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Computer vision is one of the most fundamental areas of artificial intelligence re-
search. It has contributed to the tremendous progress in the recent deep learning rev-
olution in AI. In this essay, we provide a perspective of the recent evolution of object 
recognition in computer vision, a flagship research topic that led to the breakthrough 
data set of ImageNet and its ensuing algorithm developments. We argue that much 
of this progress is rooted in the pursuit of research “north stars,” wherein researchers 
focus on critical problems of a scientific discipline that can galvanize major efforts 
and groundbreaking progress. Following the success of ImageNet and object recog-
nition, we observe a number of exciting areas of research and a growing list of north 
star problems to tackle. This essay recounts the brief history of ImageNet, its related 
work, and the follow-up progress. The goal is to inspire more north star work to ad-
vance the field, and AI at large.

A rtificial intelligence is a rapidly progressing field. To many of its everyday 
users, AI is an impressive feat of engineering derived from modern com-
puter science. There is no question that there has been incredible engi-

neering progress in AI, especially in recent years. Successful implementations of 
AI are all around us, from email spam filters and personalized retail recommen-
dations to cars that avoid collisions in an emergency by autonomously braking. 
What may be less obvious is the science behind the engineering. As researchers in 
the field, we have a deep appreciation of both the engineering and the science and 
see the two approaches as deeply intertwined and complementary. Thinking of 
AI, at least in part, as a scientific discipline can inspire new lines of thought and in-
quiry that, in time, will make engineering progress more likely. As in any science, 
it is not always obvious what problems in AI are the most important to tackle. But 
once you have formulated a fundamental problem–once you have identified the 
next “north star”–you can start pushing the frontier of your field. That has cer-
tainly been our experience, and it is why we love Einstein’s remark that “The mere 
formulation of a problem is often far more essential than its solution.” 
AI has been driven by north stars from the field’s inception in 1950, when Alan 

Turing neatly formulated the problem of how to tell if a computer deserves to 
be called intelligent. (The computer, according to the now-famous Turing Test, 
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would need to be able to “deceive a human into believing that it was human,” as 
Turing put it.)1 A few years later, as the founding fathers of AI planned the Dart-
mouth workshop, they set another ambitious goal, proposing to build machines 
that can “use language, form abstractions and concepts, solve kinds of problems 
now reserved for humans, and improve themselves.”2 Without that guiding light, 
we might never be in a position to tackle new problems.

Our own area within AI, computer vision, has been driven by its own series of 
north stars. This is the story of one–object recognition–and the progress it has 
made toward north stars in other AI fields.

T he ability to see–vision–is central to intelligence. Some evolutionary 
biologists have hypothesized that it was the evolution of eyes in animals 
that first gave rise to the many different species we know today, including 

humans.3 
Seeing is an immensely rich experience. When we open our eyes, the entire visu-

al world is immediately available to us in all its complexity. From registering shad-
ows and brightness, to taking in the colors of everything around us, to recognizing 
an appetizing banana on a kitchen counter as something good to eat, humans use 
our visual perception to navigate the world, to make sense of it, and to interact with 
it. So how do you even begin to teach a computer to see? There are many import-
ant problems to solve and choosing them is an essential part of the scientific quest 
for computer vision: that is, the process of identifying the north stars of the field. 
At the turn of the century, inspired by a large body of important work prior to ours, 
our collaborators and we were drawn to the problem of object recognition: a com-
puter’s ability to correctly identify what appears in a given image. 

This seemed like the most promising north star for two reasons. The first was 
its practical applications. The early 2000s witnessed an explosive increase in the 
number of digital images, thanks to the extraordinary growth of the Internet and 
digital cameras, and all those images created a demand for tools to automatically 
catalog personal photo collections and to enable users to search through such im-
age collections. Both applications would require object recognition.

