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In today’s highly interconnected, open-networked computing world, artificial intel-
ligence computer agents increasingly interact in groups with each other and with 
people both virtually and in the physical world. AI’s current core challenges concern 
determining ways to build AI systems that function effectively and safely for people 
and the societies in which they live. To incorporate reasoning about people, research 
in multi-agent systems has engendered paradigmatic shifts in computer-agent de-
sign, models, and methods, as well as the development of new representations of 
information about agents and their environments. These changes have raised tech-
nical as well as ethical and societal challenges. This essay describes technical ad-
vances in computer-agent representations, decision-making, reasoning, and learn-
ing methods and highlights some paramount ethical challenges.

For many decades after its inception, AI’s most pressing question, its core 
challenge, was to determine whether it was possible to build computer sys-
tems able to perform intelligent behaviors like engaging in a conversation, 

playing chess, or fixing a complex piece of machinery. By the twenty-first centu-
ry, the use of computer systems had evolved from a single person with comput-
ing expertise interacting with a single system to a highly interconnected, open-net-
worked computing world in which people’s online activities connect them instant-
ly with many different systems and people. There are thus ever more situations in 
which AI agents interact in groups with each other and with people both virtually 
and in the physical world. AI’s most pressing questions today–its core challenges– 
center on determining ways to build AI systems that function effectively and safe-
ly for people and the societies in which they live. Concomitantly, research in the 
multi-agent systems area of AI increasingly addresses challenges of building capa-
bilities for AI agents to act effectively in groups that include people: for instance, 
investigating robot-human collaborations in industrial settings, coordinating 
health care for patients seeing multiple providers, and adapting educational con-
tent to individual students’ needs. We refer to these as mixed-agent groups.
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AI research traditionally modeled the behavior of an individual computer agent, 
whether embodied in a physical system (such as robots) or embedded in a software 
system (such as recommendation systems or customer service chatbots), as an 
act-observe-update-decide cycle: the agent does something in its world, observes 
the ways that world changes, revises its beliefs about the world based on those ob-
servations, and determines what action, if any, to take next. Some AI agent models 
determine next actions based on maximizing a utility function, while others rea-
son logically. These individual-agent models have regarded other agents, whether 
computer agents or people, as part of the agent’s environment. To enable agents 
to participate effectively in mixed-agent groups required two significant modeling 
changes: the design of ways to represent the mental state of other agents and the 
development of models of human decision-making and communication capaci-
ties that respect the complementarities of human and computer-agent capabilities. 
For instance, computer systems have vastly greater ability than humans to access 
and summarize large amounts of data, while people’s capabilities for causal and 
counterfactual reasoning far outstrip those of AI systems.

Mental state representations enable computer agents to treat other agents 
(whether human or computer) as full-fledged actors that have beliefs and abilities 
to make decisions, to act on those decisions, and to reason about the beliefs and 
actions of other agents in their environment. Computer agents can then recognize 
ways that actions of one agent may affect the beliefs and influence subsequent ac-
tions of other agents. Research on standard multi-agent models, including both 
logic-based belief-desire-intention models and probabilistic Markov decision 
process models, has generated a variety of techniques for multi–computer agent 
groups, for both competitive and cooperative settings, yielding a diverse range of 
successfully deployed systems.1

To develop realistic models of human decision-making has required chang-
es to every component of the traditional act-observe-update-decide cycle. AI re-
searchers have developed new models, methods, and agent designs that incorpo-
rate reasoning about people for both machine-learning–based systems and logic-
based systems. While agents in mixed-agent groups, like those in multi-agent 
systems generally, might compete, the focus of research has been on settings in 
which computer agents cooperate or fully collaborate with people in their mixed-
agent group. These changes have raised not just new technical challenges, but also 
paramount ethical and societal-impact challenges.

