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The past decade has seen tremendous progress in the field of artificial intelligence 
thanks to the resurgence of neural networks through deep learning. This has helped 
improve the ability for computers to see, hear, and understand the world around 
them, leading to dramatic advances in the application of AI to many fields of sci-
ence and other areas of human endeavor. In this essay, I examine the reasons for 
this progress, including the confluence of progress in computing hardware designed 
to accelerate machine learning and the emergence of open-source software frame-
works to dramatically expand the set of people who can use machine learning effec-
tively. I also present a broad overview of some of the areas in which machine learn-
ing has been applied over the past decade. Finally, I sketch out some likely directions 
from which further progress in artificial intelligence will come.

Since the very earliest days of computing, humans have dreamed of being 
able to create “thinking machines.” The field of artificial intelligence was 
founded in a workshop organized by John McCarthy in 1956 at Dartmouth 

College, with a group of mathematicians and scientists getting together to “find 
how to make machines use language, form abstractions and concepts, solve kinds 
of problems now reserved for humans, and improve themselves.”1 The workshop 
participants were optimistic that a few months of focused effort would make real 
progress on these problems.

The few-month timeline proved overly optimistic. Over the next fifty years, 
a variety of approaches to creating AI systems came into and fell out of fashion, 
including logic-based systems, rule-based expert systems, and neural networks.2 
Approaches that involved encoding logical rules about the world and using those 
rules proved ineffective. Hand-curation of millions of pieces of human knowledge 
into machine-readable form, with the Cyc project as the most prominent exam-
ple, proved to be a very labor-intensive undertaking that did not make significant 
headway on enabling machines to learn on their own.3 Artificial neural networks, 
which draw inspiration from real biological neural networks, seemed like a prom-
ising approach for much of this time, but ultimately fell out of favor in the 1990s. 
While they were able to produce impressive results for toy-scale problems, they 
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were unable to produce interesting results on real-world problems at that time. 
As an undergraduate student in 1990, I was fascinated by neural networks and felt 
that they seemed like the right abstraction for creating intelligent machines and 
was convinced that we simply needed more computational power to enable larger 
neural networks to tackle larger, more interesting problems. I did an undergrad-
uate thesis on parallel training of neural networks, convinced that if we could use 
sixty-four processors instead of one to train a single neural network then neural 
networks could solve more interesting tasks.4 As it turned out, though, relative to 
the computers in 1990, we needed about one million times more computational 
power, not sixty-four times, for neural networks to start making impressive head-
way on challenging problems! Starting in about 2008, though, thanks to Moore’s 
law, we started to have computers this powerful, and neural networks started their 
resurgence and rise into prominence as the most promising way to create comput-
ers that can see, hear, understand, and learn (along with a rebranding of this ap-
proach as “deep learning”).

The decade from around 2011 to the time of writing (2021) has shown remark-
able progress in the goals set out in that 1956 Dartmouth workshop, and machine 
learning (ML) and AI are now making sweeping advances across many fields of en-
deavor, creating opportunities for new kinds of computing experiences and inter-
actions, and dramatically expanding the set of problems that can be solved in the 
world. This essay focuses on three things: the computing hardware and software 
systems that have enabled this progress; a sampling of some of the exciting appli-
cations of machine learning from the past decade; and a glimpse at how we might 
create even more powerful machine learning systems, to truly fulfill the goals of 
creating intelligent machines. 

H ardware and software for artificial intelligence. Unlike general-purpose com-
puter code, such as the software you might use every day when you run a 
word processor or web browser, deep learning algorithms are generally 

built out of different ways of composing a small number of linear algebra oper-
ations: matrix multiplications, vector dot products, and similar operations. Be-
cause of this restricted vocabulary of operations, it is possible to build computers 
or accelerator chips that are tailored to support just these kinds of computations. 
This specialization enables new efficiencies and design choices relative to general- 
purpose central processing units (CPUs), which must run a much wider variety of 
kinds of algorithms.