But an even deeper reason was the remarkable ability of humans to perceive 
and interpret objects in the visual world. Research in the field of cognitive neuro-
science showed that humans can detect animals within just twenty milliseconds 
and, within only three hundred milliseconds, can tell whether the animal is, say, 
a tiger or a lamb. The research in cognitive neuroscience also offered clues to how 
humans are able to achieve such rapid recognition: scientists had found that hu-
mans relied on cues in the object’s surroundings and on certain key features of ob-
jects, features that did not change with a difference in angle or lighting conditions. 
Most strikingly, neuroscientists had discovered specific regions of the brain that 
activate when people view specific objects.4 The existence of neural correlates for 
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any function is a sure sign of the function’s evolutionary importance: a specific 
brain region would not evolve for a specific function unless that function was es-
sential for the organism’s survival or reproduction. Clearly, the ability to recog-
nize specific objects must be critical.

These findings made clear to us that object recognition should be considered 
a north star in computer vision. But how do you get a computer to recognize ob-
jects? Recognizing objects requires understanding what concept a digital image 
represents in the visual world–what the image means–but a computer has no 
such understanding. To a computer, a digital image is nothing more than a col-
lection of pixels, a two-dimensional array of numbers that does not really mean 
anything except colors and illuminations. Teaching a computer to recognize ob-
jects requires somehow getting it to connect each lifeless collection of numbers to 
a meaningful concept, like dog or banana. 

Between the decades of the 1990s and the early 2000s, researchers in object rec-
ognition had already made tremendous progress toward this daunting goal, but 
progress was slow because of the enormous variety in the appearance of real-world 
objects. Even within a single, fairly specific category (like house, dog, or flower), 
objects can look quite different. For example, an AI capable of accurately recogniz-
ing an object in a photograph as a dog needs to recognize it as a dog whether it is 
a German shepherd, poodle, or chihuahua. And whatever the breed, the AI needs 
to recognize it as a dog whether it is photographed from the front or from the side, 
running to catch a ball or standing on all fours with a blue bandana around its 
neck. In short, there is a bewildering diversity of images of dogs, and past attempts 
at teaching computers to recognize such objects failed to cope with this diversity.

One major bottleneck of most of these past methods was their reliance on 
hand-designed templates to capture the essential features of an object, and the 
lack of exposure to a vast variety of images. Computers learn from being exposed 
to examples; that is the essence of machine learning. And while humans can of-
ten generalize correctly from just a few examples, computers need large numbers 
of examples; otherwise, they make mistakes. So AI researchers had been trapped 
in a dilemma. On the one hand, for a template to be helpful in teaching an AI sys-
tem to recognize objects, the template needed to be based upon a large variety of 
images and, therefore, a very large number of images in total. On the other hand, 
hand-designing a template is labor-intensive work, and doing so from a very large 
number of images is not feasible.

The inability to scale the template approach effectively made it clear that we 
needed a different way to approach the object-recognition problem.

We started our search for a new approach with one key assumption: even 
the best algorithm would not generalize well if the data it learned from 
did not reflect the real world. In concrete terms, that meant that ma-
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jor advances in object recognition could occur only from access to a large quantity 
of diverse, high-quality training data. That assumption may sound obvious be-
cause we are all awash in data and we all benefit from powerful object-recognition  
tools. But when we began our work in the early 2000s, the focus on data was fairly 
contrarian: at that time, most people in our field were paying attention to models 
(algorithms), not to data. Of course, in truth, the two pursuits are compatible. We 
believed that good data would help with the design of good models, which would 
lead to advances in object recognition and in AI more broadly.

That meant that we needed to create a new data set (which we called Image- 
Net) that achieved these three design goals: scale (a large quantity of data), diver-
sity (a rich variety of objects), and quality (accurately labeled objects).5 In focus-
ing on these three goals, we had moved from a general north star–image recogni-
tion–to more specific problem formulations. But how did we tackle each?

Scale. Psychologists have posited that human-like perception requires expo-
sure to thousands of diverse objects.6 When young children learn naturally, their 
lives have already been exposed to enormous numbers of images every day. For 
example, by the time a typical child is six years old, she has seen approximate-
ly three thousand distinct objects, according to one estimate; from those exam-
ples, the child would have learned enough distinctive features to help distinguish 
among thirty thousand more categories. That is how large a scale we had in mind. 
Yet the most popular object-recognition data set when we began included only 
twenty objects, the result of the very process we described earlier as too cumber-
some to scale up. Knowing that we needed far more objects, we collected fifteen 
million images from the Internet. 

