
 Hubert L. Dreyfus and Stuart E. Dreyfus

 Making a Mind Versus Modeling the
 Brain: Artificial Intelligence Back at a
 Branchpoint

 [Njothing seems more possible to me than that people
 some day will come to the definite opinion that there is
 no copy in the ... nervous system which corresponds to
 a particular thought, or a particular idea, or memory}

 ?Ludwig Wittgenstein (1948)

 [Information is not stored anywhere in particular.
 Rather, it is stored everywhere. Information is better
 thought of as "evoked" than "found."2

 ?David Rumelhart and Donald Norman (1981)

 In the early 1950s, as calculating machines were coming into
 their own, a few pioneer thinkers began to realize that digital
 computers could be more than number crunchers. At that point

 two opposed visions of what computers could be, each with its
 correlated research program, emerged and struggled for recognition.
 One faction saw computers as a system for manipulating mental
 symbols; the other, as a medium for modeling the brain. One sought
 to use computers to instantiate a formal representation of the world;

 Hubert L. Dreyfus is professor of philosophy at the University of California at Berkeley.

 Stuart E. Dreyfus is professor of industrial engineering and operations research at the
 University of California at Berkeley.
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 16 Hubert L. Dreyfus and Stuart E. Dreyfus

 the other, to simulate the interactions of neurons. One took problem
 solving as its paradigm of intelligence; the other, learning. One
 utilized logic; the other, statistics. One school was the heir to the
 rationalist, reductionist tradition in philosophy; the other viewed
 itself as idealized, holistic neuroscience.

 The rallying cry of the first group was that both minds and digital
 computers are physical symbol systems. By 1955 Allen Newell and
 Herbert Simon, working at the Rand Corporation, had concluded
 that strings of bits manipulated by a digital computer could stand for
 anything?numbers, of course, but also features of the real world.

 Moreover, programs could be used as rules to represent relations
 between these symbols, so that the system could infer further facts
 about the represented objects and their relations. As Newell put it
 recently in his account of the history of issues in AI,

 The digital-computer field defined computers as machines that manipulated
 numbers. The great thing was, adherents said, that everything could be
 encoded into numbers, even instructions. In contrast, the scientists in AI saw

 computers as machines that manipulated symbols. The great thing was, they
 said, that everything could be encoded into symbols, even numbers.3

 This way of looking at computers became the basis of a way of
 looking at minds. Newell and Simon hypothesized that the human
 brain and the digital computer, while totally different in structure and
 mechanism, had at a certain level of abstraction a common functional
 description. At this level both the human brain and the appropriately
 programmed digital computer could be seen as two different instan
 tiations of a single species of device?a device that generated intelli
 gent behavior by manipulating symbols by means of formal rules.
 Newell and Simon stated their view as a hypothesis:

 The Physical Symbol System Hypothesis. A physical symbol system has the
 necessary and sufficient means for general intelligent action.

 By "necessary" we mean that any system that exhibits general intelligence
 will prove upon analysis to be a physical symbol system. By "sufficient" we
 mean that any physical symbol system of sufficient size can be organized
 further to exhibit general intelligence.4

 Newell and Simon trace the roots of their hypothesis back to
 Gottlob Frege, Bertrand Russell, and Alfred North Whitehead,5 but
 Frege and company were of course themselves heirs to a long,
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 Making a Mind Versus Modeling the Brain 17

 atomistic, rationalist tradition. Descartes had already assumed that
 all understanding consisted of forming and manipulating appropriate
 representations, that these representations could be analyzed into
 primitive elements (naturas simplices), and that all phenomena could
 be understood as complex combinations of these simple elements.

 Moreover, at the same time, Hobbes had implicitly assumed that the
 elements were formal components related by purely syntactic oper
 ations, so that reasoning could be reduced to calculation. "When a
 man reasons, he does nothing else but conceive a sum total from
 addition of parcels," Hobbes wrote, "for REASON... is nothing but
 reckoning_"6 Finally, Leibniz, working out the classical idea of
 mathesis?the formalization of everything?sought support to de
 velop a universal symbol system so that "we can assign to every
 object its determined characteristic number."7 According to Leibniz,
 in understanding we analyze concepts into more simple elements. In
 order to avoid a regress to simpler and simpler elements, there must
 be ultimate simples in terms of which all complex concepts can be
 understood. Moreover, if concepts are to apply to the world, there
 must be simple features that these elements represent. Leibniz envis

 aged "a kind of alphabet of human thoughts"8 whose "characters
 must show, when they are used in demonstrations, some kind of
 connection, grouping and order which are also found in the
 objects."9

 Ludwig Wittgenstein, drawing on Frege and Russell, stated in his
 Tractatus Logico-Philosophicus the pure form of this syntactic,
 representational view of the relation of the mind to reality. He
 defined the world as the totality of logically independent atomic facts:

 1.1. The world is the totality of facts, not of things.

 Facts in turn, he held, could be exhaustively analyzed into primitive
 objects.

 2.01. An atomic fact is a combination of objects_

 2.0124. If all objects are given, then thereby all atomic facts are given.

 These facts, their constituents, and their logical relations, Wittgen
 stein claimed, were represented in the mind.
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 18 Hubert L. Dreyfus and Stuart E. Dreyfus

 2.1. We make to ourselves pictures of facts.

 2.15. That the elements of the picture are combined with one another in a
 definite way, represents that the things are so combined with one another.10

 AI can be thought of as the attempt to find the primitive elements
 and logical relations in the subject (man or computer) that mirror the
 primitive objects and their relations that make up the world. Newell
 and Simon's physical symbol system hypothesis in effect turns the

 Wittgensteinian vision (which is itself the culmination of the classical
 rationalist philosophical tradition) into an empirical claim and bases
 a research program on it.

 The opposed intuition, that we should set about creating artificial
 intelligence by modeling the brain rather than the mind's symbolic
 representation of the world, drew its inspiration not from philosophy
 but from what was soon to be called neuroscience. It was directly
 inspired by the work of D.O. Hebb, who in 1949 suggested that a

 mass of neurons could learn if when neuron A and neuron B were

 simultaneously excited, that excitation increased the strength of the
 connection between them. n

 This lead was followed by Frank Rosenblatt, who reasoned that
 since intelligent behavior based on our representation of the world was
 likely to be hard to formalize, AI should instead attempt to automate
 the procedures by which a network of neurons learns to discriminate
 patterns and respond appropriately. As Rosenblatt put it,

 The implicit assumption [of the symbol manipulating research program] is
 that it is relatively easy to specify the behavior that we want the system to
 perform, and that the challenge is then to design a device or mechanism
 which will effectively carry out this behavior-[I]t is both easier and more
 profitable to axiomatize the physical system and then investigate this system
 analytically to determine its behavior, than to axiomatize the behavior and
 then design a physical system by techniques of logical synthesis.12

 Another way to put the difference between the two research
 programs is that those seeking symbolic representations were looking
 for a formal structure that would give the computer the ability to
 solve a certain class of problems or discriminate certain types of
 patterns. Rosenblatt, on the other hand, wanted to build a physical
 device, or to simulate such a device on a digital computer, that could
 then generate its own abilities:
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 Making a Mind Versus Modeling the Brain 19
 Many of the models which we have heard discussed are concerned with the
 question of what logical structure a system must have if it is to exhibit some
 property, X. This is essentially a question about a static system

 An alternative way of looking at the question is: what kind of a system
 can evolve property X? I think we can show in a number of interesting cases
 that the second question can be solved without having an answer to the
 first.13