During the early 2000s, a handful of researchers started to investigate the use 
of graphics processing units (GPUs) for implementing deep learning algorithms. 
Although originally designed for rendering graphics, researchers discovered that 
these devices are also well suited for deep learning algorithms because they have 
relatively high floating-point computation rates compared with CPUs. In 2004, 
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computer scientists Kyoung-Su Oh and Keechul Jung showed a nearly twenty-fold 
improvement for a neural network algorithm using a GPU.5 In 2008, computer sci-
entist Rajat Raina and colleagues demonstrated speedups of as much as 72.6 times 
from using a GPU versus the best CPU-based implementation for some unsuper-
vised learning algorithms.6

These early achievements continued to build, as neural networks trained on 
GPUs outperformed other methods in a wide variety of computer vision contests.7 
As deep learning methods began showing dramatic improvements in image rec-
ognition, speech recognition, and language understanding, and as more compu-
tationally intensive models (trained on larger data sets) continued demonstrating 
improved results, the field of machine learning really took off.8 Computer systems 
designers started to look at ways to scale deep learning models to even more com-
putationally intensive heights. One early approach used large-scale distributed 
systems to train a single deep learning model. Google researchers developed the 
DistBelief framework, a software system that enabled using large-scale distrib-
uted systems for training a single neural network.9 Using DistBelief, researchers 
were able to train a single unsupervised neural network model that was two orders 
of magnitude larger than previous neural networks. The model was trained on a 
large collection of random frames from YouTube videos, and with a large network 
and sufficient computation and training data, it demonstrated that individual ar-
tificial neurons (the building blocks of neural networks) in the model would learn 
to recognize high-level concepts like human faces or cats, despite never being giv-
en any information about these concepts other than the pixels of raw images.10

These successes led system designers to design computational devices that 
were even better suited and matched to the needs of deep learning algorithms than 
GPUs. For the purpose of building specialized hardware, deep learning algorithms 
have two very nice properties. First, they are very tolerant of reduced precision. 
Unlike many numerical algorithms, which require 32-bit or 64-bit floating-point 
representations for the numerical stability of the computations, deep learning al-
gorithms are generally fine with 16-bit floating-point representations during train-
ing (the process by which neural networks learn from observations), and 8-bit and 
even 4-bit integer fixed-point representations during inference (the process by 
which neural networks generate predictions or other outputs from inputs). The 
use of reduced precision enables more multiplication circuits to be put into the 
same chip area than if higher-precision multipliers were used, meaning chips can 
perform more computations per second. Second, the computations needed for 
deep learning algorithms are almost entirely composed of different sequences of 
linear algebra operations on dense matrices or vectors, such as matrix multipli-
cations or vector dot products. This led to the observation that making chips and 
systems that were specialized for low-precision linear algebra computations could 
give very large benefits in terms of better performance per dollar and better per-
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formance per watt. An early chip in this vein was Google’s first Tensor Processing 
Unit (TPUv1), which targeted 8-bit integer computations for deep learning infer-
ence and demonstrated one to two order-of-magnitude improvements in speed 
and performance per watt over contemporary CPUs and GPUs.11 Deployments of 
these chips enabled Google to make dramatic improvements in speech recogni-
tion accuracy, language translation, and image classification systems. Later TPU 
systems are composed of custom chips as well as larger-scale systems connect-
ing many of these chips together via high-speed custom networking into pods, 
large-scale supercomputers designed for training deep learning models.12 GPU 
manufacturers like NVIDIA started tailoring later designs toward lower-precision 
deep learning computations and an explosion of venture capital–funded startups 
sprung up building various kinds of deep learning accelerator chips, with Graph-
Core, Cerebras, SambaNova, and Nervana being some of the most well-known.

Alongside the rise of GPUs and other ML-oriented hardware, researchers de-
veloped open-source software frameworks that made it easy to express deep 
learning models and computations. These software frameworks are still critical 
enablers. Today, open-source frameworks help a broad set of researchers, engi-
neers, and others push forward deep learning research and apply deep learning 
to an incredibly wide range of problem domains (many of which are discussed 
below). Some of the earliest frameworks like Torch, developed starting in 2003, 
drew inspiration from earlier mathematical tools like MatLab and NumPy.13  
Theano, developed in 2010, was an early deep learning–oriented framework that 
included automatic symbolic differentiation.14 Automatic differentiation is a use-
ful tool that greatly eases the expression of many gradient-based machine learn-
ing algorithms, such as stochastic gradient descent (a technique in which errors in 
outputs are corrected by comparing the actual output and the desired output and 
making small adjustments to the model parameters in the direction of the error 
gradient). DistBelief and Caffe were frameworks developed in the early 2010s that 
emphasized scale and performance.15

TensorFlow is a framework that allows the expression of machine learning 
computations.16 It was developed and open-sourced by Google in 2015 and com-
bines ideas from earlier frameworks like Theano and DistBelief.17 TensorFlow 
was designed to target a wide variety of systems and allows ML computations to 
run on desktop computers, mobile phones, large-scale distributed environments 
in data centers, and web browsers, and targets a wide variety of computation de-
vices, including CPUs, GPUs, and TPUs. The system has been downloaded more 
than fifty million times and is one of the most popular open-source packages in 
the world. It has enabled a tremendous range of uses of machine learning by indi-
viduals and organizations large and small all around the world.

