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If We Succeed

Stuart Russell

Since its inception, AI has operated within a standard model whereby systems are de-
signed to optimize a fixed, known objective. This model has been increasingly success-
ful. I briefly summarize the state of the art and its likely evolution over the next decade. 
Substantial breakthroughs leading to general-purpose AI are much harder to predict, 
but they will have an enormous impact on society. At the same time, the standard mod-
el will become progressively untenable in real-world applications because of the diffi-
culty of specifying objectives completely and correctly. I propose a new model for AI 
development in which the machine’s uncertainty about the true objective leads to qual-
itatively new modes of behavior that are more robust, controllable, and deferential. 

T he central technical concept in AI is that of an agent: an entity that per-
ceives and acts.1 Cognitive faculties such as reasoning, planning, and 
learning are in the service of acting. The concept can be applied to hu-

mans, robots, software entities, corporations, nations, or thermostats. AI is con-
cerned principally with designing the internals of the agent: mapping from a 
stream of raw perceptual data to a stream of actions. Designs for AI systems vary 
enormously depending on the nature of the environment in which the system will 
operate, the nature of the perceptual and motor connections between agent and 
environment, and the requirements of the task. AI seeks agent designs that exhibit 
“intelligence,” but what does that mean?

In answering this question, AI has drawn on a much longer train of thought 
concerning rational behavior: what is the right thing to do? Aristotle gave one 
answer: “We deliberate not about ends, but about means. . . . [We] assume the end 
and consider how and by what means it is attained, and if it seems easily and best 
produced thereby.”2 That is, an intelligent or rational action is one that can be ex-
pected to achieve one’s objectives. 

This line of thinking has persisted to the present day. In the seventeenth centu-
ry, theologian and philosopher Antoine Arnauld broadened Aristotle’s theory to 
include uncertainty in a quantitative way, proposing that we should act to max-
imize the expected value of the outcome (that is, averaging the values of differ-
ent possible outcomes weighted by their probabilities).3 In the eighteenth century, 
Swiss mathematician Daniel Bernoulli refined the notion of value, moving it from 
an external quantity (typically money) to an internal quantity that he called utili-
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ty.4 French mathematician Pierre Rémond de Montmort noted that in games (de-
cision situations involving two or more agents) a rational agent might have to act 
randomly to avoid being second-guessed.5 And in the twentieth century, mathema-
tician John Von Neumann and economist Oskar Morgenstern tied all these ideas 
together into an axiomatic framework: rational agents must satisfy certain prop-
erties such as transitivity of preferences (if you prefer A to B and B to C, you must 
prefer A to C), and any agent satisfying those properties can be viewed as having 
a utility function on states and choosing actions that maximize expected utility.6

As AI emerged alongside computer science in the 1940s and 1950s, researchers 
needed some notion of intelligence on which to build the foundations of the field. 
Although some early research was aimed more at emulating human cognition, the 
notion that won out was rationality: a machine is intelligent to the extent that its 
actions can be expected to achieve its objectives. In the standard model, we aim 
to build machines of this kind; we define the objectives and the machine does the 
rest. There are several different ways in which the standard model can be instan-
tiated. For example, a problem-solving system for a deterministic environment is 
given a cost function and a goal criterion and finds the least-cost action sequence 
that leads to a goal state; a reinforcement learning system for a stochastic envi-
ronment is given a reward function and a discount factor and learns a policy that 
maximizes the expected discounted sum of rewards. This general approach is not 
unique to AI. Control theorists minimize cost functions, operations researchers 
maximize rewards, statisticians minimize an expected loss function, and econo-
mists maximize the utility of individuals or the welfare of groups.

W ithin the standard model, new ideas have arisen fairly regularly since 
the 1950s, leading eventually to impressive real-world applications. 
Perhaps the oldest established area of AI is that of combinatorial 

search, in which algorithms consider many possible sequences of future actions or 
many possible configurations of complex objects. Examples include route-finding 
algorithms for GPS navigation, robot assembly planning, transportation schedul-
ing, and protein design. Closely related algorithms are used in game-playing sys-
tems such as the Deep Blue chess program, which defeated world champion Garry 
Kasparov in 1997, and AlphaGo, which defeated world Go champion Ke Jie in 2017. 
In all of these algorithms, the key issue is efficient exploration to find good solu-
tions quickly, despite the vast search spaces inherent in combinatorial problems.