But images alone would not be enough to provide useful training data to a com-
puter: we would also need meaningful categories for labeling the objects in these 
images. After all, how can a computer know that a picture of a dog is a German 
shepherd (or even a dog) unless the picture has been labeled with one of these cat-
egories? Furthermore, most of the machine learning algorithms require a train-
ing phase during which the algorithms must learn from labeled examples (that 
is, training examples) and be measured by their performances of a separate set of 
labeled examples (that is, testing samples). So we turned to an English-language 
vocabulary data set, called WordNet, developed by cognitive psychologist George 
Miller in 1990.7 WordNet organizes words into hierarchically nested categories 
(such as dog, mammal, and animal); using WordNet, we chose thousands of ob-
ject categories that would encompass all the images we had found. In fact, we 
named our data set ImageNet by analogy with WordNet.

Diversity. The images we collected from the Internet represented the diversi-
ty in real-world objects, covering many categories. For example, there were more 
than eight hundred different kinds of birds alone, with several examples of each. 
In total, we used 21,841 categories to organize the fifteen million images in our 
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data set. The challenges in capturing real-world diversity within each category is 
that simple Internet search results are biased toward certain kinds of images: for 
example, Google’s top search results for “German shepherd” or “poodle” consist 
of cleanly centered images of each breed. To avoid this kind of bias, we had to ex-
pand the query to include a description: to search also, for example, for “German 
shepherd in the kitchen.” Similarly, to get a broader, more representative distribu-
tion of the variety of dog images, we used translations into some other languages 
as well as hypernyms and hyponyms: not just “husky” but also “Alaskan husky”  
and “heavy-coated Arctic sled dog.” 

Quality. We cared a lot about the quality of the images and the quality of the 
annotations. To create a gold-standard data set that would replicate the acuity of 
human vision, we used only high-resolution images. And to create accurate labels 
for the objects in the data set, we hired people. At first, we brought in Princeton 
undergraduate students to label the images and verify these labels, but it quickly 
became apparent that using such a small group would take far too long. Through 
a fortunate coincidence, Amazon had just released its crowdsourcing platform, 
Mechanical Turk, which enabled us to quickly hire approximately fifty thousand 
workers from 167 countries to label and verify the objects in our set between 2007 
and 2009.8 

T he ImageNet team believed it was important to democratize research in 
object recognition and to build a community around ImageNet. So we 
open-sourced ImageNet: we made it free and open to any interested re-

searcher. We also established an annual competition to inspire researchers from 
all around the world. The ImageNet Large-Scale Visual Recognition Challenge 
(often simply called the ImageNet Challenge), which ran concurrently from 2010 
until 2017 with the international computer vision research conferences Interna-
tional Conference on Computer Vision and European Conference on Computer 
Vision, created a common benchmark for measuring progress.

We set up the ImageNet Challenge similar to the design of other machine learn-
ing competitions: All participants would get the same training data, which is just a 
subset of the larger ImageNet data set. After using this training data to train their 
object-recognition algorithm, the participants would unleash their algorithm on 
unlabeled images that the algorithm had never encountered to see how accurately 
the algorithm would recognize these new images. These test data, too, came from 
ImageNet. 

We had high aspirations for the ImageNet data set and for the ImageNet Chal-
lenge, yet the outcomes exceeded them. The biggest turning point came in 2012, 
when one team applied a convolutional neural network to object recognition for 
the first time.9 (A convolutional neural network is an algorithm inspired by the 
way the human brain works.) That team’s winning entry, later known as AlexNet 
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after one of its creators, trounced its competition, recognizing images with an ac-
curacy that was a whopping 41 percent higher than that of the second-place finish-
er. Although neural networks as an approach to machine learning had been around 
for decades, it had not been widely used until that year’s ImageNet Challenge.

This was a watershed moment for the AI community. The impressive perfor-
mance of AlexNet on the ImageNet data set inspired other researchers–and not 
just participants in the ImageNet Challenge–to shift to deep learning approach-
es. We started seeing large companies like Google and Facebook deploying tech-
nology based on neural networks, and within a year, almost every AI paper was 
about neural networks.