PyTorch, released in 2016, has gained popularity with researchers for its easy 
expression of a variety of research ideas using Python.18 JAX, released in 2018, is a 
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popular open-source Python-oriented library combining sophisticated automatic 
differentiation and an underlying XLA compiler, also used by TensorFlow to effi-
ciently map machine learning computations onto a variety of different types of 
hardware.19

The importance of open-source machine learning libraries and tools like Tensor-
Flow and PyTorch cannot be overstated. They allow researchers to quickly try 
ideas and express them on top of these frameworks. As researchers and engineers 
around the world build on each other’s work more easily, the rate of progress in 
the whole field accelerates!

Research explosion. As a result of research advances, the growing computa-
tional capabilities of ML-oriented hardware like GPUs and TPUs, and the 
widespread adoption of open-source machine learning tools like Tensor-

Flow and PyTorch, there has been a dramatic surge in research output in the field 
of machine learning and its applications. One strong indicator is the number of 
papers posted to the machine learning–related categories of arXiv, a popular pa-
per preprint hosting service, with more than thirty-two times as many paper pre-
prints posted in 2018 as in 2009 (a growth rate of more than double every two 
years).20 There are now more than one hundred research papers posted to arXiv 
per day in the machine learning–related subtopic areas, and this growth shows no 
signs of slowing down.

Application explosion. The transformative growth in computing power, ad-
vances in software and hardware systems for machine learning, and the 
surge of machine learning research have all led to a proliferation of ma-

chine learning applications across many areas of science and engineering. By col-
laborating with experts in critical fields like climate science and health care, ma-
chine learning researchers are helping to solve important problems that can be 
socially beneficial and advance humanity. We truly live in exciting times.

Neuroscience is one important area in which machine learning has accelerated 
scientific progress. In 2020, researchers studied a fly brain to understand more 
about how the human brain works. They built a connectome, a synapse-resolution- 
level map of connectivity of an entire fly brain.21 But without machine learning 
and the computational power we now have, this would have taken many years. 
For example, in the 1970s, it took researchers about ten years to painstakingly 
map some three hundred neurons within the brain of a worm. By contrast, a fly 
brain has one hundred thousand neurons, and a mouse brain (the next goal for 
machine learning–aided connectomics) has about seventy million neurons. A hu-
man brain contains about eighty-five billion neurons, with about one thousand 
connections per neuron. Fortunately, deep learning–based advances in computer 
vision now make it possible to speed up this previously gargantuan process. And 
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today, thanks to machine learning, you can explore the fly brain for yourself using 
an interactive 3-D model!22

Molecular biology. Machine learning can also help us understand more about 
our genetic makeup and, ultimately, address gene-based disease more effectively. 
These new techniques allow scientists to explore the landscape of potential ex-
periments much more quickly through more accurate simulation, estimation, and 
data analysis. One open-source tool, DeepVariant, can more accurately process 
the raw information coming from DNA sequencing machines (which contain er-
rors introduced by the physical process of reading the genetic sequence) and an-
alyze it to more accurately identify the true genetic variants in the sequence rela-
tive to a reference genome data using a convolutional neural network. Once ge-
netic variants have been identified, deep learning can also help to analyze genetic 
sequences to better understand genetic features of single or multiple DNA muta-
tions that cause particular health or other outcomes. For example, a study led by 
the Dana-Farber Cancer Institute improved diagnostic yield by 14 percent for ge-
netic variants that lead to prostate cancer and melanoma in a cohort of 2,367 can-
cer patients.23 

Health care. Machine learning is also offering new ways to help detect and diag-
nose disease. For example, when applied to medical images, computer vision can 
help doctors diagnose a number of serious diseases more quickly and accurately 
than doctors can on their own. 