Beginning around 1960, AI researchers and mathematical logicians developed 
ways to represent logical assertions as data structures as well as algorithms for 
performing logical inference with those assertions. Since that time, the technolo-
gy of automated reasoning has advanced dramatically. For example, it is now rou-
tine to verify the correctness of VLSI (very large scale integration) chip designs 
before production and the correctness of software systems and cybersecurity 



151 (2) Spring 2022 45

Stuart Russell

protocols before deployment in high-stakes applications. The technology of logic 
programming (and related methods in database systems) makes it easy to specify 
and check the application of complex sets of logical rules in areas such as insur-
ance claims processing, data system maintenance, security access control, tax cal-
culations, and government benefit distribution. Special-purpose reasoning sys-
tems designed to reason about actions can construct large-scale, provably correct 
plans in areas such as logistics, construction, and manufacturing. The most visible 
application of logic-based representation and reasoning is Google’s Knowledge 
Graph, which, as of May 2020, holds five hundred billion facts about five billion 
entities and is used to answer directly more than one-third of all queries submit-
ted to the Google search engine.7 

In the 1980s, the AI community began to grapple with the uncertainty inherent 
in real-world observations and in knowledge acquired from humans or through 
machine learning. Although some rule-based expert systems adopted ad hoc cal-
culi for representing and propagating uncertainty, probability theory became the 
dominant tool, largely due to the development of Bayesian networks by computer 
scientist Judea Pearl and others.8 This led to the development of the first large-
scale computational tools for probabilistic reasoning and to substantial cross- 
fertilization between AI and other fields that build on probability theory, includ-
ing statistics, information theory, control theory, and operations research. Bayes-
ian networks and related methods have been used for modeling, diagnosis, mon-
itoring, and prediction of a wide range of complex systems, including jet engines, 
Mars rovers, ecological networks, and intensive care protocols. Causal networks, 
which extend Bayesian networks to model the effects of exogenous interventions, 
have clarified and facilitated the analysis of causal relationships in many empiri-
cal disciplines, especially in the social sciences.9

The development of probabilistic programming languages, or PPLs, provides 
a universal representation for probability models, meaning that any model rep-
resentable in any formalism can be represented efficiently in a PPL.10 More-
over, PPLs come with general-purpose inference algorithms, so that (in princi-
ple, at least) no algorithm development or mathematical derivations are needed 
when applying probability theory to a new domain. PPLs constitute one of the  
fastest-growing areas of AI and enable the rapid construction of enormously com-
plex models. For example, the new monitoring system for the Comprehensive  
Nuclear-Test-Ban Treaty began life as a PPL model that took only a few minutes to 
write; while operating, it may dynamically construct internal representations in-
volving hundreds of thousands of random variables.11

Alan Turing suggested that machine learning would be the most practical way 
to create AI capabilities.12 The most common paradigm–one shared with statisti-
cal prediction methods–is supervised learning, wherein labeled examples are pro-
vided to a learning algorithm that outputs a predictive hypothesis with which to la-
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bel unlabeled examples. Early developments in AI and in statistics proceeded sepa-
rately, but both fields produced useful tools for learning low-dimensional models, 
with application to areas such as loan decisions, credit card fraud detection, and 
email spam filtering. For high-dimensional data such as images, deep convolution-
al networks have proved to be effective.13 Deep learning has substantially advanced 
the state of the art in visual object recognition, speech recognition, and machine 
translation, three of the most important subfields of AI, as well as in protein fold-
ing, a key problem in molecular biology. Language models such as GPT-3 (Gen-
erative Pre-trained Transformer 3)–very large neural networks trained to predict 
the next word in a sequence–show intriguing abilities to respond to questions in 
a semantically meaningful way. Recent work has shown, however, that deep learn-
ing systems often fail to generalize robustly and are susceptible to spurious regu-
larities in the training data.14 Moreover, the amount of training data required to 
achieve a given level of performance is far greater than a human typically requires.