With so many people working on neural networks, the technology advanced 
rapidly. Researchers found that the deeper the model, the better it performed at 
object recognition. And as deeper models required more processing power, re-
searchers ran into other problems, such as computational bottlenecks, which re-
quired further design work to overcome. The ImageNet Challenge created a kind 
of domino effect of innovations, with each advance leading to more.10

Beyond the tremendous progress in computer vision through more and more 
powerful deep learning algorithms, researchers began using deep learning to au-
tomate and systematize the design of model architecture itself, instead of hand- 
designing each neural network’s architecture. The process of hand-designing ar-
chitectures, like the previous process of hand-designing features in templates, is 
speculative: the search space of possible architectures is exponentially vast, so 
manual architectural changes are unlikely to thoroughly explore this space quick-
ly enough to uncover the optimal architecture. Using ImageNet as a test bed, com-
puter vision researchers have systematized the process of neural architecture 
search.11 Initial methods consumed too many computational resources to exhaus-
tively cover the search space. Inspired by the success of hand-designed architec-
tures with recurring architecture motifs, such as ResNet36 and Inception35, lat-
er methods defined architectures with recurring cell structures and restricted the 
search space to designing this recurring cell.12 

The ImageNet Challenge ended once the accuracy of its best models reached 
superhuman levels, at 97.3 percent. (Human accuracy on this data was about 95 
percent.)13 Other researchers have continued making incremental advancements, 
however, using the ImageNet data set to track their progress, and error rates have 
continued to fall, though certainly not as fast as in the first few years after the in-
troduction of ImageNet. The error rate of the best model today is only 1.2 percent, 
down from 33.6 percent when the competition began back in 2009.14

These days, thanks to high accuracy and reasonable computing costs, ob-
ject recognition is in wide use. Whenever you search for images on the Internet, 
you use the kinds of algorithms first developed for the ImageNet Challenge; the 
same goes for when your smartphone automatically groups your photos based on 
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whose face appears in the photo. Those are exactly the uses we had in mind when 
we first chose object recognition as our north star. But uses of object recognition 
go beyond that, from tracking players in sports to helping self-driving cars detect 
other vehicles. 

L earning to recognize objects is only one form of learning to see, which is 
why computer vision (or visual intelligence) is a much broader field than 
object recognition. But there are important similarities between object rec-

ognition and other tasks in computer vision, such as object detection and activi-
ty recognition. Such similarities mean that a computer should not need to tackle 
a new task from scratch. In theory, a computer should be able to take advantage 
of the similarities, applying what it has learned from one task to perform a some-
what different task. For both computers and humans, this process of generalizing 
knowledge from one task to a similar one is called transfer learning.15

Humans are very good at transfer learning: once we know French, for exam-
ple, it is not as hard to learn Spanish. And if you learned to read English as a child, 
that was certainly easier if you already knew how to speak English than if the lan-
guage was entirely new to you. In fact, the ability to pick up on similarities be-
tween tasks, and to parlay this shared knowledge to help us learn new tasks, is one 
of the hallmarks of human intelligence. 

Transfer learning can be tremendously helpful for AI, too, but it does not come 
naturally to computers; instead, we humans have to teach them. The way to help 
computers with transfer learning is through pretraining. The idea is that before 
you give a machine learning model a new challenge, you first train it to do some-
thing similar, using training data that are already known to be effective. In com-
puter vision, that starting point is the object-recognition data in ImageNet. Once 
a new model gets trained through ImageNet, it should have a leg up on tackling 
a new kind of challenge. If this approach works, as we thought it would, then we 
have all the more reason to think that object recognition is a north star for visual 
intelligence.

That was the thinking behind our extension of the ImageNet Challenge to the 
problem of object detection. Object detection means recognizing an object in an 
image and specifying its location within the image. If you have ever seen a digital 
photograph of a group of people with a little rectangle drawn around each per-
son’s face, you have seen one application of object detection. Whereas the images 
in ImageNet contain just one object each, most real-world scenes include several 
objects, so object detection is a valuable extension of the kind of simple object rec-
ognition we had tested in the ImageNet Challenge.

Object detection had been an area of research before ImageNet, too, but the 
most common approach then was to first identify the areas within the image 
where an object (such as an animal) was likely to be, and then to focus on that area 
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and try to recognize that object (as a tiger, for example).16 Once ImageNet became 
available, that second step became much easier.