 Both approaches met with immediate and startling success. By
 1956 Newell and Simon had succeeded in programming a computer
 using symbolic representations to solve simple puzzles and prove
 theorems in the propositional calculus. On the basis of these early
 impressive results it looked as if the physical symbol system hypoth
 esis was about to be confirmed, and Newell and Simon were
 understandably euphoric. Simon announced:

 It is not my aim to surprise or shock you.... But the simplest way I can
 summarize is to say that there are now in the world machines that think, that

 learn and that create. Moreover, their ability to do these things is going to
 increase rapidly until?in a visible future?the range of problems they can
 handle will be coextensive with the range to which the human mind has been
 applied.14

 He and Newell explained:

 [W]e now have the elements of a theory of heuristic (as contrasted with
 algorithmic) problem solving; and we can use this theory both to understand
 human heuristic processes and to simulate such processes with digital
 computers. Intuition, insight, and learning are no longer exclusive posses
 sions of humans: any large high-speed computer can be programmed to
 exhibit them also.15

 Rosenblatt put his ideas to work in a type of device that he called
 a perceptron.16 By 1956 Rosenblatt was able to train a perceptron to
 classify certain types of patterns as similar and to separate these from
 other patterns that were dissimilar. By 1959 he too was jubilant and
 felt his approach had been vindicated:

 It seems clear that the ... perceptron introduces a new kind of information
 processing automaton: For the first time, we have a machine which is
 capable of having original ideas. As an analogue of the biological brain, the
 perceptron, more precisely, the theory of statistical separability, seems to
 come closer to meeting the requirements of a functional explanation of the
 nervous system than any system previously proposed_As concept, it
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 20 Hubert L. Dreyfus and Stuart E. Dreyfus
 would seem that the perceptron has established, beyond doubt, the feasibil
 ity and principle of non-human systems which may embody human
 cognitive functions-The future of information processing devices which
 operate on statistical, rather than logical, principles seems to be clearly
 indicated.17

 In the early sixties both approaches looked equally promising, and
 both made themselves equally vulnerable by making exaggerated
 claims. Yet the results of the internal war between the two research

 programs were surprisingly asymmetrical. By 1970 the brain simu
 lation research, which had its paradigm in the perceptron, was
 reduced to a few lonely, underfunded efforts, while those who
 proposed using digital computers as symbol manipulators had un
 disputed control of the resources, graduate programs, journals, and
 symposia that constitute a flourishing research program.

 Reconstructing how this change came about is complicated by the
 myth of manifest destiny that any ongoing research program gener
 ates. Thus, it looks to the victors as if symbolic information process
 ing won out because it was on the right track, while the neural
 network or connectionist approach lost because it simply didn't
 work. But this account of the history of the field is a retrospective
 illusion. Both research programs had ideas worth exploring, and both
 had deep, unrecognized problems.

 Each position had its detractors, and what they said was essentially
 the same: each approach had shown that it could solve certain easy
 problems but that there was no reason to think either group could
 extrapolate its methods to real-world complexity. Indeed, there was
 evidence that as problems got more complex, the computation
 required by both approaches would grow exponentially and so
 would soon become intractable. In 1969 Marvin Minsky and Sey
 mour Papert said of Rosenblatt's perceptron:

 Rosenblatt's schemes quickly took root, and soon there were perhaps as
 many as a hundred groups, large and small, experimenting with the
 model....

 The results of these hundreds of projects and experiments were generally
 disappointing, and the explanations inconclusive. The machines usually
 work quite well on very simple problems but deteriorate very rapidly as the
 tasks assigned to them get harder.18
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 Making a Mind Versus Modeling the Brain 21

 Three years later, Sir James Lighthill, after reviewing work using
 heuristic programs such as Simon's and Minsky's, reached a strik
 ingly similar negative conclusion:

 Most workers in AI research and in related fields confess to a pronounced
 feeling of disappointment in what has been achieved in the past 25 years.

 Workers entered the field around 1950, and even around 1960, with high
 hopes that are very far from having been realized in 1972. In no part of the
 field have the discoveries made so far produced the major impact that was
 then promised....

 [0]ne rather general cause for the disappointments that have been
 experienced: failure to recognize the implications of the 'combinatorial
 explosion'. This is a general obstacle to the construction of a ... system on
 a large knowledge base which results from the explosive growth of any
 combinatorial expression, representing numbers of possible ways of group
 ing elements of the knowledge base according to particular rules, as the
 base's size increases.19

 As David Rumelhart and David Zipser have succinctly summed it up,
 "Combinatorial explosion catches you sooner or later, although
 sometimes in different ways in parallel than in serial."20 Both sides
 had, as Jerry Fodor once put it, walked into a game of three
 dimensional chess, thinking it was tick-tack-toe. Why then, so early
 in the game, with so little known and so much to learn, did one team
 of researchers triumph at the total expense of the other? Why, at this
 crucial branchpoint, did the symbolic representation project become
 the only game in town?

 Everyone who knows the history of the field will be able to point
 to the proximal cause. About 1965, Minsky and Papert, who were
 running a laboratory at MIT dedicated to the symbol-manipulation
 approach and therefore competing for support with the perceptron
 projects, began circulating drafts of a book attacking the idea of the
 perceptron. In the book they made clear their scientific position:

 Perceptrons have been widely publicized as "pattern recognition" or
 "learning" machines and as such have been discussed in a large number of
 books, journal articles, and voluminous "reports." Most of this writing ...
 is without scientific value.21

 But their attack was also a philosophical crusade. They rightly saw
 that traditional reliance on reduction to logical primitives was being
 challenged by a new holism:
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 Both of the present authors (first independently and later together) became
 involved with a somewhat therapeutic compulsion: to dispel what we feared
 to be the first shadows of a "holistic" or "Gestalt" misconception that

 would threaten to haunt the fields of engineering and artificial intelligence as

 it had earlier haunted biology and psychology.22

 They were quite right. Artificial neural nets may, but need not,
 allow an interpretation of their hidden nodes* in terms of features a
 human being could recognize and use to solve the problem. While
 neural network modeling itself is committed to neither view, it can be
 demonstrated that association does not require that the hidden nodes

 be interpretable. Holists like Rosenblatt happily assumed that indi
 vidual nodes or patterns of nodes were not picking out fixed features
 of the domain.

 Minsky and Papert were so intent on eliminating all competition,
 and so secure in the atomistic tradition that runs from Descartes to

 early Wittgenstein, that their book suggests much more than it
 actually demonstrates. They set out to analyze the capacity of a
 one-layer perceptron,* while completely ignoring in the mathemati
 cal portion of their book Rosenblatt's chapters on multilayer ma
 chines and his proof of the convergence of a probabilistic learning
 algorithm based on back propagation* of errors.23 According to
 Rumelhart and McClelland,

 Minsky and Papert set out to show which functions can and cannot be
 computed by [one-layer] machines. They demonstrated, in particular, that
 such perceptrons are unable to calculate such mathematical functions as
 parity (whether an odd or even number of points are on in the retina) or the
 topological function of connectedness (whether all points that are on are
 connected to all other points that are on either directly or via other points
 that are also on) without making use of absurdly large numbers of
 predicates. The analysis is extremely elegant and demonstrates the impor
 tance of a mathematical approach to analyzing computational systems.24

 * Hidden nodes are nodes that neither directly detect the input to the net nor constitute its
 output. They are, however, either directly or indirectly linked by connections with adjustable
 strengths to the nodes detecting the input and those constituting the output.
 f A one-layer network has no hidden nodes, while multilayer networks do contain hidden
 nodes.
 % Back propagation of errors requires recursively computing, starting with the output nodes,
 the effects of changing the strengths of connections on the difference between the desired output
 and the output produced by an input. The weights are then adjusted during learning to reduce
 the difference.
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 Making a Mind Versus Modeling the Brain 23