One impressive example is the ability for deep neural networks to correctly di-
agnose diabetic retinopathy, generally on par with human ophthalmologists. This 
ocular disease is the fastest growing cause of preventable blindness (projected to 
impact 642 million people in 2040). 

Deep learning systems can also help detect lung cancer as well or better than 
trained radiologists. The same goes for breast cancer, skin disease, and other dis-
eases.24 The application of sequential prediction on medical records can help cli-
nicians determine possible diagnoses and risk levels for chronic illness.25

Today’s deep learning techniques also give us a much more accurate under-
standing of how diseases spread, giving us a better chance at prevention. Ma-
chine learning helps us model complex events, like the global COVID-19 pandem-
ic, which require comprehensive epidemiological data sets, the development of 
novel interpretable models, and agent-based simulators to inform public health 
responses.26

Weather, environment, and climate change. Climate change is one of the greatest 
challenges currently facing humanity. Machine learning can help us better under-
stand the weather and our environment, particularly to predict or forecast both 
everyday weather and climate disasters.

For weather and precipitation forecasting, computationally intensive physics- 
based models like the National Oceanic and Atmospheric Administration’s 
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High-Resolution Rapid Refresh (HRRR) have long reigned supreme.27 Machine 
learning–based forecasting systems can predict more accurately than the HRRR 
on short timescales, however, with better spatial resolution and faster forecast 
computations.28

For flood forecasting, neural networks can model river systems around the 
world (a technique called HydroNets), resulting in more accurate water-level pre-
dictions.29 Utilizing this technology, authorities can send faster flood alerts, for 
example, to more than two hundred million people in India and Bangladesh.30

Machine learning also helps us better analyze satellite imagery. We can rapidly 
assess damage after a natural disaster (even with limited prior satellite imagery), 
understand the impact and extent of wildfires, and improve ecological and wild-
life monitoring.31

Robotics. The physical world is messy, full of unexpected obstacles, slips, and 
breakages. This makes creating robots that can successfully operate in messy, real- 
world environments like kitchens, offices, and roadways quite challenging (in-
dustrial robotics has already had a significant impact on the world, operating in 
more-controlled environments like factory assembly lines). To hard-code or pro-
gram real-world physical tasks, researchers need to anticipate all possible situa-
tions a robot might encounter. Machine learning efficiently trains robots to oper-
ate effectively in real-world environments through a combination of techniques 
like reinforcement learning, human demonstration, and natural language instruc-
tion. Machine learning also allows a more flexible, adaptable approach, in which 
robots can learn the best ways to engage in grasping or walking tasks rather than 
being locked into hard-coded assumptions. 

Some interesting research techniques include automated reinforcement learn-
ing combined with long-range robotic navigation, teaching a robot to follow nat-
ural language instructions (in many languages!), and applying a zero-shot imita-
tion learning framework to help robots better navigate simulated and real-world 
environments.32

Accessibility. It is easy to take for granted our ability to see a beautiful image, to 
hear a favorite song, or to speak with a loved one. Yet more than one billion people 
are not able to access the world in these ways. Machine learning improves acces-
sibility by turning these signals–vision, hearing, speech–into other signals that 
can be well-managed by people with accessibility needs, enabling better access to 
the world around them. Some application examples include speech-to-text tran-
scription, real-time transcriptions while someone is engaged in conversation, and 
applications that can help visually impaired users identify their surroundings.33

Individualized learning. Machine learning can also be used to create tools and ap-
plications that aid individualized learning. The benefits of this will be far reach-
ing, and initial examples include early childhood reading coaching such as Google 
Read Along (formerly Bolo), which is helping children all over the world learn to 

https://blog.google/products/search/mapping-wildfires-with-satellite-data/
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read in a variety of different languages,34 and machine learning tools like Socra-
tic that can help kids learn by giving them intuitive explanations and more de-
tailed information about concepts they are grappling with, across a wide variety of 
subjects such as mathematics, chemistry, and literature.35 Personalized learning 
backed by speech recognition, realistic speech output, and language understand-
ing has the potential to improve educational outcomes across the world.