The algorithmic study of sequential decision-making under uncertainty began 
in economics and operations research.15 Algorithms developed in these fields typ-
ically handle only small problems with up to one million states. In AI, the devel-
opment of reinforcement learning (RL) has allowed researchers to address much 
larger problems satisfactorily, including backgammon with 1019 positions and Go 
with 10170 positions.16 RL algorithms learn by experiencing state transitions and 
their associated rewards while updating a representation of the value of states 
(and possibly actions as well) or a direct representation of the decision policy. Ap-
plications of RL range from bidding in advertising markets to improving the abili-
ty of robots to grasp previously unseen objects.17 As with supervised learning, ap-
plications of deep networks in RL may also be quite fragile.18

With modest advances in perception and dexterity, we can expect to see robots 
moving into a variety of unstructured environments, including roads, warehous-
es, agriculture, mining, and warfare. We may see progress on language under-
standing comparable to the progress on image understanding made over the last 
decade, which would enable high-impact applications such as intelligent person-
al assistants and high-quality intelligent tutoring systems. Search engines, rath-
er than responding to keywords with URLs, would respond to questions with an-
swers based on reading and, in a shallow sense, understanding almost everything 
the human race has ever written. And text would be augmented by satellite imag-
ery, enabling computers to see every object (fifty centimeters or larger) on Earth 
every day, weather permitting.

Although this view is far from universally shared, I think it is likely that in the 
coming decade, the pendulum will swing away from a reliance on end-to-end deep 
learning and back toward systems composed from modular, semantically well- 
defined representations built on the mathematical foundations of logic and prob-
ability theory, with deep learning playing a crucial role in connecting to raw per-
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ceptual data. (This approach underlies, for example, Waymo’s industry-leading 
self-driving car project.) The reasons for this prediction are complex, but include 
1) the performance problems with deep learning mentioned earlier; 2) the possi-
bility that such problems may contribute to the failure of flagship projects such as 
self-driving cars; 3) the advantages, in terms of rigor, transparency, and modularity, 
of being able to analyze systems as possessing knowledge and reasoning with that 
knowledge; 4) the expressive limitations of circuit-based representations (includ-
ing deep learning systems) for capturing general knowledge; 5) the essential role 
played by prior knowledge in enabling a learning system to generalize robustly from 
small numbers of examples; and 6) the enormous benefits of being able to improve 
the performance of systems by supplying knowledge rather than training data. It 
is important to understand that modular, semantically well-defined representa-
tions are not necessarily hand-engineered or inflexible: such representations can  
be learned from data, just as the entire edifice of science itself is a modular, seman
tically well-defined representation that has (ultimately) been learned from data.

E ven in its present state, the technology of artificial intelligence raises many 
concerns as it transitions from research into widespread use. These con-
cerns include potential misuses such as cybercrime, surveillance, disinfor-

mation, and political manipulation; the exacerbation of inequality and of many 
forms of bias in society; the creation and deployment of lethal autonomous weap-
ons; and the usurpation of human roles in the economy and in social relationships. 

These issues are addressed admirably in the other essays in this volume, many 
of which contribute to an important yet lamentably only recent trend: under-
standing potential applications of AI not only as technological problems to be 
solved, but also as existing in a social context. Success is to be measured not by the 
accuracy of the AI system’s predictions and decisions, but by the real-world con-
sequences of deploying the system. In other words, we need a theory of sociotech-
nical embedding for AI systems, somewhat analogous to the role that city plan-
ning plays for the artifacts produced by civil engineering and architecture. Absent 
such a theory, we are left with the market to sort through different systems and 
embeddings. For all sorts of reasons, including network effects and social exter-
nalities, this is unlikely to work.19

M y concern here, however, is with the potential consequences of suc-
cess in creating general-purpose AI: that is, systems capable of quickly 
learning to perform at a high level in any task environment where hu-

mans (or collections of humans) can perform well. General-purpose AI has been 
the long-term goal of the field since its inception. For example, Herbert Simon and 
Allen Newell, two pioneers of AI research, famously predicted in 1957: “There are 
now in the world machines that think, that learn and that create. Moreover, their 
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ability to do these things is going to increase rapidly until–in a visible future–the 
range of problems they can handle will be coextensive with the range to which the 
human mind has been applied.”20

It would be an oversimplification to view progress in AI as occurring along a 
one-dimensional, numerical scale of “intelligence.” While such a scale has some 
relevance for humans, AI capabilities in different branches of cognitive activity 
vary so markedly as to make a single scale completely inapplicable. For example, a 
search engine remembers very well and cannot plan at all; a chess program plans 
very well and cannot remember at all. For this reason, there will be no single mo-
ment at which AI “exceeds human intelligence.” By the time that AI systems ex-
hibit generality across all branches, direct comparisons to humans will be mean-
ingless. Almost certainly, such systems would already far exceed human capabil-
ities in many areas thanks to the massive speed, memory, and input bandwidth 
advantages of computers compared with humans. 