 But the implications of the analysis are quite limited. Rumelhart and
 McClelland continue:

 Essentially ... although Minsky and Papert were exactly correct in their
 analysis of the one-layer perceptron, the theorems don't apply to systems
 which are even a little more complex. In particular, it doesn't apply to
 multilayer systems nor to systems that allow feedback loops.25

 Yet in the conclusion to Perceptrons, when Minsky and Papert ask
 themselves the question, Have you considered perceptrons with
 many layers? they give the impression, while rhetorically leaving the
 question open, of having settled it:

 Well, we have considered Gamba machines, which could be described as
 "two layers of perceptron." We have not found (by thinking or by studying
 the literature) any other really interesting class of multilayered machine, at
 least none whose principles seem to have a significant relation to those of the

 perceptron.... [W]e consider it to be an important research problem to
 elucidate (or reject) our intuitive judgment that the extension is sterile.26

 Their attack on gestalt thinking in AI succeeded beyond their
 wildest dreams. Only an unappreciated few, among them Stephen
 Grossberg, James A. Anderson, and Teuvo Kohonen, took up the
 "important research problem." Indeed, almost everyone in AI as
 sumed that neural nets had been laid to rest forever. Rumelhart and

 McClelland note:

 Minsky and Papert's analysis of the limitations of the one-layer perceptron,
 coupled with some of the early successes of the symbolic processing
 approach in artificial intelligence, was enough to suggest to a large number
 of workers in the field that there was no future in perceptron-like compu
 tational devices for artificial intelligence and cognitive psychology.27

 But why was it enough? Both approaches had produced some
 promising work and some unfounded promises.28 It was too early to
 close accounts on either approach. Yet something in Minsky and
 Papert's book struck a responsive chord. It seemed AI workers shared

 the quasi-religious philosophical prejudice against holism that moti
 vated the attack. One can see the power of the tradition, for example,
 in Newell and Simon's article on physical symbol systems. The article
 begins with the scientific hypothesis that the mind and the computer
 are intelligent by virtue of manipulating discrete symbols, but it ends
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 with a revelation: "The study of logic and computers has revealed to
 us that intelligence resides in physical-symbol systems."29

 Holism could not compete with such intense philosophical convic
 tions. Rosenblatt was discredited along with the hundreds of less
 responsible network research groups that his work had encouraged.
 His research money dried up, and he had trouble getting his work
 published. By 1970, as far as AI was concerned, neural nets were
 dead. In his history of AI, Newell says the issue of symbols versus
 numbers "is certainly not alive now and has not been for a long
 time."30 Rosenblatt is not even mentioned in John Haugeland's or

 Margaret Boden's histories of the AI field.31
 But blaming the rout of the connectionists on an antiholistic

 prejudice is too simple. There was a deeper way philosophical
 assumptions influenced intuition and led to an overestimation of the
 importance of the early symbol-processing results. The way it looked
 at the time was that the perceptron people had to do an immense
 amount of mathematical analysis and calculating to solve even the
 most simple problems of pattern recognition, such as discriminating
 horizontal from vertical lines in various parts of the receptive field,
 while the symbol-manipulating approach had relatively effortlessly
 solved hard problems in cognition, such as proving theorems in logic
 and solving combinatorial puzzles. Even more important, it seemed
 that given the computing power available at the time, the neural net
 researchers could do only speculative neuroscience and psychology,
 while the simple programs of symbolic representationists were on
 their way to being useful. Behind this way of sizing up the situation

 was the assumption that thinking and pattern recognition are two
 distinct domains and that thinking is the more important of the two.
 As we shall see later in our discussion of the commonsense knowl

 edge problem, to look at things this way is to ignore both the
 preeminent role of pattern discrimination in human expertise and
 also the background of commonsense understanding that is presup
 posed in everyday real-world thinking. Taking account of this
 background may well require pattern recognition.

 This thought brings us back to the philosophical tradition. It was
 not just Descartes and his descendants who stood behind symbolic
 information processing, but all of Western philosophy. According to

 Heidegger, traditional philosophy is defined from the start by its
 focusing on facts in the world while "passing over" the world as

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:38:14 UTC�������������� 

All use subject to https://about.jstor.org/terms
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 such.32 This means that philosophy has from the start systematically
 ignored or distorted the everyday context of human activity.33 The
 branch of the philosophical tradition that descends from Socrates
 through Plato, Descartes, Leibniz, and Kant to conventional AI takes
 it for granted, in addition, that understanding a domain consists in
 having a theory of that domain. A theory formulates the relationships
 among objective, context-free elements (simples, primitives, features,
 attributes, factors, data points, cues, etc.) in terms of abstract
 principles (covering laws, rules, programs, etc.).

 Plato held that in theoretical domains such as mathematics and

 perhaps ethics, thinkers apply explicit, context-free rules or theories
 they have learned in another life, outside the everyday world. Once
 learned, such theories function in this world by controlling the
 thinker's mind, whether he or she is conscious of them or not. Plato's
 account did not apply to everyday skills but only to domains in which
 there is a priori knowledge. The success of theory in the natural
 sciences, however, reinforced the idea that in any orderly domain
 there must be some set of context-free elements and some abstract
 relations among those elements that account for the order of that
 domain and for man's ability to act intelligently in it. Thus, Leibniz
 boldly generalized the rationalist account to all forms of intelligent
 activity, even everyday practice:

 [T]he most important observations and turns of skill in all sorts of trades
 and professions are as yet unwritten. This fact is proved by experience when
 passing from theory to practice we desire to accomplish something. Of
 course, we can also write up this practice, since it is at bottom just another
 theory more complex and particular-[italics added]34

 The symbolic information-processing approach gains its assurance
 from this transfer to all domains of methods that have been devel
 oped by philosophers and that are successful in the natural sciences.
 Since, in this view, any domain must be formalizable, the way to do
 AI in any area is obviously to find the context-free elements and
 principles and to base a formal, symbolic representation on this
 theoretical analysis. In this vein Terry Winograd describes his AI

 work in terms borrowed from physical science:

 We are concerned with developing a formalism, or "representation," with
 which to describe ... knowledge. We seek the "atoms" and "particles" of
 which it is built, and the "forces" that act on it.35
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 No doubt theories about the universe are often built up gradually
 by modeling relatively simple and isolated systems and then making
 the model gradually more complex and integrating it with models of
 other domains. This is possible because all the phenomena are
 presumably the result of the lawlike relations between what Papert
 and Minsky call "structural primitives." Since no one argues for
 atomistic reduction in AI, it seems that AI workers just implicitly
 assume that the abstraction of elements from their everyday context,
 which defines philosophy and works in natural science, must also
 work in AI. This assumption may well account for the way the
 physical symbol system hypothesis so quickly turned into a revelation
 and for the ease with which Papert and Minsky's book triumphed
 over the holism of the perceptron.

 Teaching philosophy at MIT in the mid-sixties, one of us?
 Hubert?was soon drawn into the debate over the possibility of AI.
 It was obvious that researchers such as Newell, Simon, and Minsky

 were the heirs to the philosophical tradition. But given the conclu
 sions of the later Wittgenstein and the early Heidegger, that did not
 seem to be a good omen for the reductionist research program. Both
 these thinkers had called into question the very tradition on which
 symbolic information processing was based. Both were holists, both
 were struck by the importance of everyday practices, and both held
 that one could not have a theory of the everyday world.