Object detection has come a long way since then, with special-purpose detec-
tors for different kinds of applications, such as self-driving cars, which need to be 
alert to other cars on the road.17 Such advances beyond object recognition would 
not have been possible without the use of ImageNet to enable transfer learning.

But object detection was just a first attempt to apply ImageNet data to uses be-
yond object recognition. These days, for better or for worse, almost every comput-
er vision method uses models pretrained on ImageNet.

N one of that is to say that ImageNet has been useful for every computer vi-
sion task. A prominent example is medical imaging.18 Conceptually, the 
task of classifying a medical image (such as a screening mammogram) 

is not very different from the task of classifying a photograph taken with a phone 
camera (such as a snapshot of a family pet). Both tasks involve visual objects and 
category labels, so both could be performed by a properly trained machine. In fact, 
they have been. But the methods have not been exactly the same. For one thing, 
you cannot use the ImageNet data set to train a computer to detect tumors; it sim-
ply has no data for this specialized task. What is more, it is not feasible to use the 
same basic approach: the professional expertise required to create high-quality  
training data to help with medical diagnosis is scarce and expensive. Put anoth-
er way, it is impossible to use Mechanical Turk to create a high-quality medical 
data set, both due to the requirement of specialized expertise as well as regulatory 
restrictions. So instead of using carefully labeled examples (the process of “su-
pervised learning”), AI for medical imaging is usually based on “semi-supervised 
learning,” whereby the machine learns to find meaningful patterns across images 
without many explicit labels.19

Computer vision certainly has practical applications beyond health, including 
environmental sustainability. Researchers are already using machine learning to 
analyze large volumes of satellite images to help governments assess changes in 
crop yields, water levels, deforestation, and wildfires, and to track longitudinal 
climate change.20 Computer vision can be helpful in education, too: when stu-
dents are trying to learn to read bar charts or to study visual subjects like geometry 
and physics, computers that understand images have the potential to supplement 
the efforts of human teachers. Assistive technology could also help teachers gen-
erate content-appropriate quizzes.21

The use of ImageNet to generalize beyond object recognition also led to the 
discovery of a thorny problem for deep learning models: “adversarial examples,” 
which are images that fool an AI into making blatant errors classifying an object.22 
A miniscule, humanly imperceptible tweak to a picture (sometimes even a single 
pixel!) can cause a model trained on ImageNet to mislabel it entirely.23 An image 
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of a panda can thus get misclassified as a bathtub. Some kinds of errors are eas-
ier to understand as the result of spurious correlations: wolves are often photo-
graphed in snow, so a model that learns to associate snow with wolves could come 
to assume that the label “wolf” refers to “snow.” It turns out that all models that 
use deep learning are vulnerable to attacks from adversarial examples, a fact that 
has spurred some researchers to work on ways to “vaccinate” training data against 
these attacks.

The problem of adversarial examples has also led the computer vision commu-
nity to shift from a singular focus on accuracy. Although accuracy in object recog-
nition certainly remains important, researchers have come to appreciate the value 
of other criteria for evaluating a machine learning model, particularly interpret-
ability (which refers to the ability of a model to generate predictable or under-
standable inference results for human beings) and explainability (the ability of a 
model to provide post hoc explanations for existing black box models).24

The success of ImageNet has also prompted the computer vision community 
to start asking what data the next generation of models should be pretrained on. 
As an alternative to the expensive, carefully annotated, and thoroughly verified 
process used to create ImageNet, researchers have collected data from social me-
dia and scraped images with their associated text off the Internet.25 Pretraining 
models from this “raw” data have opened up the possibility of “zero-shot adapta-
tion,” the process through which computers can learn without any explicit labels. 
In fact, models trained on such raw data now perform as well as models trained 
using ImageNet.26