That is not to imply that we are close to achieving general-purpose AI. Sugges-
tions that we simply need to collect more data or acquire more computing power 
seem overly optimistic. For example, current natural-language systems process, 
in only a few days, thousands of times more text than any human has ever read, yet 
their understanding of language is brittle and often parrot-like. We need concep-
tual breakthroughs in a number of areas besides language understanding, includ-
ing decision-making over long timescales and the cumulative use of knowledge in 
learning. These breakthroughs are inherently unpredictable. In a 1977 interview, 
John McCarthy, one of the earliest pioneers in AI, said, “What you want is 1.7 Ein-
steins and 0.3 of the Manhattan Project, and you want the Einsteins first. I believe 
it’ll take five to 500 years.”21 This remains true today, although we have seen dra-
matic progress since 1977 in many areas. The vast majority of AI researchers now 
believe that general-purpose, human-level AI will arrive in this century.22

Given the huge levels of investment in AI research and development and the 
influx of talented researchers into the field, it is reasonable to suppose that fun-
damental advances will continue to occur as we find new applications for which 
existing techniques and concepts are inadequate. As noted above, these advanc-
es are hard to predict, but there are no fundamental obstacles that prevent them 
from occurring. Indeed, what evidence could there be that no physically possible 
arrangement of atoms can outperform the human brain? 

T he potential benefits of general-purpose AI would be far greater than 
those of a collection of narrow, application-specific AI systems. For this 
reason, the prospect of creating general-purpose AI is driving massive in-

vestments and geopolitical rivalries.
One can speculate about solving major open problems, such as extending hu-

man life indefinitely or developing faster-than-light travel, but these staples of sci-
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ence fiction are not yet the driving force for progress in AI. Consider, instead, a 
more prosaic goal: raising the living standard of everyone on Earth, in a sustain-
able way, to a level that would be considered respectable in a developed country. 
Choosing “respectable” (somewhat arbitrarily) to mean the eighty-eighth percen-
tile in the United States, this goal represents an almost tenfold increase in global 
GDP, from $76 trillion to $750 trillion per year. The increased income stream re-
sulting from this achievement has a net present value of $13.5 quadrillion, assum-
ing a discount factor of 5 percent. (The value is $9.4 quadrillion or $6.8 quadrillion 
if the technology is phased in over ten or twenty years.) These numbers tower over 
the amounts currently invested in AI research, and momentum toward this goal 
will increase as technical advances bring general-purpose AI closer to realization.

Such a tenfold increase in global GDP per capita took place over 190 years, from 
1820 to 2010.23 It required the development of factories, machine tools, automa-
tion, railways, steel, cars, airplanes, electricity, oil and gas production, telephones, 
radio, television, computers, the Internet, satellites, and many other revolution-
ary inventions. The tenfold increase in GDP posited above is predicated not on 
further revolutionary technologies but on the ability of general-purpose AI sys-
tems to employ what we already have more effectively and at greater scale. There 
would be no need to employ armies of specialists in different disciplines, orga-
nized into hierarchies of contractors and subcontractors, to carry out a project. 
All embodiments of general-purpose AI would have access to all the knowledge 
and skills of the human race, and more besides. The only differentiation would be 
in the physical capabilities: dexterous legged robots for construction or surgery, 
wheeled robots for large-scale goods transportation, quadcopter robots for aeri-
al inspections, and so on. In principle–politics and economics aside–everyone 
could have at their disposal an entire organization composed of software agents 
and physical robots, capable of designing and building bridges or (fully automat-
ed) factories, improving crop yields, cooking dinner for one hundred guests, run-
ning elections, teaching children to read, or doing whatever else needs doing. It is 
the generality of general-purpose intelligence that makes this possible.