 It is one of the ironies of intellectual history that Wittgenstein's
 devastating attack on his own Tractatus, his Philosophical
 Investigations,36 was published in 1953, just as AI took over the
 abstract, atomistic tradition he was attacking. After writing the
 Tractatus, Wittgenstein spent years doing what he called
 phenomenology37?looking in vain for the atomic facts and basic
 objects his theory required. He ended by abandoning his Tractatus
 and all rationalistic philosophy. He argued that the analysis of
 everyday situations into facts and rules (which is where most
 traditional philosophers and AI researchers think theory must begin)
 is itself only meaningful in some context and for some purpose. Thus,
 the elements chosen already reflect the goals and purposes for which
 they are carved out. When we try to find the ultimate context-free,
 purpose-free elements, as we must if we are going to find the
 primitive symbols to feed a computer, we are in effect trying to free
 aspects of our experience of just that pragmatic organization which
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 Making a Mind Versus Modeling the Brain 27

 makes it possible to use them intelligently in coping with everyday
 problems.

 In the Philosophical Investigations Wittgenstein directly criticized
 the logical atomism of the Tractatus:

 "What lies behind the idea that names really signify simples"??Socrates
 says in the Theaetetus: "If I make no mistake, I have heard some people say
 this: there is no definition of the primary elements?so to speak?out of

 which we and everything else are composed.... But just as what consists of
 these primary elements is itself complex, so the names of the elements
 become descriptive language by being compounded together." Both Rus
 sell's 'individuals' and my 'objects' (Tractatus Logico-Philosophicus) were
 such primary elements. But what are the simple constituent parts of which
 reality is composed? ... It makes no sense at all to speak absolutely of the
 'simple parts of a chair.'38

 Already, in the 1920s, Martin Heidegger had reacted in a similar
 way against his mentor, Edmund Husserl, who regarded himself as
 the culmination of the Cartesian tradition and was therefore the

 grandfather of AI.39 Husserl argued that an act of consciousness, or
 noesis, does not on its own grasp an object; rather, the act has
 intentionality (directedness) only by virtue of an "abstract form," or

 meaning, in the noema correlated with the act.40
 This meaning, or symbolic representation, as conceived by Hus

 serl, is a complex entity that has a difficult job to perform. In Ideas
 Pertaining to a Pure Phenomenology,41 Husserl bravely tried to
 explain how the noema gets the job done. Reference is provided by
 "predicate-senses," which, like Fregean Sinne, just have the remark
 able property of picking out objects' atomic properties. These pred
 icates are combined into complex "descriptions" of complex objects,
 as in Russell's theory of descriptions. For Husserl, who was close to
 Kant on this point, the noema contains a hierarchy of stria rules.
 Since Husserl thought of intelligence as a context-determined, goal
 directed activity, the mental representation of any type of object had
 to provide a context, or a "horizon" of expectations or "predelinea
 tions" for structuring the incoming data: "a rule governing possible
 other consciousness of [the object] as identical?possible, as exem
 plifying essentially predelineated types."42 The noema must contain a
 rule describing all the features that can be expected with certainty in
 exploring a certain type of object?features that remain "inviolably
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 the same: as long as the objectivity remains intended as this one and
 of this kind."43 The rule must also prescribe predelineations of
 properties that are possible, but not necessary, features of this type of

 object: "Instead of a completely determined sense, there is always,
 therefore, a frame of empty sense_" 44

 In 1973 Marvin Minsky proposed a new data structure, remark
 ably similar to Husserl's, for representing everyday knowledge:

 A frame is a data-structure for representing a stereotyped situation, like
 being in a certain kind of living room, or going to a child's birthday
 party....
 We can think of a frame as a network of nodes and relations. The top

 levels of a frame are fixed, and represent things that are always true about
 the supposed situation. The lower levels have many terminals?slots that

 must be filled by specific instances or data. Each terminal can specify
 conditions its assignments must meet....
 Much of the phenomenological power of the theory hinges on the

 inclusion of expectations and other kinds of presumptions. A frame's
 terminals are normally already filled with "default" assignments.45

 In Minsky's model of a frame, the "top level" is a developed
 version of what, in Husserl's terminology, remains "inviolably the
 same" in the representation, and Husserl's predelineations have
 become "default assignments"?additional features that can nor
 mally be expected. The result is a step forward in AI techniques from
 a passive model of information processing to one that tries to take
 account of the interactions between a knower and the world. The

 task of AI thus converges with the task of transcendental phenome
 nology. Both must try in everyday domains to find frames con
 structed from a set of primitive predicates and their formal relations.

 Heidegger, before Wittgenstein, carried out, in response to Hus
 serl, a phenomenological description of the everyday world and
 everyday objects like chairs and hammers. Like Wittgenstein, he
 found that the everyday world could not be represented by a set of
 context-free elements. It was Heidegger who forced Husserl to face
 precisely this problem by pointing out that there are other ways of
 "encountering" things than relating to them as objects defined by a
 set of predicates. When we use a piece of equipment like a hammer,

 Heidegger said, we actualize a skill (which need not be represented in
 the mind) in the context of a socially organized nexus of equipment,
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 purposes, and human roles (which need not be represented as a set of
 facts). This context, or world, and our everyday ways of skillful
 coping in it, which Heidegger called "circumspection," are not
 something we think but part of our socialization, which forms the

 way we are. Heidegger concluded:

 The context... can be taken formally in the sense of a system of relations.
 But... [t]he phenomenal content of these 'relations' and 'relata'... is such
 that they resist any sort of mathematical functionalization; nor are they

 merely something thought, first posited in an 'act of thinking'. They are
 rather relationships in which concernful circumspection as such already
 dwells.46

 This defines the splitting of the ways between Husserl and AI on
 the one hand and Heidegger and the later Wittgenstein on the other.
 The crucial question becomes, Can there be a theory of the everyday
 world as rationalist philosophers have always held? Or is the
 commonsense background rather a combination of skills, practices,
 discriminations, and so on, which are not intentional states and so, a

 fortiori, do not have any representational content to be explicated in
 terms of elements and rules?

 By making a move that was soon to become familiar in AI circles,
 Husserl tried to avoid the problem Heidegger posed. Husserl claimed
 that the world, the background of significance, the everyday context,

 was merely a very complex system of facts correlated with a complex
 system of beliefs, which, since they have truth conditions, he called
 validities. One could, in principle, he held, suspend one's dwelling in
 the world and achieve a detached description of the human belief
 system. One could thus complete the task that had been implicit in
 philosophy since Socrates: one could make explicit the beliefs and
 principles underlying all intelligent behavior. As Husserl put it,

 [E]ven the background ... of which we are always concurrently conscious
 but which is momentarily irrelevant and remains completely unnoticed, still
 functions according to its implicit validities.47

 Since he firmly believed that the shared background could be made
 explicit as a belief system, Husserl was ahead of his time in raising the
 question of the possibility of AI. After discussing the possibility that
 a formal axiomatic system might describe experience and pointing
 out that such a system of axioms and primitives?at least as we know
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 it in geometry?could not describe everyday shapes such as "scal
 loped" and "lens-shaped," Husserl left open the question whether
 these everyday concepts could nonetheless be formalized. (This was
 like raising and leaving open the AI question whether one can
 axiomatize commonsense physics.) Taking up Leibniz's dream of a
 mathesis of all experience, Husserl added:

 The pressing question is ... whether there could not be ... an idealizing
 procedure that substitutes pure and strict ideals for intuited data and that
 would ... serve ... as the basic medium for a mathesis of experience.48