R esearch on AI models of collaboration laid the foundations for reasoning 
about people as participants in mixed-agent groups.2 These models stipu-
late as a defining characteristic of collaboration that all team participants 

share an overarching goal. The models provide theoretical frameworks for repre-
senting and reasoning about the mental state and communication requirements 
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for successful teamwork activities. Related work in AI and cognitive science spec-
ifies the obligations collective intentionality entails.3

Significant recent research focuses on settings in which computer agents need 
to coordinate with people, but absent an overall teamwork goal. For instance, an 
autonomous vehicle does not share an overarching destination goal with other 
drivers or pedestrians it encounters; the autonomous vehicle and others on the 
road do not make a team. Aspects of the early frameworks are also relevant to such 
settings, as is early work specifying the roles of social norms in coordinating be-
havior of multiple agents without a shared goal who nonetheless need to avoid 
conflict.4 Key insights of this early work include establishing the need to explicitly 
design agents for collaboration, showing that the requisite capabilities could not 
be patched on, and the need for revisions of plan representations and decision-
making algorithms for them.5

Subsequent work in both logical and machine learning paradigms has demon-
strated the benefits of developing algorithms that consider the combined per-
formances of people and agents rather than focusing on the autonomous perfor-
mance of a computer agent in isolation.6 For example, methods that optimize for 
agents to complement human capabilities or to balance human and computer 
agent preferences outperformed individual human and computer performances.7 
Other work deploys cross-training to improve human-robot team performance.8 
A consensus is emerging from this research of the importance of bringing insights 
from the social sciences to bear in designing agents for working with people.9

The advent of large-scale Internet activities–from citizen science to online 
learning and question-and-answer sites–has provided researchers with signifi-
cantly more data than ever before about people’s behaviors and preferences, cre-
ating new technical opportunities and raising new AI research questions. Not 
only do people’s decision-making processes often not adhere to standard assump-
tions about optimizing for utility, but these larger-scale settings require computer 
agents to operate in the “open world,” rather than in well-defined, constrained, 
and therefore more easily specifiable environments (“closed worlds”).10 As a re-
sult, agent designs need to accommodate both scale–a significant increase in the 
number of people an agent may work with–and operating “in the wild”: that is, 
in open worlds in which computer agents have only partial information about 
other agents and much less control. Further challenges arise from the need for 
computer-agent behaviors and explanations to mesh with people’s expectations.11

We briefly describe AI researchers’ advances on three core computer-agent 
capabilities that are enabling agents to participate more effectively in mixed-agent 
groups: 1) decision-making about what to do next, considering the potential effects 
of an agent’s actions on other agents’ beliefs and decision-making, as well as on the 
environment; 2) reasoning to draw conclusions about the effects of an agent’s ac-
tions on that environment, including any causal connections; and 3) learning from 
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the effects it observes in the environment and on others’ actions. This research has 
led to paradigmatic shifts in a variety of AI methods and algorithms, as well as to 
the development of new representations of information about agents and the envi-
ronments in which they act. 

New representations of actions, plans, and agent interactions enable 
agents to reason about their human partners despite having limited in-
formation about their beliefs and capabilities. For instance, a digital per-

sonal assistant may not know which route a person is taking to get home, and a 
health care coordination system may need to learn interaction patterns among 
medical providers as they evolve.

Novel ways of representing task and plan knowledge–for instance, with Ece 
Kamar, we expanded the SharedPlans specification of teamwork–enable collabo-
ration when an agent does not know which of several plans a person is following.12 
To enable computer agents to reason effectively about information sharing when 
they lack a priori knowledge of other agents’ plans (as required by standard infor-
mation-sharing algorithms), Ofra Amir and colleagues developed a representa-
tion of “mutual influence potential” networks for teams that operate over long 
periods of time (such as project management and health care teams).13 To address 
the need for computer-agent collaborators to adapt to their human partners’ ac-
tions, Stefanos Nikolaidis and colleagues developed a representation for Markov 
decision processes that evolves through cross-training, and they demonstrated 
that cross-training outperforms other training regimes.14

New methods of decision-making have been designed by AI researchers 
to reason about social influences on people’s behavior in negotiation; to 
determine when to share information with partners in a group activity; 

and, for large-scale groups, to identify the best people for certain tasks and to pro-
vide incentives for them to contribute to group activities.

