sufficient range of attributes for us to ascribe them general intelligence. 
But this cannot be an in-principle embargo.

For some, this is a distraction from medium-term future concerns. Writing in 
the Harvard Data Science Review, Michael Jordan notes the need for artificial intel-
ligence, intelligence augmentation, and intelligent infrastructure, a need that “is 
less about the realization of science-fiction dreams or superhuman nightmares, 
and more about the need for humans to understand and shape technology as it be-
comes ever more present and influential in their daily lives.”26

T he field of AI contains lively and intense debates about the relative con-
tribution of particular approaches, methods, and techniques. From logic 
to statistical mechanics, rule-based systems to neural networks, an ever- 

increasing number of powerful, adaptive, and useful computational systems have 
been conceived, built, and deployed. We are building intelligent infrastructures 
suffused with adaptability, error correction, and “learning.”
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A range of remarkable AI-powered products and services have literally been 
placed in our hands through the agency of the supercomputers that are today’s 
smartphones. These hand axes of the twenty-first century are general purpose, 
ubiquitous tools capable of transforming our physical and cyber worlds. The data 
and AI that power these systems and their successors will provide new services the 
early harbingers of which already exist. 

Consider real-time machine translation (MT), in effect a digital realization of 
the Babel fish wonderfully imagined by Douglas Adams in his Hitchhiker’s Guide 
to the Galaxy. This will be a world in which we speak and listen to one another, all 
the while remaining in our native languages. This exciting prospect comes with 
questions; for example, will it promote or diminish linguistic diversity? Modern 
statistical MT requires a lot of machine-readable text–the languages of the world 
are not equally represented in this regard. Is this fair or equitable?

The data and algorithms compiled into future generations of ultra-smart-
phones and embedded sensors will include an enormous range of diagnostic capa-
bilities. The Babel fish will certainly be joined by a version of Star Trek’s tricorder. 
Miniaturization will lead to device embedding and integration with our neurol-
ogy and physiology. Nano probes and sensors will be on the alert for everything 
from cancer to dementia. Our own individual and collective biology will be avail-
able for real-time analysis and predictive maintenance. Neural links will interface 
with the brain to augment our senses, attention, and memory, even rendering our 
internal visualizations visible and inner speech audible. The associated privacy 
implications and challenges will be self-evident.

The real-time instrumentation of our environment will yield effective now- 
casting; scientific and engineering advances via AI-augmented discovery and de-
sign will offer increased rates of innovation. Huge search spaces will be reviewed 
and interrogated, selected, and developed in drug and materials discovery; our 
artistic and cultural lives will be enriched by machine-generated content. These 
examples engender genuine excitement; AI empowering humankind. Sadly, wea-
ponized AI will figure in our collective futures, too. Whether deployed to attack 
our cyber infrastructure or generate deepfakes, guide precision munitions or pi-
lot drones, AI will have dangerous and lethal capabilities. Regulation and gover-
nance, ethics and law become essential adjuncts to our AI science and technology.

The “speciation” of AI, the filling of lots of niches in our cyber-physical world, 
is set to continue, from tasks in specific domains to support for us in all our daily 
tasks. The interpenetration of these tools and systems will surround and augment 
us. Our interactions with our AI systems will assume more texture and depth, at 
least from our perspective. We engineered our computational systems built on the 
promise of universal Turing machines. We started with the languages of logic and 
decision trees. We are now exploring the rich possibilities of machines driven by 
statistical inference, pattern-extraction, and learning from vast amounts of data. 



40 Dædalus, the Journal of the American Academy of Arts & Sciences

“From So Simple a Beginning”: Species of Artificial Intelligence

The very recent possession of symbolic language and the discovery of mathe-
matics and formal systems of computation have provided humans with the tools 
to build and explore new AI systems. This broad repertoire of approaches and 
methods remains essential. Our AI systems with their ability to represent and dis-
cover patterns in high dimensional data have as yet low dimensional embedding 
in the physical and digital worlds they inhabit. This thin tissue of grounding, of 
being in the world, represents the single largest challenge to realizing AGI. But the 
speciation of AI will continue: “from so simple a beginning endless forms most 
beautiful and most wonderful have been, and are being, evolved.”
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