 But, as Heidegger predicted, the task of writing out a complete
 theoretical account of everyday life turned out to be much harder
 than initially expected. Husserl's project ran into serious trouble, and
 there are signs that Minsky's has too. During twenty-five years of
 trying to spell out the components of the subject's representation of
 everyday objects, Husserl found that he had to include more and
 more of the subject's commonsense understanding of the everyday
 world:

 To be sure, even the tasks that present themselves when we take single types
 of objects as restricted clues prove to be extremely complicated and always
 lead to extensive disciplines when we penetrate more deeply. That is the
 case, for example, with ... spatial objects (to say nothing of a Nature) as
 such, of psycho-physical being and humanity as such, culture as such.49

 He spoke of the noema's "huge concreteness"50 and of its "tre
 mendous complication,"51 and he sadly concluded at the age of
 seventy-five that he was a perpetual beginner and that phenomenol
 ogy was an "infinite task."52

 There are hints in his paper "A Framework for Representing
 Knowledge" that Minsky has embarked on the same "infinite task"
 that eventually overwhelmed Husserl:

 Just constructing a knowledge base is a major intellectual research
 problem.... We still know far too little about the contents and structure of
 common-sense knowledge. A "minimal" common-sense system must "know"
 something about cause-effect, time, purpose, locality, process, and types of
 knowledge_We need a serious epistemological research effort in this
 area.53

 To a student of contemporary philosophy, Minsky's naivete and
 faith are astonishing. Husserl's phenomenology was just such a
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 research effort. Indeed, philosophers from Socrates through Leibniz
 to early Wittgenstein carried on serious epistemological research in
 this area for two thousand years without notable success.

 In the light of Wittgenstein's reversal and Heidegger's devastating
 critique of Husserl, one of us?Hubert?predicted trouble for sym
 bolic information processing. As Newell notes in his history of AI,
 this warning was ignored:

 Dreyfus's central intellectual objection ... is that the analysis of the context
 of human action into discrete elements is doomed to failure. This objection
 is grounded in phenomenological philosophy. Unfortunately, this appears to
 be a nonissue as far as AI is concerned. The answers, refutations, and
 analyses that have been forthcoming to Dreyfus's writings have simply not
 engaged this issue?which indeed would be a novel issue if it were to come
 to the fore.54

 The trouble was, indeed, not long in coming to the fore, as the
 everyday world took its revenge on AI as it had on traditional
 philosophy. As we see it, the research program launched by Newell
 and Simon has gone through three ten-year stages. From 1955 to
 1965 two research themes, representation and search, dominated the
 field then called "cognitive simulation." Newell and Simon showed,
 for example, how a computer could solve a class of problems with the
 general heuristic search principle known as means-end analysis?
 namely, to use any available operation that reduces the distance
 between the description of the current situation and the description of
 the goal. They then abstracted this heuristic technique and incorpo
 rated it into their General Problem Solver (GPS).

 The second stage (1965-75), led by Marvin Minsky and Seymour
 Papert at MIT, was concerned with what facts and rules to represent.
 The idea was to develop methods for dealing systematically with
 knowledge in isolated domains called "microworlds." Famous pro
 grams written around 1970 at MIT include Terry Winograd's
 SHRDLU, which could obey commands given in a subset of natural
 language about a simplified "blocks-world," Thomas Evan's analogy
 problem program, David Waltz's scene analysis program, and Pat
 rick Winston's program, which could learn concepts from examples.

 The hope was that the restricted and isolated microworlds could be

 gradually made more realistic and combined so as to approach
 real-world understanding. But researchers confused two domains,
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 which, following Heidegger, we shall distinguish as "universe" and
 "world." A set of interrelated facts may constitute a universe, like the

 physical universe, but it does not constitute a world. The latter, like
 the world of business, the world of theater, or the world of the
 physicist, is an organized body of objects, purposes, skills, and
 practices on the basis of which human activities have meaning or
 make sense. To see the difference, one can contrast the meaningless
 physical universe with the meaningful world of the discipline of
 physics. The world of physics, the business world, and the theater
 world make sense only against a background of common human
 concerns. They are local elaborations of the one commonsense world
 we all share. That is, subworlds are not related like isolable physical
 systems to the larger systems they compose but rather are local
 elaborations of a whole that they presuppose. Microworlds are not
 worlds but isolated meaningless domains, and it has gradually
 become clear that there is no way they could be combined and
 extended to arrive at the world of everyday life.

 In its third stage, roughly from 1975 to the present, AI has been
 wrestling with what has come to be called the commonsense knowl
 edge problem. The representation of knowledge was always a central
 problem for work in AI, but the two earlier periods?cognitive
 simulation and microworlds?were characterized by an attempt to
 avoid the problem of commonsense knowledge by seeing how much
 could be done with as little knowledge as possible. By the middle
 1970s, however, the issue had to be faced. Various data structures,
 such as Minsky's frames and Roger Schank's scripts, have been tried

 without success. The commonsense knowledge problem has kept AI
 from even beginning to fulfill Simon's prediction of twenty years ago
 that "within twenty years machines will be capable of doing any
 work a man can do."55

 Indeed, the commonsense knowledge problem has blocked all
 progress in theoretical AI for the past decade. Winograd was one of
 the first to see the limitations of SHRDLU and all script and frame
 attempts to extend the microworlds approach. Having "lost faith" in
 AI, he now teaches Heidegger in his computer science course at
 Stanford and points out "the difficulty of formalizing the common
 sense background that determines which scripts, goals and strategies
 are relevant and how they interact."56
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 What sustains AI in this impasse is the conviction that the
 commonsense knowledge problem must be solvable, since human
 beings have obviously solved it. But human beings may not normally
 use commonsense knowledge at all. As Heidegger and Wittgenstein
 pointed out, what commonsense understanding amounts to might
 well be everyday know-how. By "know-how" we do not mean
 procedural rules but knowing what to do in a vast number of special
 cases.57 For example, commonsense physics has turned out to be
 extremely hard to spell out in a set of facts and rules. When one tries,
 one either requires more common sense to understand the facts and
 rules one finds or else one produces formulas of such complexity that
 it seems highly unlikely they are in a child's mind.
 Doing theoretical physics also requires background skills that may

 not be formalizable, but the domain itself can be described by
 abstract laws that make no reference to these background skills. AI
 researchers mistakenly conclude that commonsense physics too must
 be expressible as a set of abstract principles. But it just may be that
 the problem of finding a theory of commonsense physics is insoluble
 because the domain has no theoretical structure. By playing with all
 sorts of liquids and solids every day for several years, a child may
 simply learn to discriminate prototypical cases of solids, liquids, and
 so on and learn typical skilled responses to their typical behavior in
 typical circumstances. The same might well be the case for the social

 world. If background understanding is indeed a skill and if skills are
 based on whole patterns and not on rules, we would expect symbolic
 representations to fail to capture our commonsense understanding.