Finally, the wide influence of ImageNet has opened the data set up to criticism, 
raising valid concerns we were not sufficiently attuned to when we began. The 
most serious of these is the issue of fairness in images of people.27 For one thing, 
although we certainly knew early on to filter out blatantly derogatory image labels 
such as racial or gender slurs, we were not sensitive to more subtle problems, such 
as labels that are not inherently derogatory but could cause offense when applied 
inappropriately (such as labeling people based on clues to their religion or sex-
ual orientation). In addition, certain concepts related to people are hard to rep-
resent visually without resorting to stereotypes, so attempts to associate images 
with these concept labels (“philanthropist” or “Bahamian,” for example) perpet-
uate biases. Most Bahamian wear distinctive garb only on special, ceremonial oc-
casions, but an image search for “Bahamian” based on ImageNet data would give 
a disproportionate number of such stereotypical images of people from the Ba-
hamas. Another source of bias in search results is the inadequate diversity in the 
ImageNet data set, a bias that tends to get amplified during the manual cleanup 
stage, when human annotators resort to racial and gender stereotypes in their la-
beling. Women and ethnic minorities are already underrepresented among real- 
world bankers, for example, but they are even more underrepresented in images 
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labeled as “banker.” Although these problems of fairness are difficult to eliminate 
entirely, we have made research strides to mitigate them.28 

T he development of these new data sets has led to the need for a metabench-
mark: a single evaluation scheme for multiple individual benchmarks (or 
a benchmark for comparing benchmarks). Without a metabenchmark, it 

is impossible to compare the performance of different machine learning models 
across different tasks and using different data sets. 

In fact, one thing that has emerged is a lively debate about benchmarks them-
selves.29 One side of the debate posits that the constant emergence of new bench-
marks is a good sign, suggesting continued progress on north stars. On the other 
side is a concern that benchmarks encourage something akin to teaching to the test: 
the concern that what emerges from benchmarking are not superior models but 
models that optimize for high performance on an inherently imperfect benchmark.

Another serious concern is that a widely adopted benchmark amplifies the 
real-world effects of any flaws in the benchmark. There is a growing body of re-
search, for example, on how benchmarks can perpetuate structural societal bi-
ases,30 benefiting groups that are already dominant (particularly White males) 
while discriminating against marginalized groups (such as Muslims and dark-
skinned females).31 

In response to these concerns, pioneers in the field are radically rethinking 
benchmarking. One suggestion has been for human judges to generate inputs 
for which models would fail, thus creating increasingly harder testing criteria as 
models improve.32 Another idea is to demand that benchmarks measure not only 
accuracy (which encourages designing to the benchmark) but also assess and re-
ward progress on other valuable criteria, including bias detection.33

W here do we go next in computer vision? Other north stars beckon. 
One of the biggest is in the area of embodied AI: robotics for tasks 
such as navigation, manipulation, and instruction following. That 

does not necessarily mean creating humanoid robots that nod their heads and 
walk on two legs; any tangible and intelligent machine that moves through space 
is a form of embodied AI, whether it is a self-driving car, a robot vacuum, or a ro-
botic arm in the factory. And just as ImageNet aimed at representing a broad and 
diverse range of real-world images, research in embodied AI needs to tackle the 
complex diversity of human tasks, from folding laundry to exploring a new city.34

Another north star is visual reasoning: understanding, for example, the 
three-dimensional relationships in a two-dimensional scene. Think of the visual 
reasoning needed to follow even the seemingly simple instruction to bring back 
the metal mug to the left of the cereal bowl. Following such instructions certainly 
requires more than vision, but vision is an essential component.35



151 (2) Spring 2022 95

Li Fei-Fei & Ranjay Krishna

Understanding people in a scene, including social relationships and human in-
tentions, adds yet another level of complexity, and such basic social intelligence is 
another north star in computer vision.36 Even a five-year-old can guess, for exam-
ple, that if a woman is cuddling with a little girl on her lap, the two people are very 
likely mother and daughter, and that if a man opens a refrigerator, he is probably 
hungry; but computers do not yet have enough intelligence to infer such things. 
Computer vision, like human vision, is not just perception; it is deeply cognitive.

There is no question that all these north stars are huge challenges, bigger than 
ImageNet ever was. It is one thing to review photos to try to identify dogs or 
chairs, and it is another to think about and navigate the infinite world of people 
and space. But it is a set of challenges well worth pursuing: as computers’ visual 
intelligence unfolds, the world can become a better place. Doctors and nurses will 
have extra pairs of tireless eyes to help them diagnose and treat patients. Cars will 
run more safely. Robots will help humans brave disaster zones to save the trapped 
and wounded. And scientists, with help from machines that can see what humans 
cannot, will discover new species, better materials, and uncharted frontiers. 
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