The political and economic difficulties should not, of course, be underestimat-
ed. Corporations, elites, or countries may attempt to hoard general-purpose AI 
technology and its benefits and, under some circumstances, economic incentives 
may operate to retard the dissemination of AI-based goods and services.24 One 
can also expect finite resources such as land, human attention, and perhaps raw 
materials to become relatively more expensive.

T he incentives for further development of AI, then, are huge, and the mo-
mentum appears unstoppable. We must, therefore, ask, “What if we suc-
ceed?” This question is seldom considered in the AI literature, which is 

focused primarily on the pursuit of success rather than on its consequences. Alan 
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Turing, widely regarded as the founder of computer science, did consider the 
question. And in 1951, during a lecture given to a learned society in Manchester, he 
answered: “It seems probable that once the machine thinking method had start-
ed, it would not take long to outstrip our feeble powers. . . . At some stage therefore 
we should have to expect the machines to take control.”25

Turing’s prediction is a natural response to the following conundrum: our in-
telligence gives us power over the world and over other species; we will build sys-
tems with superhuman intelligence; therefore, we face the problem of retaining 
power, forever, over entities that are far more powerful than ourselves. 

Within the standard model of AI, the meaning of “power” is clear: the ability 
to achieve one’s objectives regardless of the objectives and actions of others. I be-
lieve the future Turing had in mind was one in which machines take control as a 
result of pursing fixed objectives that are misaligned with human benefit. These 
fixed objectives will be ones that we ourselves have inserted: there is no need to 
posit some form of emergent consciousness that spontaneously generates its own 
objectives. All that is needed to assure catastrophe is a highly competent machine 
combined with humans who have an imperfect ability to specify human prefer-
ences completely and correctly. This is why, when a genie has granted us three 
wishes, our third wish is always to undo the first two wishes.

Unfortunately, the standard model within which almost all current AI sys-
tems are developed makes this future almost inevitable. Once AI systems move 
out of the laboratory (or artificially defined environments such as the simulated 
Go board) and into the real world, there is very little chance that we can specify 
our objectives completely and correctly in such a way that the pursuit of those ob-
jectives by more capable machines is guaranteed to result in beneficial outcomes 
for humans. Indeed, we may lose control altogether, as machines take preemptive 
steps to ensure that the stated objective is achieved. 

T he standard model, then, despite all its achievements, is a mistake. The 
mistake comes from transferring a perfectly reasonable definition of in-
telligence from humans to machines. It is not rational for humans to de-

ploy machines that pursue fixed objectives when there is a significant possibility 
that those objectives diverge from our own.

A more sensible definition of AI would have machines pursuing our objectives. 
Of course, our objectives–in more technical language, our preferences among lot-
teries over complete futures–are in us, and not in the machines. This means that 
machines will necessarily be uncertain about our objectives, while being obliged to 
pursue them on our behalf. In this pursuit, they will be aided by evidence concern-
ing human preferences. This evidence comes from human behavior, broadly con-
strued, including choices, inaction, commands, requests, guidance, permissions, 
artifacts, and social structures.
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This new model for AI, with its emphasis on uncertainty about objectives, en-
tails a binary coupling between machines and humans that gives it a flavor quite 
different from the unary standard model of decoupled machines pursuing fixed ob-
jectives. The standard model can be viewed as an extreme special case of the new 
model, applicable only when it is reasonable to suppose that, within the machine’s 
scope of action, the relevant human objectives can be specified completely and cor-
rectly. It turns out that the uncertainty inherent in the new model is crucial to build-
ing AI systems of arbitrary intelligence that are provably beneficial to humans. 

Uncertainty concerning objectives is a surprisingly understudied topic. In the 
1980s, the AI community acknowledged the inevitability of uncertainty concern-
ing the current state and the effects of actions, but we continued to assume perfect 
knowledge of the objective. For artificially defined puzzles and games, this may be 
appropriate, but for other problems, such as recommending medical treatments, 
it is clear that the relevant preferences (of patients, families, doctors, insurers, 
hospital systems, taxpayers, and so on) are not known initially in each case. While 
it is true that unresolvable uncertainty over objectives can be integrated out of any 
decision problem, leaving an equivalent decision problem with a definite (aver-
age) objective, this transformation is invalid when additional evidence of the true 
objectives can be acquired. Thus, one may characterize the primary difference be-
tween the standard and new models of AI through the flow of preference informa-
tion from humans to machines at “run-time.”