 In the light of this impasse, classical, symbol-based AI appears
 more and more to be a perfect example of what Imre Lakatos has
 called a degenerating research program.58 As we have seen, AI began
 auspiciously with Newell and Simon's work at Rand and by the late
 1960s turned into a flourishing research program. Minsky predicted
 that "within a generation the problem of creating 'artificial intelli
 gence' will be substantially solved."59 Then, rather suddenly, the field
 ran into unexpected difficulties. It turned out to be much harder than
 one expected to formulate a theory of common sense. It was not, as

 Minsky had hoped, just a question of cataloguing a few hundred
 thousand facts. The commonsense knowledge problem became the
 center of concern. Minsky's mood changed completely in five years.
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 He told a reporter that "the AI problem is one of the hardest science
 has ever undertaken."60

 The rationalist tradition had finally been put to an empirical test,
 and it had failed. The idea of producing a formal, atomistic theory of
 the everyday commonsense world and of representing that theory in
 a symbol manipulator had run into just the difficulties Heidegger and

 Wittgenstein had discovered. Frank Rosenblatt's intuition that it
 would be hopelessly difficult to formalize the world and thus to give
 a formal specification of intelligent behavior had been vindicated. His
 repressed research program (using the computer to instantiate a
 holistic model of an idealized brain), which had never really been
 refuted, became again a live option.

 In journalistic accounts of the history of AI, Rosenblatt is vilified
 by anonymous detractors as a snake-oil salesman:

 Present-day researchers remember that Rosenblatt was given to steady and
 extravagant statements about the performance of his machine. "He was a
 press agent's dream," one scientist says, "a real medicine man. To hear him
 tell it, the Perceptron was capable of fantastic things. And maybe it was. But
 you couldn't prove it by the work Frank did."61

 In fact, he was much clearer about the capacities and limitations of
 the various types of perceptrons than Simon and Minsky were about
 their symbolic programs.62 Now he is being rehabilitated. David
 Rumelhart, Geoffrey Hinton, and James McClelland reflect this new
 appreciation of his pioneering work:

 Rosenblatt's work was very controversial at the time, and the specific
 models he proposed were not up to all the hopes he had for them. But his
 vision of the human information processing system as a dynamic, interac
 tive, self-organizing system lies at the core of the PDP approach.63

 The studies of perceptrons ... clearly anticipated many of the results in
 use today. The critique of perceptrons by Minsky and Papert was widely
 misinterpreted as destroying their credibility, whereas the work simply
 showed limitations on the power of the most limited class of perceptron-like

 mechanisms, and said nothing about more powerful, multiple layer models.64

 Frustrated AI researchers, tired of clinging to a research program
 that Jerry Lettvin characterized in the early 1980s as "the only straw
 afloat," flocked to the new paradigm. Rumelhart and McClelland's
 book Parallel Distributed Processing sold six thousand copies the day
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 it went onto the market, and thirty thousand are now in print. As
 Paul Smolensky put it,

 In the past half-decade the connectionist approach to cognitive modeling has
 grown from an obscure cult claiming a few true believers to a movement so
 vigorous that recent meetings of the Cognitive Science Society have begun to
 look like connectionist pep rallies.65

 If multilayered networks succeed in fulfilling their promise, re
 searchers will have to give up the conviction of Descartes, Husserl,
 and early Wittgenstein that the only way to produce intelligent
 behavior is to mirror the world with a formal theory in the mind.

 Worse, one may have to give up the more basic intuition at the source
 of philosophy that there must be a theory of every aspect of reality?
 that is, there must be elements and principles in terms of which one
 can account for the intelligibility of any domain. Neural networks
 may show that Heidegger, later Wittgenstein, and Rosenblatt were
 right in thinking that we behave intelligently in the world without
 having a theory of that world. If a theory is not necessary to explain
 intelligent behavior, we have to be prepared to raise the question

 whether in everyday domains such a theoretical explanation is even
 possible.

 Neural net modelers, influenced by symbol-manipulating AI, are
 expending considerable effort, once their nets have been trained to
 perform a task, in trying to find the features represented by individual
 nodes and sets of nodes. Results thus far are equivocal. Consider
 Hinton's network for learning concepts by means of distributed
 representations.66 The network can be trained to encode relation
 ships in a domain that human beings conceptualize in terms of
 features, without the network being given the features that human
 beings use. Hinton produces examples of cases in which some nodes
 in the trained network can be interpreted as corresponding to the
 features that human beings pick out, although these nodes only
 roughly correspond to those features. Most nodes, however, cannot
 be interpreted semantically at all. A feature used in a symbolic
 representation is either present or not. In the net, however, although
 certain nodes are more active when a certain feature is present in the
 domain, the amount of activity not only varies with the presence or
 absence of this feature but is affected by the presence or absence of
 other features as well.
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 Hinton has picked a domain?family relationships?that is con
 structed by human beings precisely in terms of the features that
 human beings normally notice, such as generation and nationality.
 Hinton then analyzes those cases in which, starting with certain
 random initial-connection strengths, some nodes can, after learning,
 be interpreted as representing those features. Calculations using
 Hinton's model show, however, that even his net seems to learn its
 associations for some random initial-connection strengths without
 any obvious use of these everyday features.

 In one very limited sense, any successfully trained multilayer net
 can be interpreted in terms of features?not everyday features but
 what we shall call highly abstract features. Consider the simple case
 of layers of binary units activated by feed-forward, but not lateral or
 feedback, connections. To construct such an account from a network
 that has learned certain associations, each node one level above the
 input nodes could, on the basis of the connections to it, be interpreted
 as detecting when one of a certain set of input patterns is present.
 (Some of the patterns will be the ones used in training, and some will
 never have been used.) If the set of input patterns that a particular
 node detects is given an invented name (it almost certainly won't have
 a name in our vocabulary), the node could be interpreted as detecting
 the highly abstract feature so named. Hence, every node one level
 above the input level could be characterized as a feature detector.
 Similarly, every node a level above those nodes could be interpreted
 as detecting a higher-order feature, defined as the presence of one of
 a specified set of patterns among the first level of feature detectors.
 And so on up the hierarchy.

 The fact that intelligence, defined as the knowledge of a certain set
 of associations appropriate to a domain, can always be accounted for
 in terms of relations among a number of highly abstract features of a
 skill domain does not, however, preserve the rationalist intuition that

 these explanatory features must capture the essential structure of the
 domain so that one could base a theory on them. If the net were
 taught one more association of an input-output pair (where the input
 prior to training produced an output different from the one to be
 learned), the interpretation of at least some of the nodes would have
 to be changed. So the features that some of the nodes picked out
 before the last instance of training would turn out not to have been
 invariant structural features of the domain.
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 Once one has abandoned the philosophical approach of classical
 AI and accepted the atheoretical claim of neural net modeling, one
 question remains: How much of everyday intelligence can such a
 network be expected to capture? Classical AI researchers are quick to
 point out?as Rosenblatt already noted?that neural net modelers
 have so far had difficulty dealing with stepwise problem solving.
 Connectionists respond that they are confident that they will solve
 that problem in time. This response, however, reminds one too much
 of the way that the symbol manipulators in the sixties responded to
 the criticism that their programs were poor at the perception of
 patterns. The old struggle continues between intellectualists, who
 think that because they can do context-free logic they have a handle
 on everyday cognition but are poor at understanding perception, and
 gestaltists, who have the rudiments of an account of perception but
 no account of everyday cognition.67 One might think, using the
 metaphor of the right and the left brain, that perhaps the brain or the
 mind uses each strategy when appropriate. The problem would then
 be how to combine the strategies. One cannot just switch back and
 forth, for as Heidegger and the gestaltists saw, the pragmatic back
 ground plays a crucial role in determining relevance, even in everyday
 logic and problem solving, and experts in any field, even logic, grasp
 operations in terms of their functional similarities.

 It is even premature to consider combining the two approaches,
 since so far neither has accomplished enough to be on solid ground.

 Neural network modeling may simply be getting a deserved chance to
 fail, as did the symbolic approach.