For computer agents to negotiate effectively with people, they need to take 
into account findings in the social sciences that have revealed social influences on 
people’s negotiation strategies. Research incorporating such findings into agent 
negotiation strategies–by representing social attributes in the decision-making 
model–has demonstrated the ability of such socially aware agents to reach agree-
ments that benefit all participants. For instance, through empirical investigations, 
we showed that people’s willingness to accept offers is affected by such traits as 
altruism and selfishness, and that agents incorporating these traits into their ne-
gotiation strategies outperform traditional game-theoretic equilibria strategies.15 
Amos Azaria and colleagues improved agent success in advising a person on the 
best route to a destination by incorporating a model of people’s behavior in re-
peated negotiations.16 And Arlette van Wissen and colleagues found that although 
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people trust computer agents as much as other people in negotiations, they treat 
them less fairly.17 Agents negotiating for people also need to model their prefer-
ences. For example, an agent might assist a consumer in negotiating the best deal 
for an item available from multiple online sellers who offer similar products at 
varying prices and characteristics–used or new, full or delayed payment–saving 
the consumer time and money. If the consumer is price sensitive, the agent could 
negotiate a lower price while agreeing to make the payment in advance.

To coordinate their activities, participants in mixed-agent groups typically 
must share information with each other about their activities, environments, and 
tasks. Decisions about what information to share, and when, are more compli-
cated when computer agents are not privy to important task-related information 
that people hold. For example, a driver-assist system considering whether to alert 
the driver to unexpected traffic ahead on a possible route that allowed for a side-
trip to a pharmacy may not be certain about the driver’s current preferences with 
respect to making that stop. As a result, it may not know if this traffic situation is 
on the route the driver is taking and thus whether notifying the driver would be 
useful or an unnecessary interruption. Information exchanges–whether an un-
needed alert or a request for irrelevant information–generate cognitive and com-
munication costs. Research on managing information exchange to avoid overbur-
dening people includes theoretical model development and empirical studies.

With Ece Kamar, we identified the class of “nearly decomposable” settings, in 
which computer agents need to reason about only that subset of their human part-
ners’ actions that interact with the agent’s actions.18 We developed a multi-agent 
Markov decision process for such settings that enables more efficient inference 
for interruption management. An empirical study using this method identified 
factors influencing people’s acceptance of an agent’s interruptions.

In work on information sharing for team settings in which agents have very 
limited information about their human partners, Ofra Amir and colleagues de-
veloped an algorithm that identifies the information that is most relevant to each 
team member using the influence potential networks described earlier.19 The re-
sults of a laboratory study using this algorithm demonstrated that information-
sharing decisions based on the influence-potential representation yielded high-
er productivity and lower perceived workload compared with standard human-
computer interaction approaches.

In such large-scale settings as disaster response and online forums, the stan-
dard multi-agent systems’ role assignment problem–the problem of identifying 
the best agent for a particular task–is more difficult because less information is 
directly available about (human) participants’ capabilities. These settings also in-
troduce a new role-assignment challenge: namely, keeping people engaged.

Methods that integrate behavior prediction into decision-making processes 
enable inferring people’s capabilities from their prior interactions and thus pre-
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dicting the best person to assign a task to. Research on engagement includes the 
use of reinforcement learning to generate motivational messages.20 The benefits 
of these approaches have been demonstrated in citizen science applications such 
as classifying celestial bodies and identifying EEG patterns.21

R easoning and learning are tightly coupled. We discuss them together be-
cause new methods developed to jointly learn and use models of people’s 
behavior have been consequential for mixed-agent group settings. Im-

portant new reasoning capabilities include 1) methods for predicting people’s be-
havior from data about the actions they have taken in the past, their causal effects, 
and the outcomes that result; 2) techniques for agents to use advice and feedback 
from people to learn more effectively; and 3) methods for agents to explain their 
choices and recommendations well enough that people understand them. For ex-
ample, to find the sequence of math problems that maximizes students’ learning 
gains, an AI tutor needs to predict their responses to math problems. It also needs 
to be able to explain its problem choices to students, and possibly their teachers.22 

Computer agents in mixed-agent groups need to model people’s past actions 
and to predict their likely future actions. Machine learning algorithms face a com-
patibility-performance trade-off: updating machine learning systems with new 
data may improve their overall performance, but the updated predictions may de-
crease trust in the system by individuals for whom the predictions no longer work. 
To address this problem, Jonathan Martinez and colleagues defined machine 
learning algorithms that personalize their updates to individual users, which not 
only yields higher accuracy but also makes models more compatible with people’s 
expectations.23 They established the efficacy of this approach empirically by com-
paring it with a baseline method that did not personalize the model’s updates.