This basic idea is made more precise in the framework of assistance games, 
originally known as cooperative inverse reinforcement learning (CIRL) games.26 
The simplest case of an assistance game involves two agents, one human and the 
other a robot. It is a game of partial information because, while the human knows 
the reward function, the robot does not, even though the robot’s job is to maxi-
mize it. In a Bayesian formulation, the robot begins with a prior probability dis-
tribution over the human reward function and updates it as the robot and human 
interact during the game. Assistance games can be generalized to allow for imper-
fectly rational humans, humans who do not know their own preferences, multiple 
human participants, and multiple robots, among other variations.27 Human ac-
tions in such games can, of course, include communicative actions such as stating 
preferences, making requests, and issuing commands.

Assistance games are connected to inverse reinforcement learning (IRL) be-
cause the robot can learn more about human preferences from the observation of 
human behavior–a process that is the dual of reinforcement learning, wherein 
behavior is learned from rewards and punishments.28 The primary difference is 
that in the assistance game, unlike the IRL framework, the human’s actions are af-
fected by the robot’s presence. For example, the human may try to teach the robot 
about their preferences, and the robot may interpret the human’s actions in this 
light, rather than simply as demonstrations of optimal behavior.
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Within the framework of assistance games, a number of basic results can be 
established that are relevant to Turing’s problem of control.

	• Under certain assumptions about the support and bias of the robot’s prior  
probability distribution over human rewards, one can show that a robot 
solving an assistance game has nonnegative value to humans.29

	• A robot that is uncertain about the human’s preferences has a nonnegative 
incentive to allow itself to be switched off.30 In general, it will defer to hu-
man control actions.

	• To avoid changing attributes of the world whose value is unknown, the ro-
bot will generally engage in “minimally invasive” behavior to benefit the 
human.31 Even when it knows nothing at all about human preferences, it 
will still take “empowering” actions that expand the set of actions available 
to the human.

N eedless to say, there are many open research problems in the new mod-
el of AI. First, we need to examine each existing research area (search, 
game playing, constraint satisfaction, planning, reinforcement learning, 

and so on) and remove the assumption of a fixed, known objective, rebuilding that 
area on a broader foundation that allows for uncertainty about objectives. The 
key questions in each area are how to formulate the machine’s initial uncertainty 
about human preferences and how to codify the run-time flow of preference in-
formation from human to machine.

Another set of research problems arises when we consider how the machine 
can learn about human preferences from human behavior in the assistance game. 
The first difficulty is that humans are irrational in the sense that our actions do 
not reflect our preferences. This irrationality arises in part from our computation-
al limitations relative to the complexity of the decisions we face. For example, if 
two humans are playing chess and one of them loses, it is because the loser (and 
possibly the winner, too) made a mistake, a move that led inevitably to a forced 
loss. A machine observing that move and assuming perfect rationality on the part 
of the human might well conclude that the human preferred to lose. Thus, to avoid 
reaching such conclusions, the machine must take into account the actual cogni-
tive mechanisms of humans. 

Another important consequence of human computational limitations is that 
they force us to organize our behavior hierarchically. That is, we make (defeasi-
ble) commitments to higher-level goals such as “write an essay on a human-com-
patible approach to AI.” Then, rather than considering all possible sequences of 
words, from “aardvark aardvark aardvark” to “zyzzyva zyzzyva zyzzyva,” as a 
chess program might do, we choose among subtasks such as “write the introduc-
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tion” and “read more about preference elicitation.” Eventually, we get down to 
the choice of words, and then typing each word involves a sequence of keystrokes, 
each of which is in turn a sequence of motor control commands to the muscles 
of the arms and hands. At any given point, then, a human is embedded at vari-
ous particular levels of multiple deep and complex hierarchies of partially over-
lapping activities and subgoals. This means that for the machine to understand 
human actions, it probably needs to understand a good deal about what these hi-
erarchies are and how we use them to navigate the real world. 