 Still, there is an important difference to bear in mind as each
 research program struggles on. The physical symbol system approach
 seems to be failing because it is simply false to assume that there must
 be a theory of every domain. Neural network modeling, however, is
 not committed to this or any other philosophical assumption. Nev
 ertheless, building an interactive net sufficiently similar to the one our
 brain has evolved may be just too hard. Indeed, the commonsense
 knowledge problem, which has blocked the progress of symbolic
 representation techniques for fifteen years, may be looming on the
 neural net horizon, although researchers may not yet recognize it. All
 neural net modelers agree that for a net to be intelligent it must be
 able to generalize; that is, given sufficient examples of inputs associ
 ated with one particular output, it should associate further inputs of
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 the same type with that same output. The question arises, however:
 What counts as the same type? The designer of the net has in mind a
 specific definition of the type required for a reasonable generalization
 and counts it a success if the net generalizes to other instances of this
 type. But when the net produces an unexpected association, can one
 say it has failed to generalize? One could equally well say that the net
 has all along been acting on a different definition of the type in
 question and that that difference has just been revealed. (All the
 "continue this sequence" questions found on intelligence tests really
 have more than one possible answer, but most human beings share a
 sense of what is simple and reasonable and therefore acceptable.)
 Neural network modelers attempt to avoid this ambiguity and

 make the net produce "reasonable" generalizations by considering
 only a prespecified allowable family of generalizations?that is,
 allowable transformations that will count as acceptable generaliza
 tions (the hypothesis space). These modelers then attempt to design
 the architecture of their nets so that they transform inputs into
 outputs only in ways that are in the hypothesis space. Generalization
 will then be possible only on the designer's terms. While a few
 examples will be insufficient to identify uniquely the appropriate
 member of the hypothesis space, after enough examples only one
 hypothesis will account for all the examples. The net will then have
 learned the appropriate generalization principle. That is, all further
 input will produce what, from the designer's point of view, is the
 appropriate output.

 The problem here is that the designer has determined, by means of
 the architecture of the net, that certain possible generalizations will
 never be found. All this is well and good for toy problems in which
 there is no question of what constitutes a reasonable generalization,
 but in real-world situations a large part of human intelligence consists
 in generalizing in ways that are appropriate to a context. If the
 designer restricts the net to a predefined class of appropriate re
 sponses, the net will be exhibiting the intelligence built into it by the
 designer for that context but will not have the common sense that
 would enable it to adapt to other contexts, as a truly human
 intelligence would.

 Perhaps a net must share size, architecture, and initial-connection
 configuration with the human brain if it is to share our sense of
 appropriate generalization. If it is to learn from its own "experiences"
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 to make associations that are humanlike rather than be taught to
 make associations that have been specified by its trainer, a net must
 also share our sense of appropriateness of output, and this means it
 must share our needs, desires, and emotions and have a humanlike
 body with appropriate physical movements, abilities, and vulnerabil
 ity to injury.

 If Heidegger and Wittgenstein are right, human beings are much
 more holistic than neural nets. Intelligence has to be motivated by
 purposes in the organism and goals picked up by the organism from
 an ongoing culture. If the minimum unit of analysis is that of a whole
 organism geared into a whole cultural world, neural nets as well as
 symbolically programmed computers still have a very long way to go.
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 16David E. Rumelhart, James L. McClelland, and the PDP Research Group in their

 recent collection of papers, Parallel Distributed Processing: Explorations in the
 Microstructure of Cognition, vol. 1 (Cambridge: MIT Press, 1986), describe the
 perceptron as follows:

 Such machines consist of what is generally called a retina, an array of binary inputs
 sometimes taken to be arranged in a two-dimensional spatial layout; a set of predicates, a
 set of binary threshold units with fixed connections to a subset of units in the retina such
 that each predicate computes some local function over the subset of units to which it is
 connected; and one or more decision units, with modifiable connections to the predicates,
 (p. HD

 They contrast the way a parallel distributed processing (PDP) model like the
 perceptron stores information with the way information is stored by symbolic
 representation:
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 finding the pattern in long-term memory and copying it into a buffer or working memory.
 There is no real difference between the stored representation in long-term memory and the
 active representation in working memory. In PDP models, though, this is not the case. In
 these models, the patterns themselves are not stored. Rather, what is stored is the connection
 strengths between units that allow these patterns to be re-created, (p. 31)

 [Kjnowledge about any individual pattern is not stored in the connections of a special unit
 reserved for that pattern, but is distributed over the connections among a large number of
 processing units, (p. 33)

 This new notion of representation led directly to Rosenblatt's idea that such
 machines should be able to acquire their ability through learning rather than by
 being programmed with features and rules:

 [I]f the knowledge is [in] the strengths of the connections, learning must be a matter of
 finding the right connection strengths so that the right patterns of activation will be
 produced under the right circumstances. This is an extremely important property of this
 class of models, for it opens up the possibility that an information processing mechanism
 could learn, as a result of tuning its connections, to capture the interdependencies between
 activations that it is exposed to in the course of processing, (p. 32)

 17Frank Rosenblatt, Mechanisation of Thought Processes: Proceedings of a Sympo
 sium held at the National Physical Laboratory (London: Her Majesty's Stationery
 Office, 1958), vol. 1, 449.
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 gence: A Paper Symposium (London: Science Research Council, 1973).
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 23Frank Rosenblatt, Principles of Neurodynamics, Perceptrons and the Theory of

 Brain Mechanisms (Washington, D.C.: Spartan Books, 1962), 292. See also:

 The addition of a fourth layer of signal transmission units, or cross-coupling the A-units of
 a three-layer perceptron, permits the solution of generalization problems, over arbitrary
 transformation groups, (p. 576)

 In back-coupled perceptrons, selective attention to familiar objects in a complex field can
 occur. It is also possible for such a perceptron to attend selectively to objects which move
 differentially relative to their background, (p. 576)

This content downloaded from 
�������������72.74.225.77 on Thu, 07 Apr 2022 18:38:14 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Making a Mind Versus Modeling the Brain 41
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 1985); and Margaret Boden, Artificial Intelligence and Natural Man (New York:
 Basic Books, 1977). Work on neural nets was continued in a marginal way in
 psychology and neuroscience. James A. Anderson at Brown University continued
 to defend a net model in psychology, although he had to live off other researchers'
 grants, and Stephen Grossberg worked out an elegant mathematical implemen
 tation of elementary cognitive capacities. For Anderson's position see "Neural

 Models with Cognitive Implications" in Basic Processing in Reading, ed. D.
 LaBerse and S. J. Samuels (Hillsdale, N.J.: Lawrence Erlbaum Associates, 1978).
 For examples of Grossberg's work during the dark ages, see his book Studies of
 Mind and Brain: Neural Principles of Learning, Perception, Development,
 Cognition and Motor Control (Boston: Reidel Press, 1982). Kohonen's early
 work is reported in Associative Memory?A System-Theoretical Approach
 (Berlin: Springer-Verlag, 1977).
 At MIT Minsky continued to lecture on neural nets and to assign theses

 investigating their logical properties. But according to Papert, Minsky did so only
 because nets had interesting mathematical properties, whereas nothing interesting
 could be proved concerning the properties of symbol systems. Moreover, many AI
 researchers assumed that since Turing machines were symbol manipulators and
 Turing had proved that Turing machines could compute anything, he had proved
 that all intelligibility could be captured by logic. On this view a holistic (and in
 those days statistical) approach needed justification, while the symbolic AI
 approach did not. This confidence, however, was based on confusing the
 uninterpreted symbols of a Turing machine (zeros and ones) with the semantically
 interpreted symbols of AI.