People “in the wild” also make computer agents’ plan recognition–the ability 
to determine what others are doing and why–more difficult, since they often ex-
hibit complex planning behaviors: they may follow multiple plans, interleave ac-
tions from different plans, or perform actions that are redundant, wrong, or arbi-
trary. Novel plan and goal recognition algorithms have been developed to enable 
agents to adapt to people’s exploratory and error-prone behavior. They use various 
techniques, including heuristics and approaches that replace predefined libraries 
of possible plans with generating plans on the fly.24 To enable agents to support 
people’s understanding of plans of other agents (human and computer) in their 
groups, researchers have designed new types of visualizations for presenting in-
ferred plans to people in ways that facilitate their understanding of others’ plans.25

Reinforcement learning algorithms enable agents to learn about their envi-
ronment and about other agents through exploration and trial and error. Mixed-
agent groups introduce a new possibility: algorithms can incorporate guidance 
and feedback from people who have relevant task expertise or knowledge of the 
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agent’s environment and thus significantly facilitate agent learning. W. Bradley 
Knox and Peter Stone combined feedback from human teachers, who give posi-
tive or negative signals to the agent trainee, with autonomous learning about the 
environment.26 Travis Mandel and colleagues augmented a reinforcement algo-
rithm with a method for querying people about the best action to perform.27 Their 
empirical studies demonstrated significant improvements to algorithm perfor-
mance for domains with large numbers of actions. Matthew E. Taylor and col-
leagues showed that agents could adapt a policy to a new domain more effectively 
if a person first demonstrates how to act in that domain.28 In this work, short ep-
isodes of human demonstrations led to rapid savings in learning time and policy 
performance for agents in different robot soccer simulation tasks.

For people to trust agents, the models they use to predict people’s behavior 
not only need to perform well according to machine learning systems’ metrics, 
but also to produce interpretable predictions–their action choices need to make 
sense to the people with whom they interact.29 As all applications of AI machine 
learning methods have this need for “interpretability,” a variety of research stud-
ies have investigated the design of “interpretable models” as well as ways to mea-
sure the interpretability of machine learning models in practice.30 

The evaluation of multi-agent systems becomes significantly more complicat-
ed when an agent group includes people. Testing in the wild–that is, in the actu-
al intended situations of use–may be costly both practically and ethically. In re-
sponse to this challenge, researchers have developed various testbed systems that 
enable initial evaluation of effectiveness of computer-agent decision-making al-
gorithms in lab (or lab-like) settings. They enable testing of new methods on in-
tended user populations without such costs, allowing agent designers to better de-
termine responses to agents’ decisions as well as to compare the performance of 
different computational decision-making strategies. Some testbed systems have 
also been used to gather information about people’s decision-making strategies 
to help improve the performance of learning algorithms.

Colored Trails, one of the first such testbeds, enabled the development of a 
family of games that facilitated the analysis of decision-making strategies, includ-
ing negotiation strategies and coalition formation in widely varying settings.31 
The Genius testbed (General Environment for Negotiation with Intelligent multi-
purpose Usage Simulation) advances research on bilateral multi-issue negotiation 
by providing tools for specific negotiation scenarios and negotiator preference 
profiles and for computing and visualizing optimal solutions.32 The IAGO testbed 
(Interactive Arbitration Guide Online) provides a web-based interaction system 
for two-agent bargaining tasks. It has been used to study the role of affect and de-
ception on negotiation strategies in mixed-agent groups.33 Both Genius and IAGO 
testbeds have been used in competitions that compare computational strategies 
for negotiating with people.34
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R esearch and development of computer agents capable of participating ef-
fectively in mixed-agent groups raise various ethical issues. Some are in-
herited from AI generally: for instance, avoiding bias, ensuring privacy, 

and treating people’s data ethically. Others result from the mixed-agent group set-
ting entailing that people and computer agents work together and, in some cases, 
share decision-making. Further, computer agents may be designed to influence 
people’s behavior, make decisions related to people’s futures, and negotiate suc-
cessfully with people. While the roles computer agents and people assume vary 
within and across application domains, that people are inherent to the definition 
of “mixed-agent group” makes addressing particular ethical challenges of the ut-
most importance. We briefly discuss three challenges mixed-agent group research 
raises, all of which will require research done in concert with social and behav-
ioral scientists and ethicists. We note that choices among ethical values and set-
ting of norms are responsibilities of the societies in which these agent systems are 
used. Our discussion of ethical challenges thus presumes norms are established 
by communities of use, policy-making organizations, governmental bodies, or 
similar entities external to the research effort.