Computer-aided creativity. Deep learning algorithms show surprising abilities to 
transform images in sophisticated and creative ways, giving us the ability to eas-
ily create spaceships in the style of Monet or the Golden Gate Bridge in the style 
of Edvard Munch.36 Via an algorithm for artistic style transfer (developed by ma-
chine learning researcher Leon Gatys and colleagues), a neural network can take 
a real-world image and an image of a painting and automatically render the real- 
world image in the style of the painter. DALL·E by OpenAI enables users to de-
scribe an image using text (“armchairs in the shape of an avocado” or “a loft bedroom 
with a white bed next to a nightstand, with a fish tank standing beside the bed”) and gener-
ate images that have the properties expressed by the natural language description, 
making sophisticated tools for artists and other creators to quickly create images 
of what is in their head.37

Machine learning–powered tools are also helping musicians create in ways 
they never have before.38 Moving beyond “technology,” these new uses of com-
puting can help anyone create new and unique sounds, rhythms, melodies, or 
even an entirely new musical instrument. 

It is not hard to imagine future tools that can interactively help people create 
amazing representations of our mental imagery–“Draw me a beach . . . no, I want it to 
be nighttime . . . with a full moon . . . and a mother giraffe with a baby next to a surfer coming 
out of the water”–by just interactively talking to our computing assistants.

Important building blocks. Federated learning is a powerful machine learning ap-
proach that preserves user privacy while leveraging many distinct clients (such as 
mobile devices or organizations) to collaboratively train a model while keeping 
the training data decentralized.39 This enables approaches that have superior pri-
vacy properties in large-scale learning systems.40 

Researchers continue to push the state of the art in federated learning by devel-
oping adaptive learning algorithms, techniques for mimicking centralized algo-
rithms in federated settings, substantial improvements in complimentary crypto-
graphic protocols, and more.41 

Transformers. Language has been at the heart of developing AI since the field 
began, given how ubiquitous language use and understanding is within our dai-
ly lives. Because language deals in symbols, it naturally prompted a symbolic ap-
proach to AI in the beginning. But over the years, AI researchers have come to re-
alize that more statistical or pattern-based approaches yield better practical uses. 
The right types of deep learning can represent and manipulate the layered struc-
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ture of language quite effectively for a variety of real-world tasks, from translating 
between languages to labeling images. Much of the work in this space from Goo-
gle and elsewhere now relies on transformers, a particular style of neural network 
model originally developed for language problems (but with a growing body of 
evidence that they are also useful for images, videos, speech, protein folding, and 
a wide variety of other domains).42 

There have been several interesting examples of transformers used in scientif-
ic settings, such as training on protein sequences to find representations encoding 
meaningful biological properties, protein generation via language modeling, bio- 
BERT for text mining in biomedical data (with pretrained model and training code),  
embeddings of scientific text (with code), and medical question answering.43 Com- 
puter scientists Maithra Raghu and Eric Schmidt have provided a comprehensive 
review of the ways in which deep learning has been used for scientific discovery.44

Machine learning for computer systems. Researchers are also applying machine 
learning to core computer science and computer systems problems themselves. 
This is an exciting virtuous cycle for machine learning and computing infrastruc-
ture research because it could accelerate the whole range of techniques that we 
apply to other fields. This trend is in fact spawning entire new conferences, such 
as MLSys.45 Learning-based approaches are even being applied to database indi-
ces, learned sorting algorithms, compiler optimization, graph optimization, and 
memory allocation.46

F uture of machine learning. A few interesting threads of research are occurring 
in the ML research community that will likely be even more interesting if 
combined.

First, work on sparsely activated models, such as the sparsely gated mixture 
of experts model, shows how to build very large capacity models in which just a 
portion of the model is “activated” for any given example (say, just two or three 
experts out of 2,048 experts).47 The routing function in such models is trained si-
multaneously and jointly with the different experts, so that the routing function 
learns which experts are good at which sorts of examples, and the experts simul-
taneously learn to specialize for the characteristics of the stream of examples they 
are given. This is in contrast with most ML models today in which the whole model 
is activated for every example. Research scientist Ashish Vaswani and colleagues 
showed that such an approach is simultaneously about nine times more efficient 
for training, about 2.5 times more efficient for inference, and more accurate (+1 
BLEU point, a relatively large improvement in accuracy for a language-translation 
task).48

Second, work on automated machine learning (AutoML), in which techniques 
such as neural architecture search or evolutionary architectural search can auto-
matically learn effective structures and other aspects of machine learning mod-
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els or components in order to optimize accuracy for a given task, often involves 
running many automated experiments, each of which may involve significant 
amounts of computation.49