Other research problems engage directly with philosophy and the social sci-
ences. For example, there is the question of social aggregation, a staple of econom-
ics and moral philosophy: how should a machine make decisions when its actions 
affect the interests of more than one human being? Issues include the preferences 
of evil individuals, relative preferences and positional goods, and interpersonal 
comparison of preferences.32 

Also of great importance is the plasticity of human preferences: the fact that 
they seem to change over time as the result of experiences. It is hard to explain 
how such changes can be made rationally, since they make one’s future self less 
likely to satisfy one’s present preferences about the future. Yet plasticity seems 
fundamentally important to the entire enterprise, because newborn infants cer-
tainly lack the rich, nuanced, culturally informed preference structures of adults. 
Indeed, it seems likely that our preferences are at least partially formed by a pro-
cess resembling inverse reinforcement learning, whereby we absorb preferences 
that explain the behavior of those around us. Such a process would tend to give 
cultures some degree of autonomy from the otherwise homogenizing effects of 
our dopamine-based reward system. 

Plasticity also raises the obvious question of which human H the machine 
should try to help: H2022, H2035, or some time-averaged H?33 Plasticity is also prob-
lematic because of the possibility that the machine may, by subtly influencing the 
environment, gradually mold H’s preferences in directions that make them easier 
to satisfy. This problem is a familiar one in human society, where culture and pro-
paganda mold the preferences of humans to facilitate their compliance with exist-
ing power structures. 

L et us assume, for the sake of argument, that all these obstacles can be over-
come, as well as all of the obstacles to the development of truly capable AI 
systems. Are we then home free? Would provably beneficial, superintel-

ligent AI usher in a golden age for humanity? Not necessarily. There remains the 
issue of adoption: how can we obtain broad agreement on suitable design princi-
ples, and how can we ensure that only suitably designed AI systems are deployed? 

On the question of obtaining agreement at the policy level, it is necessary first 
to generate consensus within the research community on the basic ideas of–and 
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design templates for–provably beneficial AI, so that policy-makers have some 
concrete guidance on what sorts of regulations might make sense. Economic in-
centives would tend to support the installation of rigorous standards at the early 
stages of AI development, since failures would be damaging to entire industries, 
not just to the perpetrator and victim. We already see this in miniature with the 
imposition of machine-checkable software standards for cell phone applications. 

On the question of enforcement, I am less sanguine. If the next Dr. Evil wants 
to take over the world, he or she might remove the safety catch, so to speak, and 
deploy a poorly designed AI system that ends up destroying the world instead. This 
is a hugely magnified version of the problem we currently face with malware. Our 
track record in solving the latter problem does not provide grounds for optimism 
concerning the former. In Samuel Butler’s Erewhon and in Frank Herbert’s Dune, 
the solution is to ban all intelligent machines, as a matter of both law and cultural 
imperative. Perhaps if we find institutional solutions to the malware problem, we 
will be able to devise some less drastic approach for regulating AI.

The problem of misuse is not limited to evil masterminds. One possible fu-
ture for humanity in the age of superintelligent AI is that of a race of lotus eaters, 
progressively enfeebled as machines take over the management of our entire civ-
ilization. This is the future imagined in E. M. Forster’s story The Machine Stops, 
written in 1909. We may say, now, that such a future is undesirable; the machines 
may agree with us and volunteer to stand back, requiring humanity to exert itself 
and maintain its vigor. But exertion is tiring, and we may, in our usual myopic way, 
design AI systems that are not quite so concerned about the long-term vigor of 
humanity and are just a little more helpful than they would otherwise wish to be. 
Unfortunately, this slope is very slippery indeed.

F inding a solution to the AI control problem is an important task; it may be, 
in the words of philosopher Nick Bostrom, “the essential task of our age.”34 
Up to now, AI research has focused on systems that are better at making de-

cisions, but this is not the same as making better decisions if human and machine 
objectives diverge.

This problem requires a change in the definition of AI itself: from a field con-
cerned with a unary notion of intelligence as the optimization of a given objective 
to a field concerned with a binary notion of machines that are provably beneficial 
for humans. Taking the problem seriously seems likely to yield new ways of think-
ing about AI, its purpose, and our relationship with it. 
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