Challenge 1: Inclusive design and testing. The testing of new mixed-agent group al-
gorithms and systems must involve the full range of people expected to partici-
pate in group undertakings with such agents. Further, whether for research or for 
system development, in designing mixed-agent group agents to align with societal 
values, designers must consider and engage at all stages of the work with the full 
spectrum of people with whom these agents are intended to interact. For instance, 
in the initial design stage, researchers should conduct informative interviews or 
observations to determine system goals and characteristics appropriate for the in-
tended user population.35

Inclusivity generates particular challenges when designing new represen-
tations, whether models are explicitly designed or derived by machine learning 
methods. For instance, when developing new representations of tasks and plans, 
designers need to engage not only the kinds of people agents are likely to work 
with on a task, but also the kinds of people potentially affected by agent actions 
and decisions: for example, in a health care setting, the design of an agent that 
will work with physicians, nurses, and patients, as well as hospital administrative 
staff, should include physicians, nurses, and patients in the design cycle.

The need for inclusivity at the design stage also arises in areas of learning and 
reasoning. For example, when developing models of people’s behavior, it is cru-
cial for agents to handle adequately all types of people whose behavior it may need 
to track.

Challenge 2: Avoiding deception and exploitation. The use of social science factors 
in negotiation algorithms or for behavior modification (like nudges) may have 
purposes that engender unethical behavior. Mixed-agent group work on negoti-
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ation may raise significant questions if the negotiation algorithm focuses only on 
improving the computer agent’s outcome and deploys deception, rather than bal-
ancing good for all parties.36 Similarly, role assignment in some ride-sharing ap-
plications has raised significant questions of deception and exploitation.

For agents in mixed-agent groups to be trustworthy, any use of deceptive strat-
egies must be revealed. Researchers developing and deploying negotiation and be-
havior modification strategies must explain the rationale for them and make evi-
dent the ethical challenges they raise for any system that deploys them in applica-
tions and possible mitigations.

Challenge 3: Preventing or mitigating unanticipated uses of models and algorithms. 
The development of new representations and algorithms (such as for informa-
tion sharing, role assignment, or behavior modeling) is typically driven by an in-
tended application. The resulting learned representations and models may not be 
appropriate for other applications or may have consequences that were not an-
ticipated when design was focused on the initial intended application. For exam-
ple, a ride-sharing company might decide to adopt one of the “motivational” al-
gorithms developed in the context of citizen science to attempt to keep drivers 
working when the system predicts they are close to quitting for the day. While 
there may be no serious downsides to encouraging someone to continue working 
on a science project despite being tired, there can be serious consequences from 
drivers working when fatigued. In some cases, the technology may be sufficiently 
unreliable or human oversight may be sufficiently inadequate that the unantici-
pated use should not be allowed. Researchers, system designers, and developers 
all bear responsibility for preventing the misuse of these technologies.

A s mixed-agent groups become the norm in ever more multi-agent do-
mains, advances in multi-agent systems research provide foundations for 
developing computer agents able to be effective partners in such settings. 

This work has also revealed a variety of new research challenges and raised im-
portant questions of ethical and societal impact.

For these reasons and others, successes in laboratory settings have not yet been 
translated into deployed systems on a large scale. The inadequacies of automat-
ed call centers and the difficulties Amazon fulfillment center workers have ex-
perienced working with robots illustrate the problems that arise when comput-
er agents’ activities do not mesh well with their human coworkers’. Perhaps the 
greatest challenge of developing computer agents technically and ethically ade-
quate for participation in mixed-agent group undertakings is to fully recognize 
the sociotechnical nature of such activities. This recognition should lead not only 
to different kinds of algorithms, but also to processes for system development and 
deployment that take account of human capabilities, societal factors, and human-
computer interaction design principles.
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These challenges do not belong to research alone. If AI systems are to function 
effectively and safely for people and the societies in which they live, they require 
attention through the full pipeline from design through development, testing, and 
deployment. Addressing these challenges is all the more important given the re-
cent broad range of national-level calls for developing effective methods for hu-
man-centered AI and for human-AI collaborations.
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