Third, multitask training at modest scales of a few to a few dozen related tasks, 
or transfer learning from a model trained on a large amount of data for a related 
task and then fine-tuned on a small amount of data for a new task, has been shown 
to be very effective in a wide variety of problems.50 So far, most use of multitask 
machine learning is usually in the context of a single modality (such as all visual 
tasks or all textual tasks), although a few authors have considered multimodality 
settings as well.51 

A particularly interesting research direction puts these three trends together, 
with a system running on large-scale ML accelerator hardware, with a goal of train-
ing a single model that can perform thousands or millions of tasks. Such a mod-
el might be made up of many different components of different structures, with 
the flow of data between examples being relatively dynamic on an example-by- 
example basis. The model might use techniques like the sparsely gated mixture of 
experts and learned routing in order to have a very large capacity model,52 but one 
in which a given task or example only sparsely activates a small fraction of the to-
tal components in the system (and therefore keeps computational cost and power 
usage per training example or inference much lower). An interesting direction to 
explore would be to use dynamic and adaptive amounts of computation for dif-
ferent examples, so that “easy” examples use much less computation than “hard” 
examples (a relatively unusual property in the machine learning models of today). 
Figure 1 depicts such a system.

Each component might itself be running some AutoML-like architecture 
search in order to adapt the structure of the component to the kinds of data that 
are being routed to that component.53 New tasks can leverage components trained 
on other tasks when that is useful. The hope is that through very large scale multi-
task learning, shared components, and learned routing, the model can very quick-
ly learn to accomplish new tasks to a high level of accuracy, with relatively few ex-
amples for each new task (because the model is able to leverage the expertise and 
internal representations it has already developed in accomplishing other, related 
tasks).

Building a single machine learning system that can handle millions of tasks, 
and that can learn to successfully accomplish new tasks automatically, is a true 
grand challenge in the field of artificial intelligence and computer systems engi-
neering. It will require expertise and advances in many areas, spanning machine 
learning algorithms, responsible AI topics such as fairness and interpretability, 
distributed systems, and computer architectures in order to push the field of ar-
tificial intelligence forward by building a system that can generalize to solve new 
tasks independently across the full range of application areas of machine learning.
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Responsible AI development. While AI has the ability to help us in many facets of 
our lives, all researchers and practitioners should ensure that these approaches are 
developed responsibly–carefully reviewing issues of bias, fairness, privacy, and 
other social considerations on how these tools might behave and impact others–
and work to address these considerations appropriately.

It is also important to document a clear set of principles to guide responsible 
development. In 2018, Google published a set of AI principles that guide the com-
pany’s work in and use of AI.54 The AI principles lay out important areas of con-
sideration, including issues such as bias, safety, fairness, accountability, trans-
parency, and privacy in machine learning systems. Other organizations and gov-
ernments have followed this model by publishing their own principles around 
the use of AI in recent years. It is great to see more organizations publishing their 
own guidelines and I hope that this trend will continue until it is no longer a 

Figure 1
A Multitask, Sparsely Activated Machine Learning Model

Note: This diagram depicts a design for a large, sparsely activated, multitask model. Each box 
in the model represents a component. Models for tasks develop by stitching together com-
ponents, either using human-specified connection patterns or automatically learned connec-
tivity. Each component might be running a small architectural search to adapt to the kinds 
of data that are being routed to it, and routing decisions making components decide which 
downstream components are best suited for a particular task or example, based on observed 
behavior. Source: Author’s diagram, including Barret Zoph and Quoc V. Le, “Neural Archi-
tecture Search with Reinforcement Learning,” arXiv (2016), Figure 7, 15, https://arxiv.org/
abs/1611.01578.

Outputs

Single large model,
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trend but a standard by which all machine learning research and development 
is conducted. 

Conclusions. The 2010s were truly a golden decade of deep learning research 
and progress. During this decade, the field made huge strides in some of 
the most difficult problem areas set out in the 1956 workshop that created 

the field of AI. Machines became capable of seeing, hearing, and understanding 
language in ways that early researchers had hoped for. The successes in these core 
areas enabled a huge range of progress in many scientific domains, enabled our 
smartphones to become much smarter, and generally opened our eyes to the pos-
sibilities of the future as we continue to make progress on creating more sophis-
ticated and powerful deep learning models that help us with our daily lives. The 
future ahead of us is one in which we will all be more creative and capable thanks 
to the help provided by incredibly powerful machine learning systems. I cannot 
wait to see what the future holds!
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