 32Martin Heidegger, Being and Time (New York: Harper and Row, 1962), sec.
 14-21; Hubert Dreyfus, Being-in-the-World: A Commentary on Division I of
 Being and Time (Cambridge: MIT Press, forthcoming, 1988).

 33According to Heidegger, Aristotle came closer than any other philosopher to
 understanding the importance of everyday activity, but even he succumbed to the
 distortion of the phenomenon of the everyday world implicit in common sense.

 34Leibniz, Selections, 48.
 35Terry Winograd, "Artificial Intelligence and Language Comprehension," in

 Artificial Intelligence and Language Comprehension (Washington, D.C.: Na
 tional Institute of Education, 1976), 9.

 36Ludwig Wittgenstein, Philosophical Investigations (Oxford: Basil Blackwell,
 1953).

 37Ludwig Wittgenstein, Philosophical Remarks (Chicago: University of Chicago
 Press, 1975).

 38Wittgenstein, Philosophical Investigations, 21.
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 42 Hubert L. Dreyfus and Stuart E. Dreyfus

 39See Husserl, Intentionality and Cognitive Science, ed. Hubert Dreyfus (Cambridge:
 MIT Press, 1982).

 40"Der Sinn ... so wie wir ihn bestimmt haben, ist nicht ein konkretes Wesen im
 Gesamtbestande des Noema, sondern eine Art ihm einwohnender abstrackter
 Form." See Edmund Husserl, Ideen Zu Einer Reinen Ph?nomenologie und
 Ph?nomenologischen Philosophie (The Hague: Nijhoff, 1950). For evidence that
 Husserl held that the noema accounts for the intentionality of mental activity, see
 Hubert Dreyfus, "Husserl's Perceptual Noema," in Husserl, Intentionality and
 Cognitive Science.

 41Edmund Husserl, Ideas Pertaining to a Pure Phenomenology and to a Phenome
 nological Philosophy, trans. F. Kersten (The Hague: Nijhoff, 1982).

 42Edmund Husserl, Cartesian Meditations, trans. D. Cairns (The Hague: Nijhoff,
 1960), 45.

 43Ibid., 53.
 44Ibid,51.
 45Marvin Minsky, "A Framework for Representing Knowledge," in Mind Design,

 ed. John Haugeland (Cambridge: MIT Press, 1981), 96.
 46Heidegger, 121-22.
 47Edmund Husserl, Crisis of European Sciences and Transcendental Phenomenol

 ogy, trans. D. Carr (Evanston: Northwestern University Press, 1970), 149.
 48Edmund Husserl, Ideen zu einer reinen Ph?nomenologie und phenomenologischen

 Philosophie, bk. 3 in vol. 5, Husserliana (The Hague: Nijoff, 1952), 134.
 49Husserl, Cartesian Meditations, 54-55.
 50Husserl, Formal and Transcendental Logic, trans. D. Cairns (The Hague: Nijhoff,

 1969), 244.
 51Ibid., 246.
 52Husserl, Crisis, 291.
 53Minsky, "A Framework," 124.
 54Newell, "Intellectual Issues," 222-23.
 55Herbert Simon, The Shape of Automation for Men and Management (New York:

 Harper and Row, 1965), 96.
 56Terry Winograd, "Computer Software for Working with Language," Scientific

 American (September 1984): 142.
 57This account of skill is spelled out and defended in Hubert Dreyfus and Stuart

 Dreyfus, Mind Over Machine (New York: Macmillan, 1986).
 58Imre Lakatos, Philosophical Papers, ed. J. Worrall (Cambridge: Cambridge

 University Press, 1978).
 59Marvin Minsky, Computation: Finite and Infinite Machines (New York: Prentice

 Hall, 1977), 2.
 60Gina Kolata, "How Can Computers Get Common Sense?" Science 217 (24

 September 1982):1237.
 61Pamela McCorduck, Machines Who Think (San Francisco: W. H. Freeman,

 1979), 87.
 62Some typical quotations from Rosenblatt's Principles of Neurodynamics:

 In a learning experiment, a perceptron is typically exposed to a sequence of patterns
 containing representatives of each type or class which is to be distinguished, and the
 appropriate choice of a response is "reinforced" according to some rule for memory
 modification. The perceptron is then presented with a test stimulus, and the probability of
 giving the appropriate response for the class of the stimulus is ascertained.... If the test
 stimulus activates a set of sensory elements which are entirely distinct from those which
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 Making a Mind Versus Modeling the Brain 43
 were activated in previous exposures to stimuli of the same class, the experiment is a test of
 "pure generalization." The simplest of perceptrons ... have no capability for pure
 generalization, but can be shown to perform quite respectably in discrimination experiments
 particularly if the test stimulus is nearly identical to one of the patterns previously
 experienced, (p. 68)

 Perceptrons considered to date show little resemblance to human subjects in their
 figure-detection capabilities, and gestalt-organizing tendencies, (p. 71)

 The recognition of sequences in rudimentary form is well within the capability of suitably
 organized perceptrons, but the problem of figurai organization and segmentation presents
 problems which are just as serious here as in the case of static pattern perception, (p. 72)

 In a simple perceptron, patterns are recognized before "relations"; indeed, abstract
 relations, such as "A is above B" or "the triangle is inside the circle" are never abstracted as
 such, but can only be acquired by means of a sort of exhaustive rote-learning procedure, in

 which every case in which the relation holds is taught to the perceptron individually, (p. 73)
 A network consisting of less than three layers of signal transmission units, or a network

 consisting exclusively of linear elements connected in series, is incapable of learning to
 discriminate classes of patterns in an isotropic environment (where any pattern can occur in
 all possible retinal locations, without boundary effects), (p. 575)

 A number of speculative models which are likely to be capable of learning sequential
 programs, analysis of speech into phonemes, and learning substantive "meanings" for nouns
 and verbs with simple sensory referents have been presented in the preceding chapters. Such
 systems represent the upper limits of abstract behavior in perceptrons considered to date. They
 are handicapped by a lack of a satisfactory "temporary memory," by an inability to perceive
 abstract topological relations in a simple fashion, and by an inability to isolate meaningful
 figurai entities, or objects, except under special conditions, (p. 577)

 The applications most likely to be realizable with the kinds of perceptrons described in this
 volume include character recognition and "reading machines," speech recognition (for
 distinct, clearly separated words), and extremely limited capabilities for pictorial recognition,
 or the recognition of objects against simple backgrounds. "Perception" in a broader sense may
 be potentially within the grasp of the descendants of our present models, but a great deal of
 fundamental knowledge must be obtained before a sufficiently sophisticated design can be
 prescribed to permit a perceptron to compete with a man under normal environmental
 conditions, (p. 583)

 63Rumelhart and McClelland, Parallel Distributed Processing, vol. 1, 45.
 64Ibid., vol. 2, 535.
 65Paul Smolensky, "On the Proper Treatment of Connectionism," Behavioral and

 Brain Sciences, forthcoming.
 66Geoffrey Hinton, "Learning Distributed Representations of Concepts," in Pro

 ceedings of the Eighth Annual Conference of the Cognitive Science Society
 (Amherst, Mass.: Cognitive Science Society, August 1986).

 67For a recent influential account of perception that denies the need for mental
 representation, see James J. Gibson, The Ecological Approach to Visual Percep
 tion (Boston: Houghton Mifflin, 1979). Gibson and Rosenblatt collaborated on a
 research paper for the U.S. Air Force in 1955; see J. J. Gibson, P. Olum, and F.
 Rosenblatt, "Parallax and Perspective During Aircraft Landing," American
 Journal of Psychology 68 (1955):372-85.
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